Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-01T05:59:06.296Z Has data issue: false hasContentIssue false

Early holocene monsoonal fluctuations in the Garhwal higher Himalaya as inferred from multi-proxy data from the Malari paleolake

Published online by Cambridge University Press:  20 January 2017

Pradeep Srivastava*
Affiliation:
Wadia Institute of Himalayan Geology, 33 GMS Road, Dehradun 248001, India
Anil Kumar
Affiliation:
Wadia Institute of Himalayan Geology, 33 GMS Road, Dehradun 248001, India
Akanksha Mishra
Affiliation:
School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
Narendra K. Meena
Affiliation:
Wadia Institute of Himalayan Geology, 33 GMS Road, Dehradun 248001, India
Jayant K. Tripathi
Affiliation:
School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
Y.P. Sundriyal
Affiliation:
Department of Geology, H.N.B. Garhwal University, Srinagar 246174, India
Rajesh Agnihotri
Affiliation:
National Physical Laboratory, New Delhi 110012, India
Anil K. Gupta
Affiliation:
Wadia Institute of Himalayan Geology, 33 GMS Road, Dehradun 248001, India
*
*Corresponding author. E-mail address:[email protected] (P. Srivastava).

Abstract

A 4.9-m-thick lake sequence, formed due to the landslide damming of a stream in the semiarid Garhwal Himalaya, was studied to understand past monsoonal variations in the region. The Optically Stimulated Luminescence (OSL) chronology indicates that the lake existed between ~ 12 and ~ 7 ka ago. Chronologically constrained trends of sand percent, organic phosphorus (OP), apatite inorganic phosphorus (AIP) and parameters of environmental magnetism were measured in the paleolake profile. Measured proxies indicate that the Indian summer monsoon ameliorated in the early Holocene after 12 ka cooling, and it appears that all the proxies from the lake have captured this globally recognized early Holocene warming. Four phases of wet conditions (intensified monsoon) are recognized at ~ 11.5 ka, ~ 11–10.5 ka, ~ 10–9 ka and ~ 8–7 ka with maximum uncertainties of ~ 1000 years. The wet phases are characterized by high magnetic susceptibility, increased OP and reduced AIP. In an attempt to understand the primary forcing of the sharp fluctuations in monsoonal activity in the region, we show that changes in magnetic susceptibility match variations of residual atmospheric δ14C, suggesting a role for solar variability as an explanation of climatic variability.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnihotri, R., Dutta, K., Bhushan, R., Somayajulu, B.L.K., (2002). Evidence for solar forcing on the Indian monsoon during the last millennium. Earth and Planetary Science Letters 198, 521527.Google Scholar
Aitken, M.J., (1998). An Introduction to Optical Dating. Academic Press, London.Google Scholar
Ariztegui, D., Bianchi, M.M., Masaferro, J., Lafargue, E., Niessen, F., (1997). Interhemispheric synchrony of Lateglacial climatic instability as recorded in proglacial Lake Mascardi, Argentina. Journal of Quaternary Science 12, 333338.3.0.CO;2-0>CrossRefGoogle Scholar
Bagati, T.N., Mazari, R.K., Rajagopalan, G., (1996). Palaeotectonic implications of Lamayuru lake (Ladakh). Current Science 71, 479482.Google Scholar
Berger, A., Loutre, M.F., (1991). Insolation values for the climate of the last 10 million years. Quaternary Sciences Reviews 10, 297317.CrossRefGoogle Scholar
Beukema, S.P., Krishnamurthy, R.V., Juyal, N., Basavaiah, N., Singhvi, A.K., (2011). Monsoon variability and chemical weathering during the late Pleistocene in the Goriganga basin, higher central Himalaya, India. Quaternary Research 75, 597604.Google Scholar
Bookhagen, B., Burbank, D.W., (2006). Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophysical Research Letters 33, L08405 10.1029/2006GL026037.Google Scholar
Bookhagen, B., Thiede, R.C., Strecker, M.R., (2005). Late Quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya. Geology 33, 149152.Google Scholar
Broecker, W.S., (1982). Ocean chemistry during glacial times. Geochimica et Cosmochimica Acta 46, 16891705.Google Scholar
Burgisser, H.M., Gansser, A., Pika, J., (1982). Late Glacial lake sediments of the Indus valley area, northwestern Himalaya. Eclogae Geologicae Helvetiae 75, 5163.Google Scholar
Cronin, V.S., (1989). Structural setting of the Skardu intermontane basin, Karakoram Himalaya, Pakistan. Geological Society of America Special Paper 232, 183201.Google Scholar
Damon, P.E., Sonnett, C.P., (1991). Solar and terrestrial components of the atmospheric 14C variation spectrum. Sonnett, C.P., Giampapa, M.S., Matthews, M.S. The Sun in Time. The University of Arizona Press, Tucson, Ariz.360388.Google Scholar
deMenocal, . (2000). Abrupt onset and termination of African humid period: rapid climate response to gradual insolation forcing. Quaternary Science Reviews 19, 347361.CrossRefGoogle Scholar
Dong, J., Wang, Y., Cheng, H., Hardt, B., Edwards, R.L., Kong, X., Wu, J., Chen, S., Liu, D., Jiang, X., Zhou, K., (2010). A high-resolution stalagmite record of the Holocene East Asian monsoon from Mt Shennongjia, central China Jinguo. The Holocene 20, 257264.CrossRefGoogle Scholar
Dykoski, C.A., Edwards, R.L., Cheng, H., Yuan, D.X., Cai, Y.J., Zhang, M.L., Lin, Y., Qing, J., An, Z., Revenaugh, J., (2005). A high-resolution, absolute-dated Holocene and deglacial Asian monsoon records from Dongge cave, China. Earth and Planetary Science Letters 233, 7186.Google Scholar
Evans, M.E., Heller, F., (2003). Environmental Magnetism: Principal and Applications of Environmental magnetism. Academic Press, .Google Scholar
Filippelli, G.M., (2002). The global phosphorus cycle. Reviews in Mineralogy and Geochemistry 48, 392425.CrossRefGoogle Scholar
Filippelli, G.M., Souch, C., (1999). Effects of climate and landscape development on the terrestrial phosphorus cycle. Geology 27, 171174.Google Scholar
Filippelli, G.M., Souch, C., Menounos, B., Atwater, S.S., Jull, A.J.T., Slaymaker, O., (2006). Alpine lake sediment records of the impact of glaciation and climate change on the biogeochemical cycling of soil nutrients. Quaternary Research 66, 158166.Google Scholar
Fleitmann, D., Burns, S.J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., Matter, A., (2003). Holocene forcing of the Indian monsoon recorded on a stalagmite from southern Oman. Science 300, 17371739.Google Scholar
Fort, M., Burbank, D.W., Freytet, P., (1989). Lacustrine sedimentation in a semiarid alpine setting: an example from Ladakh, northwestern Himalaya. Quaternary Research 31, 332352.Google Scholar
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M., (1999). Optical dating of single and multiple grains of quartz from Jinmium rock shelter, Northern Australia: part I, experimental design and statistical models. Archaeometry 41, 338364.CrossRefGoogle Scholar
Gasse, F., (2000). Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary Science Reviews 19, 189211.CrossRefGoogle Scholar
Gasse, F., Thehet, R., Durand, A., Gibert, E., Fonte, J.-C., (1990). The arid–humid transition in the Sahara and the Sahel during the last deglaciation. Nature 346, 141146.CrossRefGoogle Scholar
Gupta, A.K., Anderson, D.M., Overpeck, J.T., (2003). Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421, 354357.Google Scholar
Gupta, A.K., Das, M., Anderson, D.M., (2005). Solar influence on the Indian summer monsoon during the Holocene. Geophysical Research Letters 32, L17703.CrossRefGoogle Scholar
Jain, M., Singhvi, A.K., (2001). Limits to depletion of blue-green light stimulated luminescence in feldspars: implications for quartz dating. Radiation Measurements 33, 883892.Google Scholar
Juyal, N., Pant, R.K., Basavaiah, N., Yadava, M.G., Saini, N.K., Singhvi, A.K., (2004). Climate and Seismicity in the Higher Central Himalaya during the last 20 kyr: evidences from Garbyang basin, Uttaranchal, India. Palaeogeography, Palaeoclimatology, Palaeoecology 213, 315330.Google Scholar
Juyal, N., Pant, R.K., Basavaiah, N., Bhushan, R., Jain, M., Saini, N.K., Yadava, M.G., Singhvi, A.K., (2009). Reconstruction of Last Glacial to early Holocene monsoon variability from relict lake sediments of the higher central Himalaya, Uttrakhand, India. Journal of Asian Earth Sciences 34, 437449.Google Scholar
Kirby, M.E., Lund, S.P., Anderson, M.A., Bird, B.W., (2007). Insolation forcing of Holocene climate change in Southern California: a sediment study from Lake Elsinore. Journal of Paleolimnology 38, 395417.Google Scholar
Kotlia, B.S., Bhalla, M.S., Shah, N., Rajagopalan, G., (1997a). Palaeomagnetic results from the Pleistocene–Holocene lake deposits of Bhimtal and Bhowali (Kumaun Himalaya) and Lamayuru (Ladakh Himalaya) with reference to the reversal events. Journal of Geological Society of India 51, 720.Google Scholar
Kotlia, B.S., Shukla, U.K., Bhalla, M.S., Mathur, P.D., Pant, C.C., (1997b). Quaternary fluvio-lacustrine deposits of Lamayuru basin, Ladakh Himalaya: preliminary palaeolake investigations. Geological Magazine 134, 807812.Google Scholar
Lamb, H.F., Gasse, F., Benkaddour, A., EL Hamoutt, N., VanDerKaars, S., Perkins, W.T., Pearce, N.J., Roberts, C.N., (1995). Relation between century-scale Holocene arid intervals in tropical and temperate zones. Nature 373, 134137.Google Scholar
Maher, B.A., Hu, M., (2006). A high-resolution record of Holocene rainfall variations from the western Chinese Loess Plateau: antiphase behaviour of the African/Indian and East Asian summer monsoons. The Holocene 16, 309319.Google Scholar
Maher, B.A., Thompson, R., (1992). Paleoclimate significance of the mineral magnetic record of the Chinese loess and paleosols. Quaternary Research 37, 155170.Google Scholar
Maiti, S., Meena, N.K., Sangode, S.J., Chakrapani, G.J., (2005). Magnetic susceptibility studies of soils in Delhi. Journal of Geological Society of India 66, 667672.Google Scholar
Mayewski, P.A., Rohling, E.E., Stager, J.C., Karlén, W., Maasch, K.A., Meeker, L.D., Meyerson, E.A., Gasse, F., Kreveld, S. v, Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.R., Steig, E.J., (2004). Holocene climate variability. Quaternary Research 62, 243255.Google Scholar
Meena, N.K., Sangode, S.J., Chakarpani, G.J., (2008). Millennium scale Monsoon variability from Environmental Magnetic record of Sambhar lake, Thar-Desert India. Himalayan Geology 29, 5051.Google Scholar
Meena, N.K., Maiti, S., Srivastava, A., (2011). Discrimination between anthropogenic (pollution) and lithogenic magnetic fraction in urban soils (Delhi, India) using environmental magnetism. Journal of Applied Geophysics 73, 121129.Google Scholar
Murray, A.S., Wintle, A.G., (2000). Luminescence dating of quartz using an improved single aliquot regenerative-dose protocol. Radiation Measurement 32, 5773.Google Scholar
National Wetland Inventory and Assessment, . (2011). High Altitude Himalayan Lakes. Space Applications Centre Indian Space Research Organisation, Ahmedabad.(21 pp.).Google Scholar
Neff, U., Burns, S.J., Mangini, A., Mudelsee, M., Fleitmann, D., Matter, A., (2001). Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature 411, 290293.Google Scholar
Overpeck, J.T., Anderson, D.M., Trumbore, S., Prell, W.L., (1996). The southwest monsoon over the last 18,000 years. Climate Dynamics 12, 213225.CrossRefGoogle Scholar
Phartiyal, B., Sharma, A., Srivastava, P., Ray, Y., (2009). Chronology of relict lake deposits in the Spiti River, NW Trans Himalaya: implications to Late Pleistocene–Holocene climate–tectonic perturbations. Geomorphology 108, 264272.Google Scholar
Prell, W.L., Kutzbach, J.E., (1987). Monsoon variability over the past 150,000 years. Journal of Geophysical Research 92, 84118425.CrossRefGoogle Scholar
Prell, W.L., Van Campo, E., (1986). Coherent response of Arabian Sea upwelling and pollen transport to late Quaternary monsoonal winds. Nature 323, 526528.Google Scholar
Preusser, F., Chithambo, M.L., Götte, T., Martini, M., Ramseyer, K., Sendezera, E.J., Susino, G.J., Wintle, A.G., (2009). Quartz as a natural luminescence dosimeter. Earth-Science Reviews 97, 184214.CrossRefGoogle Scholar
Ray, Y., Srivastava, P., (2010). Widespread aggradation in the mountainous catchment of the Alaknanda–Ganga River System: timescales and implications to Hinterland–foreland relationships. Quaternary Science Review 29, 22382260.Google Scholar
Reineck, H.E., Singh, I.B., (1980). Depositional Sedimentary Environments. Springer Verlag, Heidelberg.(549 pp.).Google Scholar
Ritchie, J.C., Haynes, C.V., (1987). Holocene vegetation zonation in the eastern Sahara. Nature 330, 645647.Google Scholar
Roberts, N., Taieb, M., Barker, P., Damnati, B., Icole, M., Willaimson, D., (1993). Timing of the Younger Dryas event in East Africa from lake-level changes. Nature 366, 146148.Google Scholar
Ruban, V., Lopez-Sanchez, J.F., Quevauviller, Ph., (2002). Validation of a standards method for evaluating phosphorus forms within sediments. Bulletin Des Laboratories Des Ponts Et Chaussees 240, 4409 4352.Google Scholar
Ruttenberg, K.C., (2007). The global phosphorus cycle: overview. The Treatise on Geochemistry vol. 8, Elsevier ltd., 585643.(Chapter 8.13).Google Scholar
Schulz, M., Stattegger, K., (1997). SPECTRUM: spectrum analysis of unevenly spaced paleoclimatic time series. Computers and Geosciences 23, 929945.Google Scholar
Schulz, H., von Rad, U., Erlenkeuser, H., von Rad, U., (1998). Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature 393, 5457.Google Scholar
Sharma, R.C., Bhanot, G., Singh, D., (2004a). Aquatic macroinvertebrate diversity in Nanda Devi Biosphere Reserve, India. The Environmentalist 24, 211221.Google Scholar
Sharma, S., Joachimski, M., Sharma, M., Tobschall, H.J., Singh, I.B., Sharma, C., Chauhan, M.S., Morgenroth, G., (2004b). Lateglacial and Holocene environmental changes in Ganga Plain, Northern India. Quaternary Science Reviews 23, 145159.CrossRefGoogle Scholar
Shroder, J.F., Khan, M.S., Lawrence, R.D., Madin, I.P., Higgins, S.M., (1989). Quaternary glacial chronology and neotectonics in the Himalaya of northern Pakistan. Geological Society of America Special Paper 232, 275294.Google Scholar
Shukla, U.K., Kotlia, B.S., Mathur, P.D., (2002). Sedimentation pattern in a trans-Himalayan Quaternary lake at Lamayuru (Ladakh), India. Sedimentary Geology 148, 404423.Google Scholar
Sinha, A.K., (1989). Geology of Higher Central Himalaya. John Wiley and Sons (219 pp.).Google Scholar
Sinha, A., Cannariato, K.G., Stott, L.D., Li, H.-C., You, C.-F., Cheng, H., Edwards, R.L., Singh, I.B., (2005). Variability of southwest Indian summer monsoon precipitation during the Bolling-Allerod. Geology 33, 813816.Google Scholar
Sinha, A., Cannariato, K.G., Stott, L.D., Cheng, H., Edwards, R.L., Yadava, M.G., Ramesh, R., Singh, I.B., (2007). A 900-year (600 to 1500 A.D.) record of the Indian summer monsoon precipitation from the core monsoon zone of India. Geophysical Research Letter 34, 10.1029/2007GL030431.Google Scholar
Slaymaker, O., Souch, C., Menounos, B., Filippelli, G., (2003). Advances in Holocene mountain geomorphology inspired by sediment budget methodology. Geomorphology 55, 305316.Google Scholar
Srivastava, P., Tripathi, J.K., Islam, R., Jaiswal, M.K., (2008). Fashion and phases of Late Pleistocene aggradation and incision in Alaknanda River, western Himalaya, India. Quaternary Research 70, 6880.CrossRefGoogle Scholar
Srivastava, P., Bhakuni, S.S., Luirei, K., Misra, D.K., (2009). Fluvial records from the Brahmaputra River exit, NE Himalaya: climate–tectonic interplay during Late Pleistocene–Holocene. Journal of Quaternary Science 24, 175188.CrossRefGoogle Scholar
Staubwasser, M., Weiss, H., (2006). Holocene climate and cultural evolution in late prehistoric–early historic West Asia. Quaternary Research 66, 372387.Google Scholar
Stuiver, M.P.J., Reimer, E., Bard, J.W., Beck, G.S., Burr, K.A., Hughen, B., Kromer, F., McCormac, G., Plicht, J.v. d, Spurk, M., (1998). INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40, 10411083.Google Scholar
Sundriyal, Y.P., Tripathi, J.K., Sati, S.P., Rawat, G.S., Srivastava, P., (2007). Landslide-dammed lakes in the Alaknanda Basin, Lesser Himalaya: causes and implications. Current Science 93, 568574.Google Scholar
Teed, R., Umbanhower, C., Camill, P., (2009). Multiproxy lake sediment records at the northern and southern boundaries of the Aspen Parkland region of Manitoba, Canada. The Holocene 19, 937948.Google Scholar
Tiessen, H., Stewart, J.W.B., Cole, C.V., (1984). Pathways of transformations in soils of differing pedogenesis. Soil Science Society of America Journal 48, 853858.Google Scholar
Van Campo, E., (1986). Monsoon fluctuations in two 20,000-yr B.P. oxygen-isotope/pollen records off southwest India. Quaternary Research 26, 376388.Google Scholar
Van Campo, E., Duplessy, J.C., Rossignol-Strick, M., (1982). Climatic conditions deduced from a 150-kyr oxygen isotope pollen record from the Arabian Sea. Nature 296, 5659.Google Scholar
Verosub, K.L., Roberts, A.P., (1995). Environmental magnetisim: past, present and future. Journal of Geophysical Research 100, 21752192.Google Scholar
Wang, Y., Cheng, H., Edwards, R.L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M.J., Dykoski, C.A., Li, X., (2005). The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308, 854857.Google Scholar
Williams, J.D.H., Syers, J.K., Shukla, S.S., Harris, R.F., Armstrong, D.E., (1971). Levels of inorganic and total phosphorus in lake sediments as related to other sediment parameters. Environmental Science and Technology 5, 11131120.Google Scholar
Wünnemann, B., Demske, D., Tarasov, P., Kotlia, B.S., Reinhardt, C., Bloemendal, J., Diekmann, B., Hartmann, K., Krois, J., Riedel, F., Arya, N., (2010). Hydrological evolution during the last 15 kyr in the Tso Kar lake basin (Ladakh, India), derived from geomorphological, sedimentological and palynological records. Quaternary Science Reviews 29, 11381155.CrossRefGoogle Scholar
Zhou, L.P., Oldfield, F., Wintle, A.G., Robinson, S.G., Wang, J.T., (1990). Partly pedogenic origin of magnetic variations in Chinese loess. Nature 346, 737739.Google Scholar