Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T06:54:47.620Z Has data issue: false hasContentIssue false

Contribution of small mammal taphonomy to the last Neanderthal occupations at the El Salt site (Alcoi, southeastern Spain)

Published online by Cambridge University Press:  06 April 2021

María Dolores Marin-Monfort*
Affiliation:
Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal, 2, 28006Madrid, Spain. Paleontology of Cenozoic Vertebrates Research Group (PVC-GIUV), Departament de Botànica i Geologia, Universitat de València, Dr. Moliner, 50, 46100, Valencia, Spain.
Ana Fagoaga
Affiliation:
Paleontology of Cenozoic Vertebrates Research Group (PVC-GIUV), Departament de Botànica i Geologia, Universitat de València, Dr. Moliner, 50, 46100, Valencia, Spain. Museu Valencià d'Història Natural, L'Hort de Feliu, P.O. Box 8460 Alginet, Valencia, Spain, 46018.
Sara García-Morato
Affiliation:
Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal, 2, 28006Madrid, Spain. Facultad de Ciencias Geológicas, Departamento de Geodinámica, Estratigrafía y Paleontología, Universidad Complutense de Madrid, C/ José Antonio Novais 12, 28040Madrid, Spain.
Francisco Javier Ruíz Sánchez
Affiliation:
Paleontology of Cenozoic Vertebrates Research Group (PVC-GIUV), Departament de Botànica i Geologia, Universitat de València, Dr. Moliner, 50, 46100, Valencia, Spain. Museu Valencià d'Història Natural, L'Hort de Feliu, P.O. Box 8460 Alginet, Valencia, Spain, 46018. INCYT-UPSE, Universidad Estatal Península de Santa Elena, 7047, Santa Elena, Ecuador.
Carolina Mallol
Affiliation:
Departamento de Geografía e Historia, Facultad de Humanidades, Universidad de La Laguna, Campus Guajara, Santa Cruz de Tenerife, Spain. Grupo de Investigación Sociedades Cazadoras-Recolectoras Paleolíticas, Universidad de La Laguna, Spain. Instituto Universitario de Bio-Organica Antonio Gonzalez (IUBO), Universidad de La Laguna, 38206, Canary Islands, Spain Área de Conocimiento de Prehistoria; Unidad de Docencia e Investigación de Prehistoria, Arqueología e Historia Antigua; Departamento de Geografía e Historia; Facultad de Humanidades, Universidad de La Laguna, Guajara campus, 38071 San Cristóbal de la Laguna, Santa Cruz de Tenerife, Spain
Cristo Hernández
Affiliation:
Departamento de Geografía e Historia, Facultad de Humanidades, Universidad de La Laguna, Campus Guajara, Santa Cruz de Tenerife, Spain. Grupo de Investigación Sociedades Cazadoras-Recolectoras Paleolíticas, Universidad de La Laguna, Spain. Área de Didáctica de las Ciencias Sociales; Departamento de Didácticas Específicas. Facultad de Educación, Universidad de La Laguna, Edificio Central campus, 38200 San Cristóbal de la Laguna, Santa Cruz de Tenerife, Spain
Bertila Galván
Affiliation:
Departamento de Geografía e Historia, Facultad de Humanidades, Universidad de La Laguna, Campus Guajara, Santa Cruz de Tenerife, Spain. Grupo de Investigación Sociedades Cazadoras-Recolectoras Paleolíticas, Universidad de La Laguna, Spain. Área de Conocimiento de Prehistoria; Unidad de Docencia e Investigación de Prehistoria, Arqueología e Historia Antigua; Departamento de Geografía e Historia; Facultad de Humanidades, Universidad de La Laguna, Guajara campus, 38071 San Cristóbal de la Laguna, Santa Cruz de Tenerife, Spain
Yolanda Fernández-Jalvo
Affiliation:
Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal, 2, 28006Madrid, Spain.
*
*Corresponding author email addresses: <[email protected]>, <[email protected]>

Abstract

The El Salt site (Alcoi, Alicante, Spain) is one of the latest Neanderthal sites in the south-eastern Iberian Peninsula. The disappearance of this human group is controversial and needs detailed studies from different research areas. Taphonomy is essential to establish how representative is a fossil assemblage of the past living organisms that produced it and to interpret the formation process of the fossil site. In the case of El Salt, we have analyzed the micromammal assemblages of Units X and V, which contain fossils of Neanderthals and/or evidence of their activity. In contrast with previous identifications of the little owl (Athene noctua), our detailed taphonomic study shown here allows us to conclude that the main predator involved in the production of the micromammal assemblages was the European eagle owl (Bubo bubo). This is an opportunistic predator whose feeding preferences and behavior reflect the abundance of local micromammalian species, which can therefore provide a representation of past ecosystems near El Salt. The taphonomic information provided by this study also indicates the absence of transport and reworking processes, and reinforces previous paleoecological interpretations, suggesting an increase of aridity at the top of El Salt sequence that coincided with the local disappearance of Neanderthals.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alcaraz, A.P., 2015. Aprovechamiento antrópico de fauna menor en el curso inferior del río Colorado (transición pampeano-patagónica oriental): el sitio El Tigre como caso de estudio. Intersecciones en Antropología 16, 115129.Google Scholar
Andrews, P., 1990. Owls, Caves and Fossils. The Natural History Museum, London.Google Scholar
Andrews, P., Cook, J., 1985. Natural modifications to bones in temperate setting. Man 20, 675691. https://doi.org/10.2307/2802756.CrossRefGoogle Scholar
Behrensmeyer, A.K., 1978. Taphonomic and ecologic information on bone weathering. Palaeobiology 4, 150162. http://doi.org/10.1017/S0094837300005820.CrossRefGoogle Scholar
Behrensmeyer, A.K., Kidwell, S.M., 1985. Taphonomy's contributions to Paleobiology. Paleobiology 11, 105119. https://doi.org/10.1017/s009483730001143x.Google Scholar
Bennett, J.L., 1999. Thermal alteration of buried bone. Journal of Archaeological Science 26, 18. https://doi.org/10.1006/jasc.1998.0283.CrossRefGoogle Scholar
Blas, J., Muñoz, A.R., 2007. Mochuelo Europeo Athene noctua. In: Martí, R., Del Moral, J.C. (Eds.), Atlas de las Aves Reproductoras de España. Madrid, Dirección General de Conservación de la Naturaleza-SEO/BirdLife, pp. 318319.Google Scholar
Cáceres, I., 2002. Tafonomía de yacimientos antrópicos en karst. Complejo Galería (Sierra de Atapuerca, Burgos), Vanguard Cave (Gibraltar) y Abric Romaní (Capellades, Barcelona). PhD Thesis, Universitat Rovira i Virgili, Tarragona.Google Scholar
Cáceres, I., Bennàsar, M., Huguet, R., Rosell, J., Saladié, P., Allué, E., Solé, A., et al. , 2012. Taphonomy of level J of abric Romaní. In: Carbonell i Roura, E. (Ed.), High Resolution Archaeology and Neanderthal Behavior: Time and Space in Level J of Abric Romaní (Capellades, Spain). Springer, Dordrecht, pp. 159185. https://doi.org/10.1007/978-94-007-3922-2.CrossRefGoogle Scholar
Clark, J., Kietzke, K.K., 1967. Paleoecology of the lower nodular zone, Brule Formation, in the Big Badlands of South Dakota. In: Clark, J., Beerbower, J.R., Kietzke, K.K. (Eds.), Oligocene Sedimentation, Stratigraphy, Paleoecology and Paleoclimatology in the Big Badlands of South Dakota. Fieldiana Geology Memoirs 5, 111155.Google Scholar
Cramp, S. (Ed.)., 1985. Handbook of the Birds of Europe, the Middle East and North Africa. The Birds of the Western Palearctic. Vol. IV. Terns to Woodpeckers. Oxford University Press, Oxford.Google Scholar
Crandall, B.D. Stahl, P.W., 1995. Human digestive effects on a micromammalian skeleton. Journal of Archaeological Science 22, 789797. https://doi.org/10.1016/0305-4403(95)90008-X.CrossRefGoogle Scholar
De Graaff, G., 1961. Gross effects of a primitive hearth. South African Archaeological Bulletin 16, 2526. https://doi.org/10.2307/3887419.CrossRefGoogle Scholar
Denys, C., 1985. Nouveaux critères de reconnaissance des concentrations de microvertébrés d'après l’étude des pelotes de chouettes du Botswana (Afrique australe). Bulletin du Muséum d'Histoire Naturelle 4, 879933.Google Scholar
Denys, C., 1986. Le gisement Pliocene de Laetoli (Tanzanie, Afrique de l'Est): analyse taphonomique des assemblages de microvertebres. Palaeontographica Abteilung A 194, 6998.Google Scholar
Denys, C., Patou-Mathis, M., 2004. Les agents taphonomiques impliquées dans la formation des sites paléontologiques et archéologiques. In: Denys, C., Patou-Mathis, M. (Eds.), Manuel de Taphonomie. Errance, Arles, pp. 3164.Google Scholar
d'Errico, F., Sánchez-Goñi, M.F., 2003. Neanderthal extinction and the millennialscale climatic variability of OIS 3. Quaternary Science Reviews 22, 769788. https://doi.org/10.1016/S0277-3791(03)00009-X.CrossRefGoogle Scholar
Dewar, G., Jerardino, A., 2007. Micromammals: when humans are the hunters. Journal of Taphonomy 5, 114.Google Scholar
Djindjian, F., 1993. Les origines du peuplement Aurignacien en Europe. In: Bánesz, L.; Kozlowski, J. K. (Eds.), Aurignacien en Europe et au Proche Orient. Actes du XIIe Congrès de l'UISPP-Bratislava 1991. Nitra, Institut d'Archéologie de l'Academie Slovaque des Sciences. Bratislava 2, 136154.Google Scholar
Dodson, P., Wexlar, D., 1979. Taphonomic investigations of owl pellets. Paleobiology 5, 275284. https://doi.org/10.1017/S0094837300006564.CrossRefGoogle Scholar
Donázar, J., 1988. Variaciones en la alimentación entre adultos reproductores y pollos en el Búho Real (Bubo bubo). Ardeola 35, 278284.Google Scholar
Donázar, J.A., 1989. Variaciones geográficas y estacionales en la alimentación del Búho Real Bubo bubo en Navarra. Ardeola 36, 2539.Google Scholar
Efremov, J.A., 1940. Taphonomy: a new branch of paleontology. Pan-American Geologist 74, 8193.Google Scholar
Fagoaga, A., Blain, H.A., Marquina-Blasco, R., Laplana, C., Sillero, N., Hernández, C.M., Mallol, C., Galván, B., Ruiz-Sánchez, F.J., 2019b. Improving the accuracy of small vertebrate-based palaeoclimatic reconstructions derived from the Mutual Ecogeographic Range. A case study using geographic information systems and UDA-ODA discrimination methodology. Quaternary Science Review 223, 105969. https://doi.org/10.1016/j.quascirev.2019.105969.Google Scholar
Fagoaga, A., Laplana, C., Marquina, R., Machado, J., Marin-Monfort, M.D., Crespo, V.D., Hernández, C., Mallol, C., Galván, B., Ruiz-Sánchez, F.J., 2019a. Palaeoecological context for the extinction of the Neanderthals: a small mammal study of Stratigraphic Unit V of the El Salt site, Alcoi, eastern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 530, 163175. https://doi.org/10.1016/j.palaeo.2019.05.007.CrossRefGoogle Scholar
Fagoaga, A., Ruiz-Sánchez, F.J., Laplana, C., Blain, H.A., Marquina, R., Marin-Monfort, M.D., Galván, B., 2018. Palaeoecological implications of Neanderthal occupation at Unit Xb of El Salt (Alcoi, eastern Spain) during MIS 3 using small mammals proxy. Quaternary International 481, 101112. https://doi.org/10.1016/j.quaint.2017.10.024.CrossRefGoogle Scholar
Fernández-García, M., López-García, J.M., Royer, A., Lécuyer, C., Allué, E., Burjachs, F., Chacón, M.G., Saladié, P., Vallverdú, J., Carbonell, E., 2020. Combined palaeoecological methods using small-mammal assemblages to decipher environmental context of a long-term Neanderthal settlement in northeastern Iberia. Quaternary Science Review 228, 106072. https://doi.org/10.1016/j.quascirev.2019.106072.CrossRefGoogle Scholar
Fernández-Jalvo, Y. 1992. Tafonomía de Microvertebrados del Complejo Cárstico de Atapuerca (Burgos). PhD Thesis, Universidad Complutense de Madrid (Spain).Google Scholar
Fernández-Jalvo, Y., 1995. Small mammal taphonomy at La Trinchera de Atapuerca (Burgos, Spain). A remarkable example of taphonomic criteria used for stratigraphic correlations and palaeoenvironment interpretations. Palaeogeography, Palaeoclimatology, Palaeoecology 114, 167195. https://doi.org/10.1016/0031-0182(94)00081-I.Google Scholar
Fernández-Jalvo, Y., Andrews, P., 1992. Small mammal taphonomy of Gran Dolina, Atapuerca (Burgos). Spain. Journal of Archaeological Science 19, 407428. https://doi.org/10.1016/0305-4403(92)90058-B.CrossRefGoogle Scholar
Fernández-Jalvo, Y., Andrews, P., 2016. Atlas of Taphonomic Identifications. 1001+ Images of Fossil and Recent Mammal Bone Modification, Vertebrate Paleobiology and Paleoantropology Series. Springer, Dordrecht.CrossRefGoogle Scholar
Fernández-Jalvo, Y., Andrews, P., Denys, C., Sesé, C., Stoetzel, E., Marin-Monfort, D., Pesquero, D., 2016. Taphonomy for taxonomists: implications of predation in small mammal studies. Quaternary Science Review 139, 138157. https://doi.org/10.1016/j.quascirev.2016.03.016.CrossRefGoogle Scholar
Fernández-Jalvo, Y., Andrews, P., Sevilla, P., Requejo, V., 2014. Digestion versus abrasion features in rodent bones. Lethaia 47, 323336. https://doi.org/10.1111/let.12061.CrossRefGoogle Scholar
Fernández-Jalvo, Y., Avery, D.M., 2015. Pleistocene micromammals and their predators at Wonderwerk Cave, South Africa. African Archaeological Review 32, 751791. https://doi.org/10.1007/s10437-015-9206-7.CrossRefGoogle Scholar
Fernández-Jalvo, Y., Denys, C., Andrews, P., Williams, T., Dauphin, Y., Humphrey, L., 1998. Taphonomy and palaeoecology of Olduvai Bed-I (Pleistocene, Tanzania) . Journal of Human Evolution 34, 137172. https://doi.org/10.1006/jhev.1997.0188.CrossRefGoogle Scholar
Fernández-Jalvo, Y., Scott, L. Andrews, P., 2011. Taphonomy in palaeoecological 868 interpretations. Quaternary Science Reviews 30, 12961302. https://doi.org/10.1016/j.quascirev.2010.07.022.CrossRefGoogle Scholar
Fernández-Jalvo, Y., Tormo, L., Andrews, P., Marin-Monfort, M.D., 2018. Taphonomy of burnt bones from Wonderwerk Cave (South Africa). Quaternary International 495, 1929. https://doi.org/10.1016/j.quaint.2018.05.028.CrossRefGoogle Scholar
Fernández-López, S., 1991. Taphonomic concepts for a theoretical biochronology. Spanish Journal of Paleontology 6, 3749.Google Scholar
Fernández-López, S.R., 1981. La evolución tafonómica (un planteamiento neodarwinista). Boletín de la Real Sociedad Española de Historia Natural. Sección Geológica 79, 243254.Google Scholar
Fumanal, M.P, 1994. El yacimiento musteriense de El Salt (Alcoi, País Valenciano). Rasgos geomorfológicos y climatoestratigrafía de sus registros. Saguntum 27, 3955.Google Scholar
Galván, B., Hernández, C.M., Mallol, C., Machado, J., Sistiaga, A., Molina, F.J., Pérez-Luis, L., et al. , 2014b. El Salt. Últimos Neandertales de la montaña alicantina (Alcoi, España). In: Sala, R. (Ed.), Los cazadores recolectores del Pleistoceno y del Holoceno en Iberia y el Estrecho de Gibraltar. Universidad de Burgos y Fundación Atapuerca, Burgos, Spain, pp. 385388.Google Scholar
Galván, B., Hernández, C.M., Mallol, C., Mercier, N., Sistiaga, A., Soler, V., 2014a. New evidence of early neanderthal disappearance in the Iberian Peninsula. Journal of Human Evolution 75, 1627. http://doi.org/10.1016/j.jhevol.2014.06.002.CrossRefGoogle Scholar
Garralda, M.D., Galván, B., Hernández, C.M., Mallol, C., Gómez, J.A., Maureille, B., 2014. Neanderthals from el Salt (Alcoi, Spain) in the context of the latest middle Paleolithic populations from the southeast of the Iberian Peninsula. Journal of Human Evolution 75, 115. http://doi.org/10.1016/j.jhevol.2014.02.019.CrossRefGoogle Scholar
Gawne, C.E., 1975. Rodents from the Zia Sand, Miocene of New Mexico. American Museum Novitates 2586, 15.Google Scholar
Herrejón Lagunilla, Á., Carrancho, A., Villalaín, J.J., Mallol, C., Hernández, C.M., 2019. An experimental approach to the preservation potential of magnetic signatures in anthropogenic fires. PloS One 14, e0221592. http://doi.org/10.1371/JOURNAL.PONE.0221592.CrossRefGoogle Scholar
Hiraldo, F., Andrada, J., Parreño, F.F., 1975. Diet of the eagle owl (Bubo bubo) in Mediterranean Spain. Doñana Acta Vertebrata 2, 161177.Google Scholar
Hůrka, K., 1996. Carabidae of the Czech and Slovak Republics. Kabourek, Zlín, Czech Republic.Google Scholar
Koch, S., Lambert, J., 2017. Detection of skeletal trauma on whole pigs subjected to a fire environment. Journal of Anthropology Reports 2, 113. http://doi.org/10.35248/2684-1304.17.2.113.Google Scholar
Korth, W.W., 1979. Taphonomy of microvertebrate fossil assemblages. Annals of Carnegie Museum of Natural History 48, 235285.Google Scholar
Laudet, F., Denys, C., Fernández-Jalvo, Y., 1997. Taphonomie des vertébrés oligocènes de Pech Crabit (Lot, Phosphorites du Quercy): implications géodynamiques et paléoécologiques des remaniements post-mortem. Geobios 20, 307313. http://doi.org/10.1016/S0016-6995(97)80036-8.CrossRefGoogle Scholar
Leierer, L., Jambrina-Enríquez, M., Herrera-Herrera, A.V., Connolly, R., Hernández, C.M., Galván, B., Mallol, C., 2019. Insights into the timing, intensity and natural setting of Neanderthal occupation from the geoarchaeological study of combustion structures: a micromorphological and biomarker investigation of El Salt, unit Xb, Alcoy, Spain. PloS One 14, e0214955. https://doi.org/10.1371/journal.pone.0214955.CrossRefGoogle ScholarPubMed
León-Ortega, M., 2016. Estudios ecológicos de poblaciones de búho real (Bubo bubo) en el Sureste Ibérico: ocupación territorial, reproducción, supervivencia, área de campeo y estructura genética. PhD Thesis, Universidad de Murcia, Murcia.Google Scholar
Leroyer, C., 1988. Des occupations castelperroniennes et aurignaciennes dans leur cadre chrono-climatique. In: Otte, M. (Ed.), L'Homme de Néanderthal. La mutation, Vol. 8. Études et Recherches Archéologiques de l'Universitée de Liège, pp. 103108.Google Scholar
Leroyer, C., Leroi-Gourhan, A., 1983. Problèmes de chronologie. Le Castelperronien et l'Aurignacien. Bullétin la Société Préhistorique Française 80, 4144.Google Scholar
Lyman, R.L., 1994. Vertebrate Taphonomy, Cambridge Manuals in Archaeology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Mallol, C., Hernández, C.M., Cabanes, D., Sistiaga, A., Machado, J., Rodríguez, A., Pérez, L., Galván, B., 2013. The black layer of Middle Paleolithic combustion structures. Interpretation and archaeostratigraphic implications. Journal of Archaeological Science 40, 25152537. http://doi.org/10.1016/j.jas.2012.09.017.Google Scholar
Marin-Monfort, M.D., García-Morato, S., Olucha, R., Yravedra, J., Piñeiro, A., Barja, I., Andrews, P., Fernández-Jalvo, Y., 2019. Wildcat scats: Taphonomy of the predator and its micromammal prey. Quaternary Science Review 225, 106024. https://doi.org/10.1016/j.quascirev.2019.106024.CrossRefGoogle Scholar
Marin-Monfort, M.D., Suñer, M., Fernández-Jalvo, Y., 2018. Characterization of recent marks produced on fossil bone surface during sullegic and trephic processes and their influence on taphonomic studies. Quaternary International 481, 313. https://doi.org/10.1016/j.quaint.2017.07.039.CrossRefGoogle Scholar
Marquina, R., Fagoaga, A., Crespo, V.D., Ruiz-Sanchez, F.J., Bailon, S., Hernandez, C.M., Galvan, B., 2017. Amphibians and squamate reptiles from the stratigraphic unit Xb of El Salt (Middle Palaeolithic; Alcoy, Spain): palaeoenvironmental and palaeoclimatic implications. Spanish Journal of Palaeontology 32, 291312.CrossRefGoogle Scholar
Martínez, G. A., Martínez, G., Alcaráz, A. P., Stoessel, L., 2018. Geoarchaeology and taphonomy: deciphering site formation processes for late Holocene archaeological settings in the eastern Pampa-Patagonian transition, Argentina. Quaternary International 511, 94106. https://doi.org/10.1016/j.quaint.2018.09.020.CrossRefGoogle Scholar
Matthews, T., Denys, C., Parkington, J.E., 2005. The palaeoecology of the micromammals from the late middle Pleistocene site of Hoedjiespunt 1 (Cape Province, South Africa). Journal of Human Evolution 49, 432451. https://doi.org/10.1016/j.jhevol.2005.05.006.CrossRefGoogle Scholar
Mayhew, D.F., 1977. Avian predators as accumulators of fossil mammal material. Boreas 6, 2531. https://doi.org/10.1111/j.1502-3885.1977.tb00693.x.CrossRefGoogle Scholar
Mellars, P.A., 1992. Archaeology and the population dispersal hypothesis of modern human origins in Europe. Philosophical Transaction of the Royal Society of London B 337, 225234. https://doi.org/10.1098/rstb.1992.0100.Google ScholarPubMed
Mellett, J.S., 1974. Scatological origin of microvertebrate fossil accumulations. Science 185, 349350. https://doi.org/10.1126/science.185.4148.349.CrossRefGoogle ScholarPubMed
Mikkola, H., 1983. The Owls of Europe. T. and A.D. Poyser Ltd, Calton.Google Scholar
Montalvo, C.I., Pessino, M.E.M., Bagatto, F.C., 2008. Taphonomy of bones of rodents consumed by Andean hog-nosed skunks (Conepatus chinga, Carnivora, Mephitidae) in central Argentina. Journal of Archaeological Science 35, 14811488. https://doi.org/10.1016/j.jas.2007.10.011.CrossRefGoogle Scholar
Ortego, J., Díaz, M., 2004. Habitat preference models for nesting eagle owls Bubo bubo: how much can be inferred from changes with spatial scale? Ardeola 51, 385394.Google Scholar
Pérez, L., 2019. Estrategias de subsistencia y dinámicas de asentamiento en los Valles de Alcoy durante el Paleolítico medio. Análisis zooarqueológico, tafonómico y paleoecológico de la secuencia arqueológica de El Salt (Alcoy, Alicante). PhD thesis, Universitat Rovira i Virgili, Tarragona.Google Scholar
Pérez, L., Sanchis, A., Hernández, C.M., Galván, B., 2017a. Paleoecología de macromamíferos aplicada a los conjuntos zooarqueológicos de El Salt y el Abric del Pastor (Alcoy, Alicante). In: Sanchis, A., Pascual, J.L. (Eds.), Interaccions Entre Felins i Humans. III Jornades d'arqueozoologia. Museu Prehistòria de València, Valencia, pp. 327353.Google Scholar
Pérez, L., Sanchis, A., Hernández, C.M., Galván, B., Sala, B., Mallol, C., 2017b. Hearths and bones: an experimental study to explore temporality in archaeological contexts based on taphonomical changes in burnt bones. Journal of Archaeological Science: Reports 11, 287309. http://doi.org/10.1016/j.jasrep.2016.11.036.Google Scholar
Raczynski, J., Ruprecht, A.L., 1974. The effect of digestion on the osteological composition of owl pellets. Acta Ornithologica 14, 2638.Google Scholar
R Core Team, 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project. org/. (Accessed 22 October 2019).Google Scholar
Roy, S., 1992. Environments and processes of manganese deposition. Economic Geology 87, 12181236. http://doi.org/10.2113/gsecongeo.87.5.1218.CrossRefGoogle Scholar
Rufà, A., Laroulandie, V., 2019. Prey size as a critical factor for bird bone taphonomy in Eagle Owl (Bubo bubo) pellets. Science Reports 9, 19200. https://doi.org/10.1038/s41598-019-55721-7.CrossRefGoogle ScholarPubMed
Sanchis, A., Morales, J.V., Pérez, L.J., Hernández, C.M., Galván, B., 2015. La tortuga mediterránea en yacimientos valencianos del Paleolítico medio: distribución, origen de las acumulaciones y nuevos datos procedentes del Abric del Pastor (Alcoi, Alacant). In: Sanchis, A., Pasual, J.L. (Eds.), Preses Petites i Grups Humans En El Passat. II Jornades d'arqueozologia. Museu Prehistòria de València, Valencia, pp. 97120.Google Scholar
Serrano, D., 1998. Diferencias interhábitat en la alimentación del Búho Real (Bubo bubo) en el Valle Medio del Ebro (NE de España): efecto de la disponibilidad de conejo (Oryctolagus cuniculus). Ardeola 45, 3546.Google Scholar
Shipman, P., Foster, G., Schoeninger, M., 1984. Burnt bones and teeth: an experimental-study of color, morphology, crystal-structure and shrinkage. Journal of Archaeological Science 11, 307325. https://doi.org/10.1016/0305-4403(84)90013-x.CrossRefGoogle Scholar
Sistiaga, A., March, R., Hernández, C.M., Galván, B., 2011. Aproximación desde la química orgánica al estudio de los hogares del yacimiento del Paleolítico medio de El Salt (Alicante, España). Recerques del Museu d'Alcoi 20, 4770.Google Scholar
Soligo, C., Andrews, P., 2005. Taphonomic bias, taxonomic bias and historical non-equivalence of faunal structure in early hominin localities. Journal of Human Evolution 49, 206229. https://doi.org/10.1016/j.jhevol.2005.03.006.CrossRefGoogle ScholarPubMed
Stahl, P.W., 1996. The recovery and interpretation of microvertebrate bone assemblages from archaeological contexts. Journal of Archaeological Method and Theory 3, 3175. https://doi.org/10.1007/BF02228930.CrossRefGoogle Scholar
Stewart, J.R., 2005. The ecology and adaptation of Neanderthals during the non-analogue environment of oxygen isotope stage 3. Quaternary International 137, 3546. https://doi:10.1016/j.quaint.2004.11.018.CrossRefGoogle Scholar
Stiner, M.C., Kuhn, S.L., Weiner, S., Bar-Yosef, O., 1995. Differential burning, recrystallization, and fragmentation of archaeological bone. Journal of Archaeological Science 22, 223237. https://doi.org/10.1006/jasc.1995.0024.CrossRefGoogle Scholar
Stoessel, L., 2007. Análisis arqueofaunísticos de los sitios Loma Ruíz 1 y El Tigre (Partidos de Villarino y Patagones, provincia de Buenos Aires). Aportes para el conocimiento de la subsistencia en el valle inferior del río Colorado durante el Holoceno tardío. Intersecciones en Antropología 8, 235251.Google Scholar
Stoetzel, E., Marion, L., Nespoulet, R., El Hajraoui, M.A., Denys, C., 2011. Taphonomy and palaeoecology of the late Pleistocene to middle Holocene small mammal succession of El Harhoura 2 cave (Rabat-Tamara, Morocco). Journal of Human Evolution 60, 133. https://doi.org/10.1016/j.jhevol.2010.07.016.CrossRefGoogle Scholar
Vidal-Matutano, P., Pérez-Jordà, G., Hernández, C.M., Galván, B., 2018. Macrobotanical evidence (wood charcoal and seeds) from the Middle Palaeolithic site of El Salt, Eastern Iberia: Palaeoenvironmental data and plant resources catchment areas. Journal of Archaeological Science: Reports 19, 454464. https://doi.org/10.1016/j.jasrep.2018.03.032.Google Scholar
Williams, J., 2001. Small Mammal Deposits in Archaeology: A Taphonomic Investigation of Tyto alba (Barn Owl) Nesting and Roosting Sites. PhD thesis, University of Sheffield, Sheffield, UK.Google Scholar
Zilhão, J., 1993. Le passage du Paléolithique moyen au Paléolithique supérieur dans le Portugal, In: Cabrera, , (Ed.), El Origen del Hombre Moderno en el Suroeste de Europa. Universidad Nacional de Educación a Distancia, Madrid, pp. 127145.Google Scholar
Supplementary material: File

Marin-Monfort et al. supplementary material

Marin-Monfort et al. supplementary material 1

Download Marin-Monfort et al. supplementary material(File)
File 19.8 KB
Supplementary material: File

Marin-Monfort et al. supplementary material

Marin-Monfort et al. supplementary material 2

Download Marin-Monfort et al. supplementary material(File)
File 26.2 KB
Supplementary material: File

Marin-Monfort et al. supplementary material

Marin-Monfort et al. supplementary material 3

Download Marin-Monfort et al. supplementary material(File)
File 24 KB
Supplementary material: File

Marin-Monfort et al. supplementary material

Marin-Monfort et al. supplementary material 4

Download Marin-Monfort et al. supplementary material(File)
File 16.7 KB
Supplementary material: File

Marin-Monfort et al. supplementary material

Marin-Monfort et al. supplementary material 5

Download Marin-Monfort et al. supplementary material(File)
File 24.3 KB