Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T07:40:50.195Z Has data issue: false hasContentIssue false

Climatology of the Eastern Arabian Sea during the last glacial Cycle reconstructed from paired measurement of foraminiferal δ18O and Mg/Ca

Published online by Cambridge University Press:  20 January 2017

V.K. Banakar*
Affiliation:
National Institute of Oceanography (CSIR), Dona Paula, Goa-403 004, India
B.S. Mahesh
Affiliation:
National Institute of Oceanography (CSIR), Dona Paula, Goa-403 004, India
G. Burr
Affiliation:
NSF-Arizona AMS Facility, v, Tucson, AZ85721-0081, USA
A.R. Chodankar
Affiliation:
National Institute of Oceanography (CSIR), Dona Paula, Goa-403 004, India
*
*Corresponding author. Fax: + 91 832 245 0609.

Abstract

Paired measurements of Mg/Ca and δ18O of Globigerenoides sacculifer from an Eastern Arabian Sea (EAS) sediment core indicate that sea-surface temperature (SST) varied within 2°C and sea-surface salinity within 2 psu during the last 100 ka. SST was coldest (∽ 27°C) during Marine Isotope Stage (MIS) 4 and 2. Sea-surface salinity was highest (∽ 37.5 psu) during most of the last glacial period (∽ 60–18 ka), concurrent with increased δ18O G.sacculifer and C/N ratios of organic matter and indicative of sustained intense winter monsoons. SST time series are influenced by both Greenland and Antarctic climates. However, the sea-surface salinity time series and the deglacial warming in the SST record (beginning at ∽18 ka) compare well with the LR04 benthic δ18O-stack and Antarctic temperatures. This suggests a teleconnection between the climate in the Southern Hemisphere and the EAS. Therefore, the last 100-ka variability in EAS climatology appears to have evolved in response to a combination of global climatic forcings and regional monsoons. The most intense summer monsoons within the Holocene occurred at ∽8 ka and are marked by SST cooling of ∽ 1°C, sea-surface salinity decrease of 0.5 psu, and δ18O G.sacculifer decrease of 0.2‰.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1 Present address: B-6, Datta Apartments, Porvorim, Goa-403 008, India.

References

Anderson, D.M., Prell, W.L., (1993). A 300 ka record of upwelling off Oman during the late Quaternary: evidence of the Asian southwest monsoon. Plaeoceanography 8, 193208.CrossRefGoogle Scholar
Banakar, V.K., Oba, T., Chodankar, A.R., Kuramoto, T., Yamamoto, M., Minagawa, M., (2005). Monsoon related changes in sea surface productivity and water column denitrification in the Eastern Arabian Sea during last glacial cycle. Marine Geology 219, 99108.CrossRefGoogle Scholar
Barker, S., Greaves, M., Elderfield, H., (2003). A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochemistry Geophysics Geosystems 4, 8407.CrossRefGoogle Scholar
Barker, S., Cacho, I., Benway, H., Tachikawa, K., (2005). Planktonic foraminiferal Mg/Ca as a proxy for past oceanic temperatures: a methodological overview and data compilation for the Last Glacial Maximum. Quaternary Science Reviews 24, 821834.CrossRefGoogle Scholar
Chodankar, R., (2004). Late Pleistocene sedimentation history in the Eastern Arabian Sea: Climate-productivity-weathering linkages. Ph.D. Thesis, National Institute of Oceanography-Goa University, pp. 126.Google Scholar
Chodankar, A.R., Banakar, V.K., Oba, T., (2005). Past 100 ky surface salinity gradient response in the Eastern Arabian Sea to the summer monsoon variation recorded by δ18O of G. sacculifer . Global Planetary Change 47, 135142.CrossRefGoogle Scholar
Clemens, S.C., Prell, W.L., (1990). Late Pleistocene variability of Arabian Sea summer monsoon winds and continental aridity: Eolian records from the lithogenic components of deep-sea sediments. Paleoceanography 5, 109145.CrossRefGoogle Scholar
Dahl, K.A., Oppo, D.W., (2006). Sea surface pattern reconstructions in the Arabian Sea. Paleoceanography 21, PA1014 .CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, S., Steffensen, J.P., Sveinbjornsdottir, A.E., Jouzel, J., Bond, G., (1993). Evidence for general instability of past climate from a 250 ka ice-core record. Nature 364, 218220.CrossRefGoogle Scholar
Delaney, M.L., Be, A.H.W., Boyle, E.A., (1985). Li, Sr, Mg, Na in foraminiferal calcite shells from laboratory culture, sediment traps and sediment cores. Geochimica et Cosmochimica Acta 49, 13271341.CrossRefGoogle Scholar
Delaygue, G., Bard, E., Rollion, C., Jouzel, J., Stevenard, M., Duplessy, J.C., Ganssen, G., (2001). Oxygen isotope/salinity relationship in the northern Indian Ocean. Journal of Geophysical Research C106, 45654574.CrossRefGoogle Scholar
Dekens, P.S., Lea, D.W., Pak, D.K., Spero, H.J., (2002). Core-top calibration of Mg/Ca in tropical foraminifera: refining paleo-temperature estimation. Geochemistry Geophysics Geosystems 3, 1022.CrossRefGoogle Scholar
DeVilliers, S., Greaves, M.J., Elderfield, H., (2002). An intensity ratio calibration method for the accurate determination of Mg/Ca and Sr/Ca of marine carbonates by ICP-AES. Geochemistry Geophysics Geosystems 3, 1001.Google Scholar
Duplessy, J.C., (1982). Glacial–interglacial contrasts in the northern Indian Ocean. Nature 295, 494498.CrossRefGoogle Scholar
Eggins, S., De Deckker, P., Marshall, J., (2003). Mg/Ca variation in planktonic foraminifera tests: implication for reconstructing paleo-seawater temperature and habitat migration. Earth and Planetary Science Letters 212, 291306.CrossRefGoogle Scholar
Elderfield, H., Ganssen, G., (2000). Past temperature and δ18O of surface ocean water inferred from foraminiferal Mg/ca ratios. Nature 405, 442445.CrossRefGoogle ScholarPubMed
EPICA Community Members(2006). One to one coupling of glacial climate variability in Greenland and Antarctica. Nature 444, 195198.CrossRefGoogle Scholar
Epstein, S., Buchsbaum, R., Lowenstam, A., Uray, H.C., (1953). Revised carbonate-water isotopic temperature scale. Bulletin of Geological Society of America 64, 13151325.CrossRefGoogle Scholar
Goes, J., Prasad, T.G., Helga, R.G., Fasullo, J.T., (2005). Warming of the Eurasian landmass is making Arabian Sea more productive. Science 308, 545547.CrossRefGoogle ScholarPubMed
Hong, Y.T., Hong, B., Lin, Q.H., Zhu, Y.X., Shibata, Y., Hirota, M., Uchida, M., Leng, X.T., Jiang, H.B., Xu, H., Wang, H., Yi, L., (2003). Correlation between Indian Ocean summer monsoon and north Atlantic climate during the Holocene. Earth and Planetary Science Letters 211, 371380.CrossRefGoogle Scholar
Kawamura, K., Parrenin, F., Lisiecki, L., Uemura, R., Vimeux, F., Severinghaus, J.F., Hutterli, M.A., Nakazawa, T., Aoki, S., Jouzel, J., Raymo, M.E., Matsumoto, K., Nakata, H., Motoyama, H., Fujita, S., Goto-Azuma, K., Fujii, Y., Watanabe, O., (2007). Northern hemisphere forcing of climate cycles in Antarctica over the past 360, 000 years. Nature 448, 912916.CrossRefGoogle Scholar
Kiefer, T., McCave, I.N., Elderfield, H., (2006). Antarctic control on tropical Indian Ocean sea surface temperature and hydrography. Geophysical Research Letters 33, L24612.CrossRefGoogle Scholar
Krishnakumar, K., Rajgopalan, B., Cane, M.A., (1999). On the weakening relationship between the Indian monsoon and ENSO. Science 284, 21562159.Google Scholar
Lea, D.W., Mashiotta, T.A., Spero, H.J., (1999). Controls on magnesium and strontium up-take in planktonic foraminifera determined by living culturing. Geochimica et Cosmochimica Acta 63, 23692379.CrossRefGoogle Scholar
Lea, D.W., Pak, D.K., Spero, H.J., (2000). Climate impact of late Quaternary equatorial Pacific sea surface temperature variation. Science 289, 17191724.CrossRefGoogle Scholar
Lisiecki, L.E., Raymo, M.E., (2005). A Pliocene–Pliestocene stack of 57 globally distributed benthic d18O records. Paleoceanography 20, PA1003 .Google Scholar
Madhupratap, M., Kumar, S.P., Bhattatri, M.A., Kumar, M.D., Raghukumar, S., Nair, K.C., Ramaiah, N., (1996). Mechanism of biological response to winter cooling in the northeastern Arabian Sea. Nature 384, 549552.CrossRefGoogle Scholar
Murtugudde, R., Seager, R., Prasad, T., (2007). Arabian Sea response to monsoon variations. Paleoceanography 22, PA4217.CrossRefGoogle Scholar
Overpeck, J., Anderson, D., Trumbore, D., Prell, W., (1996). The southwest Indian Monsoon over the last 18000 years. Climate Dynamics 12, 213225.CrossRefGoogle Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, Y.V., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., Steivenard, M., (1999). Climate and atmospheric history of the past 420,000 years from Vostok ice core. Antarctica. Nature 399, 429436.CrossRefGoogle Scholar
Reichart, G.J., Nortier, J., Versteegh, G., Zachariasse, W.J., Clift, P.D., (2002). Periodic breakdown of Arabian Sea oxygen minimum zone caused by deep convective mixing. The Tectonic and Climate Evolution of the Arabian Sea Region, Geological Society of London, Special Publication vol. 195, 407419.Google Scholar
Rohling, E.J., (2000). Paleosalinity: confidence limits and future applications. Marine Geology 163, 111.CrossRefGoogle Scholar
Rosenthal, Y., Lohmann, G.P., Lohmann, K.C., Sherell, R.M., (2000). Incorporation and preservation of Mg in Globigerinoides sacculifer: implication for reconstructing the temperature and 18O/16O of seawater. Paleoceanography 15, 135145.CrossRefGoogle Scholar
Rostek, F., Ruhland, G., Bassinot, F.C., Muller, P.J., Labeyrie, L.D., Lancelot, Y., Bard, E., (1993). Reconstructing sea surface temperature and salinity using δ18O and alkenone records. Nature 364, 319321.CrossRefGoogle Scholar
Sagawa, T., Toyoda, K., Oba, T., (2006). Sea surface temperature record off central Japan since the last glacial maximum using planktonic foraminiferal Mg/Ca thermometry. Journal of Quaternary Science 21, 6373.CrossRefGoogle Scholar
Saraswat, R., Nigam, R., Weldeab, S., Mackensen, A., Naidu, P.D., (2005). A first look at past sea surface temperatures in the equatorial Indian Ocean from Mg/Ca in foraminifera. Geophysical Research Letters 32, L24605 .CrossRefGoogle Scholar
Schulz, H., von Rad, U., Erlenkeuser, H., (1998). Correlation between Arabian Sea and Greenland climate oscillations of past 110000 years. Nature 393, 5457.CrossRefGoogle Scholar
Sirocko, F., Luischner, D., Staubwasser, M., Maley, J., Heusser, L., (1999). High-frequency oscillations of the last 70000 years in the tropical/subtropical and polar climates. Mechanism of global climate change at millennial time scale . Geophysical Monograph. vol. 112, American Geophysical Union, 113126.CrossRefGoogle Scholar
Shackleton, N.J., (2000). The 100, 000 year ice-age cycle identified and found to lag temperature, carbon dioxide and orbital eccentricity. Science 289, 18971902.CrossRefGoogle Scholar
Shankar, D., Vinayachandran, P., Unnikrishnan, A.S., (2002). The monsoon currents in the north Indian Ocean. Progress in Oceanography 52, 63120.CrossRefGoogle Scholar
Shetye, S.R., Gouveia, A.D., Shenoi, S.S.C., Micheal, G.S., Sundar, D., Almeida, A.M., Santanam, K., (1991). The coastal currents off western India during the northeast monsoon. Deep Sea Research 38, 15171529.CrossRefGoogle Scholar
Slingo, J., (2002). Monsoons: Overview. Encylopedia of atmospheric Sciences, v.3 Academic Press, 13651370.Google Scholar
Sonzogni, C., Bard, E., Rostek, F., (1998). Tropical sea surface temperatures during the last glacial period: a view based on alkenones in Indian Ocean sediment. Quaternary Science Reviews 17, 11851201.CrossRefGoogle Scholar
Walsh, J.J., Premuzic, E.T., Whitledge, T.E., (1981). Fate of nutrient enrichment on continental shelves as indicated by C/N content of bottom sediments. Nihoul, J.C.J., Ecohydrodynamics Elsevier, 1349.Google Scholar
Webster, P.J., Fasullo, J., (2002). Monsoons–Dynamic theory. Encyclopedia of atmospheric Sciences Academic Press, 13701385.v. 3.Google Scholar
/WOA05 www.nodc.noaa.gov/WOA05: Levitus and Boyer's Annual salinity and temperature online maps.Google Scholar
Weninger, B., Joris, O., Danzeglocke, U., (2005). Cologne radiocarbon calibration and palaeoclimate research package-online: www.calpal-online.de.Google Scholar
Wyrtki, K., (1973). Physical oceanography of the Indian Ocean. Zeitzschel, B., Biology of the Indian Ocean Springer, 1836.CrossRefGoogle Scholar
Zielinski, G.A., Mayewski, P.A., Meeker, L.D., Whitlow, S., Twickler, M.S., (1996). Potential atmospheric impact of the mega-eruption 71000 y ago. Geophysical Research Letters 23, 837840.CrossRefGoogle Scholar