Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-14T03:29:16.723Z Has data issue: false hasContentIssue false

The application of foraminifera to reconstruct the rate of 20th century sea level rise, Morbihan Golfe, Brittany, France

Published online by Cambridge University Press:  20 January 2017

Veronica Rossi*
Affiliation:
Dipartimento di Scienze della Terra e Geologico-Ambientali, Università di Bologna, Via Zamboni 67, 40126 Bologna, Italy
Benjamin P. Horton
Affiliation:
Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104, USA
D. Reide Corbett
Affiliation:
Department of Geological Sciences, East Carolina University, Greenville, NC 27858, USA Institute for Coastal Science and Policy, East Carolina University, Greenville, NC 27858, USA
Eduardo Leorri
Affiliation:
Department of Geological Sciences, East Carolina University, Greenville, NC 27858, USA
Lucia Perez-Belmonte
Affiliation:
Université de Bretagne Sud, Vannes, France
Bruce C. Douglas
Affiliation:
International Hurricane Center, Florida International University, Miami, FL 33199, USA
*
Corresponding author. Fax: + 39 051 2094522.

E-mail address:[email protected] (V. Rossi).

Abstract

Foraminiferal assemblages preserved within salt-marsh sediment can provide an accurate and precise means to reconstruct relative sea level due to a strong relationship with elevation, which can be quantified using a transfer function. We collected a set of surface samples from two salt marshes in the Morbihan Golfe, France to determine foraminiferal distribution patterns. Dominant taxa included Jadammina macrescens, Trochammina inflata, Haplophragmoides spp. and Miliammina fusca. We developed a foraminifera-based transfer function using a modern training set of 36 samples and 23 species. The strong relationship between observed and predicted values (r2jack = 0.7) indicated that foraminiferal distribution is primarily controlled by elevation with respect to the tidal frame and precise reconstructions of former sea level are possible (RMSEPjack = 0.07 m). The application of the transfer function to a short salt-marsh core (0.32 m) allowed the reconstruction of former sea levels, which were placed in a chronological framework using short-lived radionuclides (210Pb and 137Cs). The agreement between the foraminifera-based sea level curve and the Brest tide-gauge record confirms the reliability of transfer function estimates and the validity of this methodology to extend sea level reconstructions back into the pre-instrumental period. Both instrumental and microfossil records suggest an acceleration of sea level rise during the 20th century.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleby, P.G., and Oldfield, F. Application of Pb-210 to sedimentation studies. Ivanovich, M., and Harmon, R.S. Uranium-Series Disequilibrium: Applications to Earth, Marine, and Environmental Problems. second ed. (1992). Claredon Press, Oxford, UK. 731778.Google Scholar
Astill, G.G., and Langdon, J. Medieval Farming and Technology: The Impact of Agricultural Change in Northwest Europe. (1997). Brill, Boston. 321 ppGoogle Scholar
Billaud, J.P. Marais Poitevin, Rencontres de la terre et de l'eau. (1984). L'Harmanttan, Paris.Google Scholar
Birks, H.J.B. Quantitative palaeoenvironmental reconstructions. Maddy, D., and Brew, J.S. Statistical Modeling of Quaternary Science Data. Technical Guide 5. (1995). Quaternary Research Association, Cambridge. 161254.Google Scholar
Boomer, I. The relationship between meiofauna (Ostracoda, Foraminifera) and tidal levels is modern intertidal environments of North Norfolk: a tool for palaeoenvironmental reconstruction. Bulletin of the Geological Society of Norfolk 46, (1998). 1729.Google Scholar
Brigand, L., Bioret, F., and Le Démezet, M. Landscapes and environments on the island of Ouessant, Brittany, France: from traditional maintenance to the management of abandoned areas. Environmental Management 16, (1992). 613618.Google Scholar
Cearreta, A., Irabien, M.J., Ulibarri, I., Yusta, I., Croudace, I.W., and Cundy, A.B. Recent salt marsh development and natural regeneration of reclaimed areas in the Plentzia estuary, N. Spain. Estuarine. Coastal and Shelf Science 54, (2002). 863886.CrossRefGoogle Scholar
Church, J.A., and White, N.J. A 20th century acceleration in global sea level rise. Geophysical Research Letters 33, (2006). L01602 http://dx.doi.org/10.1029/2005GL024826CrossRefGoogle Scholar
Coles, B.P.L., (1977). The Holocene foraminifera and palaeogeography of central Broadland. Unpublished Ph.D. Dissertation, University of East Anglia, .Google Scholar
Coles, B.P.L., and Funnell, B.M. Holocene paleoenvironments of Broadland, England. Special Publication of the International Association of Sedimentologists 5, (1981). 123131.Google Scholar
Dixon, P.M. The bootstrap and the jack-knife: describing the precision of ecological niches. Scheiner, S.M., and Gurevitch, J. Design and Analysis of Ecological Experiments. (1993). Chapman and Hall, New York. 290318.Google Scholar
Donnelly, J.P., Cleary, P., Newby, P., and Ettinger, R. Coupling instrumental and geological records of sea level change: evidence from southern New England of an increase in the rate of sea level rise in the late 19th century. Geophysical Research Letters 31, (2004). L05203 http://dx.doi.org/10.1029/2003GL018933CrossRefGoogle Scholar
Douglas, B.C. Global sea level rise. Journal of Geophysical Research 96, (1991). 69816992.Google Scholar
Douglas, B.C. Global sea (level) rise: a redetermination. Surveys in Geophysics 18, (1997). 279292.Google Scholar
Douglas, B.C. Sea level change in the era of the recording tide gauge. Douglas, B.C., Kearney, M.S., and Leatherman, S.P. Sea Level Rise; History and Consequences. (2001). Academic Press, San Diego. 3764.Google Scholar
Douglas, B.C. Concerning Evidence for Fingerprints of Glacial Melting. Journal of Coastal Research 24, (2008). 218227.Google Scholar
Duchemin, G., Jorissen, F.J., Redois, F., and Debaney, J.P. Foraminiferal microhabitats in a high marsh: consequences for reconstructing past sea levels. Palaeogeography, Palaeoclimatology, Palaeoecology 226, (2005). 167185.CrossRefGoogle Scholar
Edwards, R.J. Constructing chronologies of sea level change from salt-marsh sediments. Buck, C.E., and Millard, A.R. Tools for constructing Chronologies: Crossing Discipline Boundaries. (2004). Springer Verlag, London. 189211.Google Scholar
Edwards, R.J., van de Plassche, O., Gehrels, W.R., and Wright, A.J. Assessing sea level data from Connecticut, USA, using a foraminiferal transfer function for tide level. Marine Micropaleontology 51, (2004). 239255.Google Scholar
Engelhart, S.E., Horton, B.P., Douglas, B.C., Peltier, W.R., and Tornqvist, T.E. Spatial Variability of Late Holocene and 20th Century Sea Level Rise along the US Atlantic Coast. Geology 37, (2009). 11151118.Google Scholar
Fatela, F., and Taborda, R. Confidence limits of species proportions in microfossil assemblages. Marine Micropaleontology 45, (2002). 169174.Google Scholar
Flynn, W.W. The determination of low levels of polonium-210 in environmental materials. Analytica Chimica Acta 43, (1968). 221227.Google Scholar
Funnell, B.M., and Boomer, I. Microbiofacies tidal-level and age deduction in Holocene saltmarsh deposits on the North Norfolk Coast. Bulletin of the Geological Society of Norfolk 46, (1998). 3155.Google Scholar
Gehrels, W.R. Determining relative sea level change from saltmarsh foraminifera and plant zones on the coast of Maine, USA. Journal of Coastal Research 10, (1994). 9901009.Google Scholar
Gehrels, W.R. Sea level studies: microfossil reconstructions. Elias, S. Encyclopedia of Quaternary Sciences. (2007). Elsevier, 30153023.Google Scholar
Gehrels, W.R., Roe, H.M., and Charman, D.J. Foraminifera, testate amoebae and diatoms as sea level indicators in UK salt marshes: a quantitative multi-proxy approach. Journal of Quaternary Science 16, (2001). 201220.CrossRefGoogle Scholar
Gehrels, W.R., Belknap, D.F., Black, S., and Newnham, R.M. Rapid sea level rise in the Gulf of Maine, USA, since AD 1800. Holocene 12, (2002). 383389.Google Scholar
Gehrels, W.R., Kirby, J.R., Prokoph, A., Newnham, R.M., Achterberg, E.P., Evans, E.H., Black, S., and Scott, D.B. Onset of recent rapid sea level rise in the western Atlantic Ocean. Quaternary Science Reviews 24, (2005). 20832100.CrossRefGoogle Scholar
Gehrels, W.R., Marshall, W.A., Gehrels, M.J., Larsen, G., Kirby, J.R., Eiriksson, J., Heinemeier, J., and Shimmield, T. Rapid sea level rise in the North Atlantic Ocean since the first half of the 19th century. Holocene 16, (2006). 948964.CrossRefGoogle Scholar
Gehrels, W.R., Hayward, B.W., Newnham, R.M., and Southall, K.E. A 20th century sea level acceleration in New Zealand. Geophysical Research Letters 35, (2008). L02717 CrossRefGoogle Scholar
Goldstein, S.T., and Harben, E.B. Taphofacies implications of infaunal foraminiferal assemblages in a Georgia saltmarsh, Sapelo Island. Micropaleontology 39, (1993). 5562.Google Scholar
Grinsted, A., Moore, J.C., and Jevrejeva, S. Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD. Climate Dynamics 34, (2009). 461472.CrossRefGoogle Scholar
Hawkes, A.D., Horton, B.P., Nelson, A.R., and Hill, D.F. The application of intertidal foraminifera to reconstruct coastal subsidence during the giant Cascadia earthquake of AD 1700 in Oregon, USA. Quaternary International 221, (2010). 116140.Google Scholar
Henocque, Y. Development of process indicators for coastal zone management assessment in France. Ocean and Coastal Management 46, (2003). 363379.Google Scholar
Hippensteel, S.P., Martin, R.E., Nikitina, D., and Pizzuto, J.E. The formation of Holocene marsh foraminiferal assemblages, middle Atlantic coast, USA: implications for the Holocene sea level change. Journal of Foraminiferal Research 30, (2000). 272293.CrossRefGoogle Scholar
Horton, B.P. The contemporary distribution of intertidal foraminifera of Cowpen Marsh, Tees Estuary, UK: implications for studies of Holocene sea level changes. Palaeogeography, Palaeoclimatology, Palaeoecology 149, (1999). 127149. Special Issue CrossRefGoogle Scholar
Horton, B.P., and Edwards, R.J. Quantifying Holocene sea level change using intertidal foraminifera: lessons from the British Isles. Cushman Foundation for Foraminiferal Research Special Publication (2006). 40 Google Scholar
Horton, B.P., Edwards, R.J., and Lloyd, J.M. A foraminiferal-based transfer function: implications for sea level studies. Journal of Foraminiferal Research 29, (1999). 117129.CrossRefGoogle Scholar
Jevrejeva, S., Moore, J.C., Grinsted, A., and Woodworth, P.L. Recent global sea level acceleration started over 200 years ago?. Geophysical Research Letters 35, (2008). L08715 http://dx.doi.org/10.1029/2008GL033611Google Scholar
Juggins, S. C2, Version 1.4.3: Newcastle University, UK. http://www.campus.ncl.ac.uk/staff/Stephen.Juggins/index.html (2006). Google Scholar
Kemp, A.C., Horton, B.P., and Culver, S.J. Distribution of modern salt-marsh foraminifera in the Albemarle – Pamlico Estuarine System of North Carolina, USA: Implications for sea level research. Marine Micropaleontology 72, (2009). 222238.Google Scholar
Kemp, A.C., Horton, B.P., Culver, S.J., Corbett, D.R., van de Plassche, O., Gehrels, W.R., and Douglas, B.C. The timing and magnitude of recent accelerated sea level rise (North Carolina, USA). Geology 37, (2009). 10351038.Google Scholar
Le Campion, J. Contribution à l'étude des foraminiféres du Bassin d'Arcachon et du proche océan. Bulletin de l'Institute Géologique du Bassin Aquitaine 8, (1970). 398.Google Scholar
Leorri, E., and Cearreta, A. Quantitative assessment of the salinity gradient within the estuarine systems in the southern Bay of Biscay using benthic foraminifera. Continental Shelf Research 29, (2009). 12261239.Google Scholar
Leorri, E., Cearreta, A., and Horton, B.P. A foraminifera-based transfer function as a tool for sea level reconstructions in the southern Bay of Biscay. Geobios 41, (2008). 787797.CrossRefGoogle Scholar
Leorri, E., Horton, B.P., and Cearreta, A. Development of a foraminifera-based transfer function in the Basque marshes. N. Spain: implications for sea level studies in the Bay of Biscay. Marine Geology 251, (2008). 6074.Google Scholar
Leorri, E., Gehrels, W.R., Horton, B.P., Fatela, F., and Cearreta, A. Distribution of foraminifera in salt marshes along the Atlantic coast of SW Europe: tools to reconstruct past sea level variations. Quaternary International 221, (2010). 104115.CrossRefGoogle Scholar
Marcos, F., Janin, J.M., and Le Saux, J.M. Modélisation hydrodynamique du golfe du Morbihan. Note technique. Conseil Général du Morbihan-EDF. (1995). 47 ppGoogle Scholar
Murray, J.W. Ecology and Paleoecology of Benthic Foraminifera. (1991). Longman, Harlow. 576 ppGoogle Scholar
Murray, J.W., and Bowser, S.S. Mortality, protoplasm decay rate, and reliability of staining techniques to recognize “living” foraminifera: a review. Journal of Foraminiferal Research 30, (2000). 6670.CrossRefGoogle Scholar
Nittrouer, C.A., Sternberg, R.W., Carpenter, R., and Bennett, J.T. The use of Pb-210 geochronology as a sedimentological tool: application to the Washington Continental Shelf. Marine Geology 31, (1979). 297316.Google Scholar
Patterson, R.T., and Fishbein, E. Re-examination of the statistical methods used to determine the number of point counts needed for micropaleontological quantitative research. Journal of Paleontology 63, (1989). 245248.CrossRefGoogle Scholar
Peltier, W.R. Mantle viscosity and ice-age ice sheet topography. Science 273, (1996). 13591364.Google Scholar
Peltier, W.R. Global glacial isostatic adjustment and modern instrumental records of relative sea level history. Douglas, B.C., Kearney, M.S., and Leatherman, S.P. Sea Level Rise: History and Consequences. (2001). Academic Press, San Diego, California. 6593.Google Scholar
Phleger, F.B. Foraminiferal populations and marine marsh processes:. Limnology and Oceanography 15, (1970). 522534.CrossRefGoogle Scholar
Pujos, M. Ecologie des foraminifères benthiques et des thécamoebiens de la Gironde et au plateau continental Sud-Gascogne. Application à la connaissaance du Quaternaire terminal de la région Ouest-Gironde. Memoires de l'Institut de Géologie du Bassin d'Aquitaine 8, (1976). 1274.Google Scholar
Redois, F., and Debenay, J.P. Influence du confinement sur la répartition des foraminifères benthiques: exemple del'estran d'une ria mésotidale de Bretagne méridionale. Revue de Paléobiologie 15, (1996). 243260.Google Scholar
Ritchie, J.C., and McHenry, J.R. Application of radioactive fallout Cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. Journal of Environmental Quality 19, (1990). 215233.Google Scholar
Robbins, J.A., and Edgington, D.N. Determination of recent sedimentation rates in Lake Michigan using Pb-2 10. Geochimica et Cosmochimica Acta 39, (1975). 285304.Google Scholar
Scott, D.B., and Medioli, F.S. Vertical zonation of marsh foraminifera as accurate indicators of former sea levels. Nature 272, (1978). 528531.Google Scholar
Scott, D.B., Medioli, F.S., and Schafer, C.T. Monitoring in Coastal Environments using Foraminifera and Thecamoebian Indicators. (2001). Cambridge University Press, Cambridge. 177 ppGoogle Scholar
Shennan, I., and Horton, B.P. Relative sea level changes and crustal movements of the UK. Journal of Quaternary Science 16, (2002). 511526.Google Scholar
Stone, M., and Brooks, R. Continuum regression: cross-validated sequentially constructed prediction embracing ordinary least squares, partial least squares, and principal components regression. Journal of the Royal Statistical Society 52, (1990). 237269.Google Scholar
ter Braak, C.J.F., and Šmilauer, P. CANOCO Reference Manual and User's Guide to CANOCO for Windows: Software for Canonical Community Ordination, Microcomputer Power, Ithaca, NY, Version 4.5. (2002). Google Scholar
van de Plassche, O., Edwards, R.J., van der Borg, K., and De Jong, A.F.M. 14C wiggle-match dating in high-resolution sea level research. Radiocarbon 43, (2001). 391402.Google Scholar
van de Plassche, O., van der Schrier, G., Weber, S.L., Gehrels, W.R., and Wright, A.J. Sea level variability in the northwest Atlantic during the past 1500 years: a delayed response to solar forcing?. Geophysical Research Letters 30, (2003). 1921 Google Scholar
Vincente, I., Leorri, E., Cearreta, A., Gehrels, R., and Horton, B.P. Salt marsh response to recent sea level acceleration in the southern Bay of Biscay. Geo-Temas 10, (2008). 659662.Google Scholar
Walton, W.R. Techniques for recognition of living foraminifera. Journal of Foraminiferal Research Special Publication 3, (1952). 5660.Google Scholar
Woodroffe, S.A. Recognising subtidal foraminiferal assemblages: implications for quantitative sea level reconstructions using a foraminifera-based transfer function. Journal of Quaternary Science 24, (2009). 215223.CrossRefGoogle Scholar
Woodworth, P.L., White, N.J., Jevrejeva, S., Holgate, S.J., Church, J.A., and Gehrels, W.R. Evidence for the accelerations of sea level on multi-decade and century timescales. International Journal of Climatology 29, (2008). 777789.Google Scholar
Wöppelmann, G., Pouvreau, N., and Simon, B. Brest sea level record: a time series construction back to the early eighteenth century. Ocean Dynamics 56, (2006). 487497.Google Scholar
Yang, H., Rose, N.L., and Battarbee, R.W. Dating of recent catchment peats using spheroid carbonaceous particle (SCP) concentration profiles with particular reference to Lochnagar, Scotland. Holocene 11, (2001). 593597.CrossRefGoogle Scholar