Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T23:37:38.033Z Has data issue: false hasContentIssue false

Aeolian silt contribution to soils on mountain slopes (Mt. Ślęża, southwest Poland)

Published online by Cambridge University Press:  23 October 2017

Jaroslaw Waroszewski*
Affiliation:
Wroclaw University of Environmental and Life Sciences, Institute of Soil Science and Environmental Protection, Grunwaldzka 53, 50-357 Wroclaw, Poland
Tobias Sprafke
Affiliation:
University of Bern, Institute of Geography, Hallerstrasse 12, CH-3012 Bern, Switzerland
Cezary Kabala
Affiliation:
Wroclaw University of Environmental and Life Sciences, Institute of Soil Science and Environmental Protection, Grunwaldzka 53, 50-357 Wroclaw, Poland
Elżbieta Musztyfaga
Affiliation:
Wroclaw University of Environmental and Life Sciences, Institute of Soil Science and Environmental Protection, Grunwaldzka 53, 50-357 Wroclaw, Poland
Beata Łabaz
Affiliation:
Wroclaw University of Environmental and Life Sciences, Institute of Soil Science and Environmental Protection, Grunwaldzka 53, 50-357 Wroclaw, Poland
Przemysław Woźniczka
Affiliation:
Wroclaw University of Environmental and Life Sciences, Institute of Soil Science and Environmental Protection, Grunwaldzka 53, 50-357 Wroclaw, Poland
*
*Corresponding author at: Wroclaw University of Environmental and Life Sciences, Institute of Soil Science and Environmental Protection, Wroclaw, Poland. E-mail: [email protected] (J. Waroszewski).

Abstract

This paper evaluates the possible contribution of aeolian silt to soils of Mt. Ślęża (southwest Poland). Silt loam textures are common across Lower Silesia and are often confused with silt clay loam, especially at the outer boundaries with thin loess deposits. Eight study sites with different thicknesses of silt loam mantles that are covered and/or mixed with underlying sediments were examined in the field. To test our hypothesis, we analyzed the particle size and geochemistry of representative horizons. Concentrations of major and trace elements as well as their cross ratios confirmed the aeolian origin of silt loam materials and clearly distinguished them from basal sediments. There is a clear relationship between the presence and depth of aeolian mantles and mixing zones with the type of underlying material. Furthermore, the incorporation of aeolian silt to regoliths/soils was a main agent initiating and stimulating clay translocation leading to the formation of an argic horizon below the silt mantles. Mixing aeolian silt with acid granite regoliths and further illuviation resulted in the formation of alisols, while silt contributions to serpentine sediments resulted in development of skeletic luvisols. Soils receiving very weak input of aeolian silts remain as leptosols/cambisols.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This article has been updated since original publication. An erratum detailing this change was also published (doi:10.1017/qua.2017.102).

References

REFERENCES

Antoine, P., Rousseau, D.D., Fuchs, M., Hatte, C., Markovic, S.B., Jovanovic, M., Gaudenyi, T., Moine, O., Rossignol, J., 2008. High resolution record of the last climatic cycle in the Southern Carpathian basin at Surduk (Vojvodina, Serbia). Quaternary International 198, 1936.Google Scholar
Badura, J., Przybylski, B., 1998. Extent of the Pleistocene ice sheets and deglaciation between the Sudeten and the Silesian Rampart. [In Polish with English summary.]. Biuletyn Instytutu Geologicznego 385, 928.Google Scholar
Badura, J., Jary, Z., Smalley, I., 2013. Sources of loess material for deposits in Poland and part of Central Europe: the lost Big River. Quaternary International 296, 1522.CrossRefGoogle Scholar
Buggle, B., Glaser, B., Zoeller, L., Hambach, U., Markovic, S., Glaser, I., Gerasimenko, N., 2008. Geochemical characterisation and origin of Southeastern and Eastern European loesses (Serbia, Riomania, Ukraine). Quaternary Science Reviews 27, 10581075.Google Scholar
Catt, J.A., 1985. Soil particle size distribution and mineralogy as indicators of pedogenic and geomorphic history: examples from the loessial soils of England and Wales. In Richard, K. S., Arnet, R. R., Ellis, S. (Eds.), Geomorphology and Soils. G. Allen and Unwin, London, pp. 202218.Google Scholar
Cohen, K.M., Gibbard, P.L., 2011. Global chronostratigraphical correlation table for the last 2.7 million years (chart + documentation). Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy), Cambridge.Google Scholar
Drewnik, M., Skiba, M., Szymański, W., Żyła, M., 2014. Mineral composition vs. soil forming processes in loess soils— a case study from Kraków (Southern Poland). Catena 119, 166173.Google Scholar
FAO, 2006. Guidelines for Soil Description. 4rd Ed. FAO, Rome.Google Scholar
Feng, J.L., Hu, Z.G., Ju, J.T., Zhu, L.P., 2011. Variations in trace element (including rare earth element) concentrations with grain sizes in loess and their implications for tracing the provenance of eolian deposits. Quaternary International 236, 116126.Google Scholar
Finke, A.P., Hutson, J.L., 2008. Modelling soil genesis in calcareous loess. Geoderma 145, 462479.CrossRefGoogle Scholar
Finke, P.A., 2012. Modeling the genesis of luvisols as a function of topographic position in loess parent material. Quaternary International 265, 317.Google Scholar
Frechen, M., Oches, E.A., Kohfeld, K.E., 2003. Loess in Europe-mass accumulation rates during the last glacial period. Quaternary Science Reviews 22, 18351857.Google Scholar
Frolking, T.A., Jackson, M.L., Knox, J.C., 1983. Origin of red clay over dolomite in the loess- covered Wisconsin Driftless uplands. Soil Science Society of America Journal 47, 817820.Google Scholar
Galović, L., Peh, Z., 2014. Eolian contribution to geochemical and mineralogical characteristics of some soil types in Medvednica Mountain, Croatia. Catena 117, 145156.Google Scholar
Geitner, C., Schäfer, D., Bertola, S., Bussemer, S., Heinrich, K., Waroszewski, J., 2014. Landscape archaeological results and discussion of Mesolithic research in the Fotsch valley (Tyrol). In: Kerschner, H., Krainer, K., Spötl C. (Ed.), From the Foreland to the Central Alps: Field Trips to Selected Sites of Quaternary Research in the Tyrolean and Bavarian Alps. DEQUA Excursions, Geozon Science Media, Berlin, pp. 106115.Google Scholar
Hall, A.M., Migoń, P., 2010. The first stages of erosion by ice sheets: evidence from central Europe. Geomorphology 123, 349363.Google Scholar
Hutton, J. T., 1977. Titanium and zirconium minerals. In Dixon, J. B., Weed, S. B. (Eds.), Minerals in Soil Environments. Soil Science Society of America, Madison, Wisconsin, pp. 673688.Google Scholar
IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.Google Scholar
Jacobs, P.M., Mason, J.A., Hanson, P.R., 2012. Loess mantle spatial variability and soil horizonation, southern Wisconsin, USA. Quaternary International 265, 4353.Google Scholar
Jary, Z., 1999a. Charakterystyka podstawowych horyzontów litologiczno-strukturalnych lessach południowo-zachodniej Polski. In Jary Z. (Ed.), III Seminarium Lessowe – Geneza i wiek pokrywowych utorów pylastych południowo-zachodniej Polski. Uniwersytet Wrocławski, Wrocław-Bożków Poland, pp. 2534.Google Scholar
Jary, Z., 1999b. Ostatni cykl lesowy w Polsce SW. In Jary, Z. (Ed.), III Seminarium Lessowe – Geneza i wiek pokrywowych utworów pylastych południowo-zachodniej Polski. Uniwersytet Wrocławski, Wrocław-Bożków, Poland, pp. 3536.Google Scholar
Jary, Z., 2007. Zapis zmian klimatu w górnoplejstoceńskich sekwencjach lessowo-glebowych w Polsce i w zachodniej części Ukrainy. Rozprawy Naukowe Instytutu Geografii i Rozwoju Regionalnego Uniwersytetu Wrocławskiego, Wrocław.Google Scholar
Jary, Z., 2009. Periglacial markers within the Late Pleistocene loess-palaeosol sequences in Poland and western part of Ukraine. Quaternary International 198, 124135.CrossRefGoogle Scholar
Jary, Z., 2010. Loess–soil sequences as a source of climatic proxies: an example from SW Poland. Geologija 52, 4045.Google Scholar
Jary, Z., Ciszek, D., 2013. Late Pleistocene loess–palaeosol sequences in Poland and western Ukraine. Quaternary International 296, 3750.CrossRefGoogle Scholar
Kabala, C., Bekier, J., Bińczycki, T., Bogacz, A., Bojko, O., Cuske, M., Ćwieląg-Piasecka, I., et al 2015. Soils of Lower Silesia: Origins, Diversity and Protection. PTG, PTSH,Wrocław.Google Scholar
Kabala, C., Jezierski, P., 2011. Geography, morphology, climate and soils of the Lower Silesia. IUSS Working group WRB field guide. Workshop and Field Excursion, Wroclaw-Karpacz, Wroclaw University of Environmental and Life Sciences.Google Scholar
Kabala, C., Marzec, M., 2010. Profile and spatial textural variability of luvisols developed of loess in south-western Poland. Roczniki Gleboznawcze – Soil Science Annual 61, 5264.Google Scholar
Kabala, C., Musztyfaga, E., 2016. Clay-illuvial soils in the Polish and international soil classifications. Soil Science Annual 66, 204213.Google Scholar
Kajdas, B., Michalik, M.J., Migoń, P., 2017. Mechanisms of granite alteration into grus, Karkonosze granite, SW Poland. Catena 150, 230245.Google Scholar
Karathanasis, A.D., Macneal, B.R., 1994. Evaluation of parent material uniformity criteria in loess-influenced soils of west-central Kentucky. Geoderma 64, 7392.Google Scholar
Kida, J., 1999. Księginice Małe. In: Jary, Z. (ed.), Geneza i wiek pokrywowych utworów pylastych południowo- zachodniej Polski, III Seminarium Lessowe Wrocław-Bolków. University of Wrocławski, Poland, pp. 3742.Google Scholar
Kierczak, J., Pedziwiatr, A., Waroszewski, J., Modelska, M., 2016. Mobility of Ni, Cr and Co in serpentine soils derived on various ultrabasic bedrocks under temperate climate. Geoderma 268, 7891.Google Scholar
Kleber, A., Terhorst, B., 2013. Mid-latitude slope deposits (Cover Beds) (Developments in Sedimentology Vol. 66. Elsevier, Amsterdam.Google Scholar
Krajewska, B., 1994. Charakterystyka litologiczno-strukturalna profilu lessowego z Księginic Małych w Masywie Ślęży. Master's Thesis, Department of Physical Geography, University of Wrocław.Google Scholar
Kryza, R., Pin, C., 2010. The Central-Sudetic ophiolites (SW Poland): Petrogenetic issues, geochronology and palaeotectonic implications. Gondwana Research 17, 292305.CrossRefGoogle Scholar
Labaz, B., Kabala, C., 2014. Origin, properties and classification of “black earths” in Poland. Soil Science Annual 65, 8090.CrossRefGoogle Scholar
Lindbo, D.L., Rhoton, F.E., Bigham, J.M., Hudnall, W.H., Jones, F.S., Smeck, N.E., Tyler, D.D., 1995. Loess toposequences in the Lower Mississippi River Valley: I. Fragipan morphology and identification. Soil Science Society of America Journal 59, 487500.Google Scholar
Litaor, M.I., 1987. The influence of eolian dust on the genesis of alpine soils in the Front Range, Colorado. Soil Science Society of America Journal 51, 142147.Google Scholar
Lin, Y.C., Feng, J.L., 2015. Aeolian dust contribution to the formation of alpine soils at Amdo (Northern Tibetan Plateau). Geoderma 259–260, 104115.Google Scholar
Luehmann, M.D., Schaetzl, R.J., Miller, B.A., Bigsby, M.E., 2013. Thin, pedoturbated, and locally sourced loess in the western Upper Peninsula of Michigan. Aeolian Research 8, 85100.Google Scholar
Mason, J.A., Jacobs, P.M., 1998. Chemical and particle-size evidence for addition of fine dust to soils of the midwestern United States. Geology 26, 11351138.Google Scholar
Mason, J.A., 2001. Transport direction of Peoria Loess in Nebraska and implications for loess sources on the central Great Plains. Quaternary Research 56, 7986.Google Scholar
Marks, L., 2011. Quaternary Glaciations in Poland. In Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations — Extent and Chronology, A Closer Look. Developments in Quaternary Science Vol. 15. Elsevier, Amsterdam, pp. 299303.Google Scholar
Martignier, L., Nussbaumer, M., Adatte, T., Gobat, J.M., Verrecchia, E.P., 2015. Assessment of a locally-sourced loess system in Europe: The Swiss Jura Mountains. Aeolian Research 18, 1121.Google Scholar
McLennan, S.M., 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Reviews in Mineralogy 21, 169200.Google Scholar
McLennan, S.M., 2001. Relationships between trace elemental composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems 2, 2000GC000109. http://dx.doi.org/10.1029/2000GC000109.Google Scholar
Miller, B.A., Schaetzl, R.J., 2011. Precision of Soil Particle Size Analysis using Laser Diffractometry. Soil Science Society of America Journal 76, 17191727.Google Scholar
Muhs, D.R., 2013. The geologic record of dust in Quaternary. Aeolian Research 9, 348.Google Scholar
Muhs, D.R., Benedict, J.B., 2006. Eolian additions to late quaternary alpine soils, Indian Peaks Wilderness Area, Colorado Front range. Arctic, Antarctic and Alpine Research 38, 120130.Google Scholar
Muhs, D.R., McGeehin, J.P., Beann, J., Fisher, E., 2004. Holocene loess deposition and soil formation as competing processes, Matanuska Valley, southern Alaska. Quaternary Research 61, 265276.Google Scholar
Munroe, J.S., Attwood, E.C., O’Keefe, S.S., Quackenbush, P.J.M., 2015. Eolian deposition in the alpine zone of the Uinta Mountains, Utah, US. Catena 124, 119129.Google Scholar
Munroe, J.S., Farrugia, G., Ryan, P.C., 2007. Parent material and chemical weathering in alpine soils on Mt. Mansfield, Vermont, USA. Catena 70, 3948.CrossRefGoogle Scholar
Norton, L.D., Franzmeier, D.P., 1978. Toposequences of loess-derived soils in south- western Indiana. Soil Science Society of America Journal 42, 622627.Google Scholar
Pye, K., 1995. The nature, origin and accumulation of loess. Quaternary Science Reviews 14, 653667.Google Scholar
Rubinić, V., Galović, L., Husnjak, S., Durn, G., 2015aClimate vs. parent material — which is the key of Stagnosol diversity in Croatia? Geoderma 241–242, 250261.Google Scholar
Rubinić, V., Lazarević, B., Husnjak, S., Durn, G., 2015bClimate and relief influence on particle size distribution and chemical properties of Pseudogley soils in Croatia. Catena 127, 340348.Google Scholar
Rudnick, R. L., Gao, S., 2003. Composition of the continental crust. In, The Crust (vol. 3, ed. R. L. Rudnick Elsevier, Amsterdam, the Netherlands, pp. 164.Google Scholar
Scheib, A. J., Lee, J., 2010. Mapping Late Pleistocene and Holocene aeolian sediments in East Anglia, UK: the application of regional-scale geochemical data. Quaternary Newsletter 120, 514.Google Scholar
Scheib, A. J., Birke, M., Dinelli, E., GEMAS Project Team. 2014. Geochemical evidence of aeolian deposits in European soils. Boreas Vol. 43, pp. 175192.Google Scholar
Schaetzl, R.J., 2008. The Distribution of Silty Soils in the Grayling Fingers Region of Michigan: Evidence for Loess Deposition onto Frozen Ground. Geomorphology 102, 287296.Google Scholar
Schaetzl, R.J., Attig, J.W., 2013. The loess cover of northeastern Wisconsin. Quaternary Research 79, 199214.CrossRefGoogle Scholar
Schaetzl, R.J., Loope, W.L., 2008. Evidence for an eolian origin for the silt-enriched soil mantles on the glaciated uplands of eastern Upper Michigan, USA. Geomorphology 100, 285295.Google Scholar
Schaetzl, R.J., Luehmann, M.D., 2013. Coarse-textured basal zones in thin loess deposits: products of sediment mixing and/or paleoenvironmental change? Geoderma 192, 277285.Google Scholar
Schaetzl, R.J., Smidt, S.J., Liu, W., Kincare, K., Walkowiak, T.A., Thorlund, E., Holler, M.S., 2016. Loamy, Two-Storied Soils on the Outwash Plains of Southwestern Lower Michigan: Pedoturbation of Loess with the Underlying Sand. Annals of the American Association of Geographers 106, 551571.Google Scholar
Semmel, A., Terhorst, B., 2010. The concept of Periglacial cover beds in central Europe: a review. Quaternary International 222, 120128.Google Scholar
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 436.Google Scholar
Sprafke, T., Terhorst, B., Peticzka, R., Thiel, C., 2013. Paudorf locus typicus (Lower Austria) revisited-the potential of the classic loess outcrop for Middle to Late Pleistocene landscape reconstructions. Quaternary Science Journal (E&G) 62, 5972.Google Scholar
Sprafke, T., Thiel, C., Terhorst, B., 2014. From micromorphology to palaeoenvironment: the MIS 10 to MIS 5 record in Paudorf (Lower Austria). Catena 117, 6072.Google Scholar
Sprafke, T., Obreht, I., 2016. Loess: Rock, sediment or soil — what is missing for its definition? Quaternary International 399, 198207.Google Scholar
Stanley, K.E., Schaetzl, R.J., 2011. Characteristics and paleoenvironmental significance of a thin, dual-sourced loess sheet, north-central Wisconsin. Aeolian Research 2, 241251.Google Scholar
Sterckemann, T., Douay, F., Baize, D., Fourrier, H., Proix, N., Schvartz, C., Carignan, J., 2006. Trace element distributions in soils developed in loess deposits from northern France. European Journal of Soil Science 57, 392410.Google Scholar
Stiles, C.A., Stensvold, K.A., 2008. Loess contribution to soils forming on dolostone in the driftless area of Wisconsin. Soil Science Society of America Journal 72, 650659.Google Scholar
Szymański, W., Skiba, M., Skiba, S., 2011. Fragipan horizon degradation and bleached tongues formation in Albeluvisols of the Carpathian Foothills, Poland. Geoderma 167–168, 340350.Google Scholar
Szymański, W., Skiba, M., Skiba, S., 2012. Origin of reversible cementation and brittleness of the fragipan horizon in Albeluvisols of the Carpathian Foothills, Poland. Catena 99, 6674.Google Scholar
Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford.Google Scholar
Újvári, G., Kok, J.F., Varga, G., Kovács, J., 2016. The physics of wind-blown loess: Implications for grain size proxy interpretations in Quaternary paleoclimate studies. Earth-Science Reviews 154, 247278.Google Scholar
Újvári, G., Varga, A., Balogh-Brunstad, Z., 2008. Origin, weathering and geochemical composition of loess in southwestern Hungary. Quaternary Research 69, 421437.Google Scholar
Van Reeuwijk, L.P., 2002. Procedures for Soil Analysis. 6th ed. International Soil Reference and Information Centre, Wageningen, Netherlands.Google Scholar
Weber, J., 1982. Genesis and properties of soils derived from serpentinites in Lower Silesia. Part IV. Characteristics of colloidal fraction. Roczniki Gleboznawcze (in Polish) 33(2 ), 7384.Google Scholar
Żurawek, R., Migoń, P., 1999. Periglacial landform development in the context of long- term landscape evolution of Mt. Ślęża, SW Poland. [In Polish with English summary.]. Acta Geographica Lodziensia 76, 133155.Google Scholar
Żurawek, R., 1999. Geochemiczne kryterium allochtoniczności drobnych frakcji w pokrywach stokowych Masywu Ślęży. [In Polish.] In Jary, Z. (Ed.), III Seminarium Lessowe – Geneza i wiek pokrywowych utworów pylastych południowo-zachodniej Polski. Wrocław-Bożków, pp. 7781.Google Scholar
Supplementary material: File

Waroszewski et al supplementary material

Waroszewski et al supplementary material 1

Download Waroszewski et al supplementary material(File)
File 94.2 KB