Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T19:39:40.819Z Has data issue: false hasContentIssue false

10Be exposure dating of river terraces at the southern mountain front of the Dzungarian Alatau (SE Kazakhstan) reveals rate of thrust faulting over the past ~ 400 ka

Published online by Cambridge University Press:  20 January 2017

Anja Cording
Affiliation:
Institut für Geologie und Paläontologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 24, 48149 Münster, Germany
Ralf Hetzel*
Affiliation:
Institut für Geologie und Paläontologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 24, 48149 Münster, Germany
Martin Kober
Affiliation:
Institut für Geowissenschaften, Friedrich Schiller Universität Jena, Wöllnitzer Straße 7, 07749 Jena, Germany
Jonas Kley
Affiliation:
Institut für Geowissenschaften, Friedrich Schiller Universität Jena, Wöllnitzer Straße 7, 07749 Jena, Germany Now at: Geowissenschaftliches Zentrum, Georg-August-Universität Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany
*
*Corresponding author. Fax: + 49 251 83 33 933. E-mail address:[email protected] (R. Hetzel).

Abstract

The mountain belts of the Dzungarian Alatau (SE Kazakhstan) and the Tien Shan are part of the actively deforming India–Asia collision zone but how the strain is partitioned on individual faults remains poorly known. Here we use terrace mapping, topographic profiling, and 10Be exposure dating to constrain the slip rate of the 160-km-long Usek thrust fault, which defines the southern front of the Dzungarian Alatau. In the eastern part of the fault, where the Usek River has formed five terraces (T1–T5), the Usek thrust fault has vertically displaced terrace T4 by 132 ± 10 m. At two sites on T4, exposure dating of boulders, amalgamated quartz pebbles, and sand from a depth profile yielded 10Be ages of 366 ± 60 ka and 360 + 77/− 48 ka (both calculated for an erosion rate of 0.5 mm/ka). Combined with the vertical offset and a 45–70° dip of the Usek fault, these age constraints result in vertical and horizontal slip rates of ~ 0.4 and ~ 0.25 mm/a, respectively. These rates are below the current resolution of GPS measurements and highlight the importance of determining slip rates for individual faults by dating deformed landforms to resolve the pattern of strain distribution across intracontinental mountain belts.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdrakhmatov, K.Y. et al. Relatively recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates. Nature 384, (1996). 450453.Google Scholar
Anderson, R.S., Repka, J.L., and Dick, G.S. Explicit treatment of inheritance in dating depositional surfaces using in situ 10Be and 26Al. Geology 24, (1996). 4751.Google Scholar
Avouac, J.P., Tapponnier, P., Bai, M., You, H., and Wang, G. Active thrusting and folding along the northern Tien Shan and Late Cenozoic rotation of the Tarim plate relative to Dzungaria and Kazakhstan. Journal of Geophysical Research 98, (1993). 67556804.Google Scholar
Balco, G., Stone, J.O., Lifton, N.A., and Dunai, T.J. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, (2008). 174195.Google Scholar
Bekzhanov, G.R. (Chief editor), Geological map of Kazakhstan. Scale 1:1.000.000, ВСЕГЕИ (VSEGEI, All-Russian Research Institute of Geology), St. Petersburg., (1997).Google Scholar
Blisniuk, K., Oskin, M., Fletcher, K., Rockwell, T., and Sharp, W. Assessing the reliability of U-series and 10Be dating techniques on alluvial fans in the Anza Borrego Desert, California. Quaternary Geochronology 13, (2012). 2641.Google Scholar
Bowman, D., Korjenkov, A., Porat, N., and Czassny, B. Morphological response to Quaternary deformation at an intermontane basin piedmont, the northern Tien Shan, Kyrgyzstan. Geomorphology 63, (2004). 124.Google Scholar
Brown, E.T., Bourlès, D.L., Burchfiel, B.C., Deng, Q.D., Li, J., Molnar, P., Raisbeck, G.M., and Yiou, F. Estimation of slip rates in the southern Tien Shan using cosmic ray exposure dates of abandoned alluvial fans. Geological Society of America Bulletin 110, (1998). 377386.Google Scholar
Bullen, M.E., Burbank, D.W., Garver, J.I., and Abdrakhmatov, K.Y. Late Cenozoic tectonic evolution of the northwestern Tien Shan: new age estimates for the initiation of mountain building. Geological Society of America Bulletin 113, (2001). 15441559.Google Scholar
Bullen, M.E., Burbank, D.W., and Garver, J.I. Building the Northern Tien Shan: integrated thermal, structural, and topographic constraints. Journal of Geology 111, (2003). 149165.Google Scholar
Burchfiel, B.C., Brown, E.T., Deng, Q.D., Feng, X.Y., Li, J., Molnar, P., Shi, J.B., Wu, Z.M., and You, H.C. Crustal shortening on the margins of the Tien Shan, Xinjiang, China. International Geology Review 41, (1999). 665700.Google Scholar
Charreau, J., Avouac, J.P., Chen, Y., Dominguez, S., and Gilder, S. Miocene to present kinematics of fault-bend folding across the Huerguosi anticline, northern Tianshan (China), derived from structural, seismic, and magnetostratigraphic data. Geology 36, (2008). 871874.Google Scholar
Charreau, J. et al. Neogene uplift of the Tian Shan Mountains observed in the magnetic record of the Jingou River section (northwest China). Tectonics 28, (2009). TC2008 http://dx.doi.org/10.1029/2007TC002137Google Scholar
Cheng, H., Zhang, P.Z., Spötl, C., Edwards, R.L., Cai, Y.J., Zhang, D.Z., Sang, W.C., Tan, M., and An, Z.S. The climatic cyclicity in semiarid–arid central Asia over the past 500,000 years. Geophysical Research Letters 39, (2012). L01705 http://dx.doi.org/10.1029/2011GL050202Google Scholar
Chmeleff, J., von Blanckenburg, F., Kossert, K., and Jakob, D. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268, (2010). 192199.Google Scholar
Daëron, M., Avouac, J.-P., and Charreau, J. Modeling the shortening history of a fault tip fold using structural and geomorphic records of deformation. Journal of Geophysical Research 112, (2007). B03S13 http://dx.doi.org/10.1029/2006JB004460CrossRefGoogle Scholar
Desilets, D., Zreda, M., and Prabu, T. Extended scaling factors for in situ cosmogenic nuclides: new measurements at low latitude. Earth and Planetary Science Letters 246, (2006). 265276.Google Scholar
Dunai, T.J. Influence of secular variation of the geomagnetic field on production rates of in situ produced cosmogenic nuclides. Earth and Planetary Science Letters 193, (2001). 197212.Google Scholar
Goethals, M.M., Hetzel, R., Niedermann, S., Wittmann, H., Fenton, C.R., Kubik, P.W., Christl, M., and von Blanckenburg, F. An improved experimental determination of cosmogenic 10Be/21Ne and 26Al/21Ne production ratios in quartz. Earth and Planetary Science Letters 284, (2009). 187198.CrossRefGoogle Scholar
Gold, R.D., Cowgill, E., Arrowsmith, J.R., Chen, X., Sharp, W.D., Cooper, K.M., and Wang, X.-F. Faulted terrace risers place new constraints on the late Quaternary slip rate for the central Altyn Tagh fault, northwest Tibet. Geological Society of America Bulletin 123, (2011). 958978.CrossRefGoogle Scholar
Gosse, J.C., and Phillips, F.M. Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Science Reviews 20, (2001). 14751560.CrossRefGoogle Scholar
Granger, D.E., and Riebe, C.S. Cosmogenic nuclides in weathering and erosion. Holland, H.D., and Turekian, K.K. Surface and ground water, weathering, and soils. Treatise on Geochemistry 5, (2007). 143.Google Scholar
Hancock, G.S., Anderson, R.S., Chadwick, O.A., and Finkel, R.C. Dating fluvial terraces with 10Be and 26Al profiles: application to the Wind River, Wyoming. Geomorphology 27, (1999). 4160.Google Scholar
Hein, A.S., Hulton, N.R.J., Dunai, T.J., Schnabel, C., Kaplan, M.R., Naylor, M., and Xu, S. Middle Pleistocene glaciation in Patagonia dated by cosmogenic-nuclide measurements on outwash gravels. Earth and Planetary Science Letters 286, (2009). 184197.Google Scholar
Heisinger, B., Lal, D., Jull, A.J.T., Kubik, P.W., Ivy-Ochs, S., Knie, K., and Nolte, E. Production of selected cosmogenic radionuclides by muons: 2. Capture of negative muons. Earth and Planetary Science Letters 200, (2002). 357369.CrossRefGoogle Scholar
Heisinger, B., Lal, D., Jull, A.J.T., Kubik, P.W., Ivy-Ochs, S., Neumaier, S., Knie, K., Lazarev, V., and Nolte, E. Production of selected cosmogenic radionuclides by muons 1. Fast muons. Earth and Planetary Science Letters 200, (2002). 345355.Google Scholar
Hendrix, M.S., Graham, S.A., Carroll, A.R., Sobel, E.R., McKnight, C.L., Schulein, B.J., and Wang, Z.X. Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: evidence from Mesozoic strata of the north Tarim, south Junggar, and Turpan basins, northwest China. Geological Society of America Bulletin 104, (1992). 5379.Google Scholar
Hendrix, M.S., Dumitru, T.A., and Graham, S.A. Late Oligocene–Early Miocene unroofing in the Chinese Tian Shan: an early effect of the India–Asia collision. Geology 22, (1994). 487490.Google Scholar
Hetzel, R. Active faulting, mountain growth, and erosion at the margins of the Tibetan Plateau constrained by in situ-produced cosmogenic nuclides. Tectonophysics 582, (2013). 124.CrossRefGoogle Scholar
Hetzel, R., Tao, M., Stokes, S., Niedermann, S., Ivy-Ochs, S., Gao, B., Strecker, M.R., and Kubik, P.W. Late Pleistocene/Holocene slip rate of the Zhangye thrust (Qilian Shan, China) and implications for the active growth of the northeastern Tibetan Plateau. Tectonics 23, (2004). TC6006 http://dx.doi.org/10.1029/2004TC001653Google Scholar
Hidy, A.J., Gosse, J.C., Pederson, J.L., Mattern, J.P., and Finkel, R.C. A geologically constrained Monte Carlo approach to modeling exposure ages from profiles of cosmogenic nuclides: an example from Lees Ferry, Arizona. Geochemistry, Geophysics, Geosystems 11, (2010). Q0AA10 http://dx.doi.org/10.1029/2010GC003084Google Scholar
Hubert-Ferrari, A., Suppe, J., Van Der Woerd, J., Wang, X., and Lu, H. Irregular earthquake cycle along the southern Tianshan front, Aksu area, China. Journal of Geophysical Research 110, (2005). B06402 http://dx.doi.org/10.1029/2003JB002603Google Scholar
Jolivet, M., Dominguez, S., Charreau, J., Chen, Y., Li, Y.G., and Wang, Q.C. Mesozoic and Cenozoic tectonic history of the central Chinese Tian Shan: reactivated tectonic structures and active deformation. Tectonics 29, (2010). TC6019 http://dx.doi.org/10.1029/2010TC002712Google Scholar
Kirby, E., Harkins, N., Wang, E., Shi, X., Fan, C., and Burbank, D. Slip rate gradients along the eastern Kunlun fault. Tectonics 26, (2007). TC2010 http://dx.doi.org/10.1029/2006TC002033Google Scholar
Kober, M., Seib, N., Kley, J., and Voigt, T. Thick-skinned thrusting in the northern Tien Shan foreland, Kazakhstan: structural inheritance and polyphase deformation. Nemcok, M., Mora, A., and Cosgrove, J.W. Thick-skin-dominated orogens: from initial inversion to full accretion. Geological Society, London, Special Publications 377, (2013). http://dx.doi.org/10.1144/SP377.7Google Scholar
Kohl, C.P., and Nishiizumi, K. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochimica et Cosmochimica Acta 56, (1992). 35833587.Google Scholar
Korschinek, G. et al. A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268, (2010). 187191.Google Scholar
Kubik, P.W., and Christl, M. 10Be and 26Al measurements at the Zurich 6 MV Tandem AMS facility. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268, (2010). 880883.Google Scholar
Lal, D. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, (1991). 424439.Google Scholar
Li, C.X., Guo, Z.J., and Dupont-Nivet, G. Late Cenozoic tectonic deformation across the northern foreland of the Chinese Tian Shan. Journal of Asian Earth Sciences 42, (2011). 10661073.Google Scholar
Lifton, N.A., Bieber, J.W., Clem, J.M., Duldig, M.L., Evenson, P., Humble, J.E., and Pyle, R. Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications. Earth and Planetary Science Letters 239, (2005). 140161.Google Scholar
Matmon, A., Nichols, K., and Finkel, R. Isotopic insights into smoothening of abandoned fan surfaces, southern California. Quaternary Research 66, (2006). 109118.Google Scholar
Nishiizumi, K., Imamura, M., Caffee, M.W., Southon, J.R., Finkel, R.C., and McAninch, J. Absolute calibration of 10Be AMS standards. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 258, (2007). 403413.Google Scholar
Palumbo, L., Hetzel, R., Tao, M., Li, X., and Guo, J. Deciphering the rate of mountain growth during topographic pre-steady state: an example from the NE margin of the Tibetan Plateau. Tectonics 28, (2009). TC4017 http://dx.doi.org/10.1029/2009TC002455Google Scholar
Perg, L.A., Anderson, R.S., and Finkel, R.C. Use of a new 10Be and 26Al inventory method to date marine terraces, Santa Cruz, California, USA. Geology 29, (2001). 879882.Google Scholar
Petrov, O.V., Leonov, Yu.G., Tingdong, L., Tomurtogoo, O., Shokalsky, S.P., Pospelov, I.I., Bingwei, C., Koshkin, V.Ya., Jae Hae, H. (editors), Tectonic map of Central Asia and adjacent areas. scale 1:2.500.000, Commission de la Carte Géologique du Monde/Commission for the Geological Map of the World, Paris., (2007).Google Scholar
Reigber, C., Michel, G.W., Galas, R., Angermann, D., Klotz, J., Chen, J.Y., Papschev, A., Arslanov, R., Tzurkov, V.E., and Ishanov, M.C. New space geodetic constraints on the distribution of deformation in Central Asia. Earth and Planetary Science Letters 191, (2001). 157165.Google Scholar
Ritz, J.F. et al. Late Pleistocene to Holocene slip rates for the Gurvan Bulag thrust fault (Gobi-Altay, Mongolia) estimated with 10Be dates. Journal of Geophysical Research 108, (2003). 2162 http://dx.doi.org/10.1029/2001JB000553CrossRefGoogle Scholar
Scharer, K.M., Burbank, D.W., Chen, J., Weldon, R.J., Rubin, C., Zhao, R., and Shen, J. Detachment folding in the southwestern Tien Shan–Tarim foreland, China: shortening estimates and rates. Journal of Structural Geology 26, (2004). 21192137.Google Scholar
Schmidt, S., Hetzel, R., Kuhlmann, J., Mingorance, F., and Ramos, V.A. A note of caution on the use of boulders for exposure dating of depositional surfaces. Earth and Planetary Science Letters 302, (2011). 6070.Google Scholar
Selander, J., Oskin, M., Ormukov, C., and Abdrakhmatov, K. Inherited strike-slip faults as an origin for basement-cored uplifts: example of the Kungey and Zailiskey ranges, northern Tian Shan. Tectonics 31, (2012). TC4026 http://dx.doi.org/10.1029/2011TC003002Google Scholar
Siame, L. et al. Local erosion rates versus active tectonics: cosmic ray exposure modelling in Provence (south-east France). Earth and Planetary Science Letters 220, (2004). 345364.Google Scholar
Sobel, E.R., and Dumitru, T.A. Thrusting and exhumation around the margins of the western Tarim basin during the India–Asia collision. Journal of Geophysical Research 102, (1997). 50435063.Google Scholar
Sobel, E.R., Chen, J., and Heermance, R.V. Late Oligocene–Early Miocene initiation of shortening in the Southwestern Chinese Tian Shan: implications for Neogene shortening rate variations. Earth and Planetary Science Letters 247, (2006). 7081.Google Scholar
Stone, J.O. Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105, (2000). 2375323759.Google Scholar
Tapponnier, P., and Molnar, P. Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia, and Baykal regions. Journal of Geophysical Research 84, (1979). 34253459.Google Scholar
Thompson, S.C., Weldon, R.J., Rubin, C.M., Abdrakhmatov, K.Y., Molnar, P., and Berger, G.W. Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan, central Asia. Journal of Geophysical Research 107, (2002). 2203 http://dx.doi.org/10.1029/2001JB000596Google Scholar
Windley, B.F., Allen, M.B., Zhang, C., Zhao, Z.Y., and Wang, G.R. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, central Asia. Geology 18, (1990). 128131.Google Scholar
Windley, B.F., Alexeiev, D., Xiao, W., Kröner, A., and Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society (London) 164, (2007). 3147.Google Scholar
Yang, S., Li, J., and Wang, Q. The deformation pattern and fault rate in the Tianshan Mountains inferred from GPS observations. Science in China Series D: Earth Sciences 51, (2008). 10641080.Google Scholar
Yin, A. Cenozoic tectonic evolution of Asia: a preliminary synthesis. Tectonophysics 488, (2010). 293325.Google Scholar
Yin, A., Nie, S., Craig, P., Harrison, T.M., Ryerson, F.J., Qian, X., and Yang, G. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan. Tectonics 17, (1998). 127. http://dx.doi.org/10.1029/97TC03140CrossRefGoogle Scholar
Zechar, J.D., and Frankel, K.L. Incorporating and reporting uncertainties in fault slip rates. Journal of Geophysical Research 114, (2009). B12407 http://dx.doi.org/10.1029/2009JB006325Google Scholar
Zehfuss, P.H., Bierman, P.R., Gillespie, A.R., Burke, R.M., and Caffee, M.W. Slip rates on the Fish Springs fault, Owens Valley, California, deduced from cosmogenic 10Be and 26Al and soil development on fan surfaces. Geological Society of America Bulletin 113, (2001). 241255.Google Scholar
Zubovich, A.V. et al. GPS velocity field for the Tien Shan and surrounding regions. Tectonics 29, (2010). TC6014 http://dx.doi.org/10.1029/2010TC002772Google Scholar