Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T22:39:55.577Z Has data issue: false hasContentIssue false

A 5000-yr Record of Climate Change in Varved Sediments from the Oxygen Minimum Zone off Pakistan, Northeastern Arabian Sea

Published online by Cambridge University Press:  20 January 2017

Ulrich von Rad
Affiliation:
Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655, Hannover, Germany
Michael Schaaf
Affiliation:
Shell International Exploration and Production B.V. P.O.Box 602280, AB Rijswijk, The Netherlands
Klaus H. Michels
Affiliation:
Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655, Hannover, Germany
Hartmut Schulz
Affiliation:
Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655, Hannover, Germany
Wolfgang H. Berger
Affiliation:
Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093-0524
Frank Sirocko
Affiliation:
GeoForschungszentrum Potsdam, Telegrafenberg A50, D-14473, Potsdam, Germany

Abstract

The upper Holocene marine section from a kasten core taken from the oxygen minimum zone off Karachi (Pakistan) at water depth 700 m contains continuously laminated sediments with a sedimentation rate of 1.2 mm/yr and a unique record of monsoonal climatic variability covering the past 5000 years. Our chronostratigraphy is based on varve counts verified by conventional and AMS14C dating. Individual hemipelagic varve couplets are about 0.8–1.5 mm thick, with light-colored terrigenous laminae (A) deposited mainly during the winter monsoon alternating with dark-colored laminae (B) rich in marine organic matter, coccoliths, and fish debris that reflect deposition during the high-productivity season of the late summer monsoon (August–October). Precipitation and river runoff appear to control varve thickness and turbidite frequency. We infer that precipitation decreased in the river watershed (indicated by thinning varves) after 3500–4000 yr B.P. This is about the time of increasing aridification in the Near East and Middle East, as documented by decreasing Nile River runoff data and lake-level lowstands between Turkey and northwestern India. This precipitation pattern continued until today with precipitation minima about 2200–1900 yr B.P., 1000 yr B.P., and in the late Middle Ages (700–400 yr B.P.), and precipitation maxima in the intervening periods. As documented by spectral analysis, the thickness of varve couplets responds to the average length of a 250-yr cycle, a 125-yr cycle, the Gleissberg cycle of solar activity (95 yr), and a 56-yr cycle of unknown origin. Higher frequency cycles are also present at 45, 39, 29–31, and 14 yr. The sedimentary gray-value also shows strong variability in the 55-yr band plus a 31-yr cycle. Because high-frequency cyclicity in the ENSO band (ca. 3.5 and 5 yr) is only weakly expressed, our data do not support a straightforward interaction of the Pacific ENSO with the monsoon-driven climate system of the Arabian Sea.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aniol, R.W. (1983). Tree-ring analysis CATRAS. Dendrochronologia 1, 4553.Google Scholar
Banse, K. (1994). On the coupling of hydrography, phytoplankton, zooplankton, and settling organic particles offshore in the Arabian Sea. Biogeochemistry of the Arabian Seap. 125–161Google Scholar
Behl, R.J., Kennett, J.P., Baldauf, J.G., and Lyle, M. (1995). Sedimentary facies and sedimentology of the late Quaternary Santa Barbara Basin, Site 893.295308.Google Scholar
Behl, R.J., and Kennett, J.P. (1996). Brief interstadial events in the Santa Barabara Basin, NE Pacific, during the past 60 kyr. Nature 379, 243246.CrossRefGoogle Scholar
Biondi, F., Lange, C.B., Hughes, M.K., and Berger, W.H. (1997). Inter-decadal signals during the last millenium (AD 1117–1992) in the varve record of Santa Barbara Basin, California. Geophysical Research Letters 24, 193196.CrossRefGoogle Scholar
Bryson, R.A. Proxy indications of Holocene winter rains in southwest Asia compared with simulated rainfall.Dalfes, H.N. (1996). Third Millenium B. C. Climate Change and Old World Collapse. NATO ASI Series I 49, Springer-Verlag, Berlin, Heidelberg.465473.Google Scholar
Codispoti, L.A. (1991). Primary productivity and carbon and nitrogen cycling in the Arabian Sea. U.S. JGOFS Planning Reportp. 75–85Google Scholar
Gasse, F., and Van Campo, E. (1994). Abrupt post-glacial climate events in West Asia and North Africa monsoon domains. Earth Planetary Science Letters 126, 435456.CrossRefGoogle Scholar
Grootes, P.M., and Stuiver, M. (1997). 18 16 3 5 . Journal of Geophysical Research 102, 26,45526,470.CrossRefGoogle Scholar
Hassan, F.A. Nile floods and political disorder in early Egypt.Dalfes, H.N. (1996). Third Millenium B. C. Climate Change and Old World Collapse. NATO ASI Series I 49, Springer-Verlag, Berlin, Heidelberg.123.Google Scholar
Hastenrath, S., and Lamb, P.J. (1979). Climatic Atlas of the Indian Ocean. Part I. Surface Climate and Atmospheric Circulation. Univ. of Wisconsin Press, Madison.Google Scholar
Heusser, L.E., and Sirocko, F. (1997). Millenial pulsing of environmental change in southern California from the past 24 k.y.: A record of Indo-Pacific ENSO events. Geology 25, 243246.2.3.CO;2>CrossRefGoogle Scholar
Hole, F. Evidence for mid-Holocene environmental change in the western Khabur Drainage, northeastern Syria.Dalfes, H.N. (1996). Third Millenium B. C. Climate Change and Old World Collapse. NATO ASI Series I 49, Springer-Verlag, Berlin, Heidelberg.3966.Google Scholar
Kemp, A.E.S. (1996). Palaeoclimatology and palaeoceanography from laminated sediments. Geological Society (London), Special Publication 1258.Google Scholar
Kempe, S., and Degens, E.T. (1979). Varves in the Black Sea and Lake Van (Turkey).Schlüchter, C. Moraines and Varves Balkema, Zürich.308318.Google Scholar
Lange, C.B., Burke, S.K., and Berger, W.H. (1990). Biological production off southern California is linked to climatic change. Climatic Change 16, 319329.CrossRefGoogle Scholar
Lemcke, G., Sturm, M. δ18 .Dalfes, H.N.(1996). Third Millenium B. C. Climate Change and Old World Collapse. NATO ASI Series I 49, Springer-Verlag, Berlin, Heidelberg.653678.Google Scholar
Overpeck, J.T. Varved sediment records of recent seasonal to millenial-scale environmental variability.Jones, P.D. (1996). Climatic Variations and Forcing Mechanisms of the Last 2000 Years. NATO ASI Series 131, Springer-Verlag, Heidelberg, Berlin.479498.Google Scholar
Overpeck, J.T., Anderson, D., Trumbore, S., and Prell, W. (1996). The southwest Indian monsoon over the last 18,000 years. Climate Dynamics 12, 213225.CrossRefGoogle Scholar
Paillard, D., Labeyrie, L., and Yiou, P. (1996). Macintosh program performs time-series analysis. EOS Transactions American Geophysical Union 77, 379 CrossRefGoogle Scholar
Petit-Maire, N., Sanlaville, P., and Yan, Zwongwei (1995). Oscillations de la limite nord du domaine des moussons Africaine, Indienne, et Asiatique, au cours du dernier cycle climatique. Bulletin Societé géologique France 166, 213220.Google Scholar
Philander, S.G. (1990). El Niño, La Niña, and the Southern Oscillation. Academic Press, San Diego.Google Scholar
Pike, J., and Kemp, A.E.S. (1996). Preparation and analysis techniques for studies of laminated sediments.Kemp, A.E.S. Palaeoclimatology and Palaeoceanography from Laminated Sediments 157170.Google Scholar
Possehl, G.L. Climate and the eclipse of the ancient cities of the Indus.Dalfes, H.N. (1996). Third Millennium B. C. Climate Change and Old World Collapse. NATO ASI Series I 49, Springer-Verlag, Berlin, Heidelberg.193243.Google Scholar
Quinn, W.H. (1992). A study of southern oscillation-related climatic variability for A. D. 622–1900 incorporating Nile River flood data.Diaz, H.E., Markgraf, V. El Niño: Historical and Paleoclimatic Aspects of Southern Oscillation Cambridge Univ. Press, Cambridge.119149.Google Scholar
Quinn, W.H., and Neal, V.T. (1995). The historical record of El Nino events.Bradley, R.S., Jones, P.D. Climate since A.D. 1500 Routledge, London, New York.623648.Google Scholar
Rao, Y.B. (1981). The climate of the Indian Subcontinent.Takahashi, K., Arakawa, H. World Survey of Climatology Elsevier, Amsterdam.Google Scholar
Rivas-Koslowski, M. (1995). Digitale Grauwertanalyse an laminierten Sedimenten aus der Sauerstoffminimumzone im nördlichen Arabischen Meer vor Pakistan (SONNE-Fahrt SO-90 PAKOMIN). Ruhr-Universität BochumGeologisches Institut, Google Scholar
Savrda, C.E., Bottjer, D.J., and Gorsline, D.S. (1984). Development of a comprehensive oxygen-deficient marine biofacies model: Evidence from Santa Monica, San Pedro, and Santa Barabara Basins, California Continental Borderland. Bulletin of the American Association of Petroleum Geologists 89, 11791192.Google Scholar
Schaaf, M. (1995). Digital Sediment Color Analysis: Development and Application to Holocene and Late Pleistocene Sediments from East Pacific DSDP/ODP sites. Ruhr-University Bochum, Google Scholar
Schaaf, M., and Thurow, J. (1994). A fast and easy method to derive highest-resolution time-series data sets from drill cores and rock samples. Sedimentary Geology 94, 110.CrossRefGoogle Scholar
Schaaf, M., and Thurow, J. (1997). Tracing short cycles in long records—The study of interannual to inter-centennial climate change from long sediment records, examples from the Santa Barbara Basin. Journal of the Geological Society, London 154, 613622.CrossRefGoogle Scholar
Schimmelmann, A., and Lange, C.B. (1996). The tale of 1001 varves: A review of Santa Barbara Basin sediment studies.Kemp, A.E. Palaeoclimatology and Palaeoceanography from Laminated Sediments 121142.Google Scholar
Schönwiese, C. (1995). Klimaänderungen: Daten, Analysen, Prognosen. Springer-Verlag, Berlin, Heidelberg.Google Scholar
Schulz, H., von Rad, U., and von Stackelberg, U. (1996). Laminated sediments from the Oxygen-Minimum Zone of the Northeastern Arabian Sea.Kemp, A.E.S. Paleoclimatology and Paleoceanography from Laminated Sediments 185207.Google Scholar
Singh, G., Wasson, R.J., and Agrawal, D.P. (1990). Vegetational and seasonal climatic changes since the last full glacial in the Thar Desert, northwestern India. Review of Paleobotany and Palynology 64, 351358.CrossRefGoogle Scholar
Sirocko, F., Garbe-Schönberg, D., McIntyre, A., and Molfino, B. (1996). Teleconnections between the subtropical monsoons and high-latitude climates during the last deglaciation. Science 272, 526529.CrossRefGoogle Scholar
Sirocko, F., Sarnthein, M. Wind-borne deposits in the northwestern Indian Ocean: Record of Holocene sediments versus modern satellite data.Leinen, M., and Sarnthein, M. (1989). Paleoclimatology and Paleometerology: Modern and Past Patterns of Global Atmospheric Transport. NATO ASI Series C 282, 322401.Google Scholar
Stager, J.C., Cumming, B., and Meeker, L. (1997). A high-resolution 11,400-yr diatom record from Lake Victoria, East Africa. Quaternary Research 47, 8189.CrossRefGoogle Scholar
Stuiver, M., and Braziunas, T.F. (1993). Modelling atmospheric14 . Radiocarbon 35, 137189.CrossRefGoogle Scholar
Swain, A.M., Kutzbach, J.E., and Hastenrath, S. (1983). Estimates of Holocene precipitation for Rajasthan, India, based on pollen and lake-level data. Quaternary Research 19, 117.CrossRefGoogle Scholar
(1996). U.S. NAVY/National Climatic Data Center.Global Tropical/Extratropical Cyclone Climatic Atlas Google Scholar
von Rad, U., and Schulz, H. (1995). Sampling the Oxygen Minimum Zone off Pakistan: Glacial/Interglacial variations of anoxia and productivity. Marine Geology 125, 719.CrossRefGoogle Scholar
U., von Rad, Schulz, H., Riech, V., M., den Dulk, Berner, U., Sirocko, F. Repeated monsoon-controlled breakdown of oxygen-minimum conditions during the past 30,000 years documented in laminated sediments off Pakistan.Palaeogeography,Palaeoclimatology, Palaeoecology, Google Scholar
von Stackelberg, U. (1972). Faziesverteilung in Sedimenten des indisch-pakistanischen Kontinentalrandes (Arabisches Meer). “Meteor”-Forschung-Ergebnisse, Reihe C 9, 173.Google Scholar
Vose, R. S., Schmoyer, R. L.. Steurer, P. M.. Peterson, T. C., . Heim, R., . Karl, T. R., . Eischeid, J., (1992). The Global Historical Climatology network: Long-term monthly temperature, precipitation, sea level pressure, and station pressure data. National Climatic Data Center (NOAA), Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee.Google Scholar
Wang, L., Sarnthein, M.,Erlenkeuser, H.,Grimalt, J.,Grootes, P.,Heilig, S.,Ivanova, E.,Kienast, M.,Pelejero, C.,Pflaumann, U.,East Asian monsoon climate during the late Pleistocene: High-resolution sediment records from the South China Sea, Marine Geology Special Issue.Google Scholar
Wasson, R.J., Smith, G.I., and Agrawal, D.P. (1984). Late Quaternary sediments, minerals and inferred geochemical history of Didwana Lake, Thar Desert, India (1984). Palaeogeography, Paleoclimatology, Palaeoecology 4, 345372.CrossRefGoogle Scholar
Weatcroft, R.A., Sommerfield, C.K., Drake, D.E., Borgeld, J.C., and Nittrouer, C.A. (1997). Rapid and widespread dispersal of flood sediment on the northern California margin. Geology 25, 163166.2.3.CO;2>CrossRefGoogle Scholar
Weiss, H. Late third millenium abrupt climate change and social collapse in West Asia and Egypt.Dalfes, H.N. (1996). Third Millenium B. C. Climate Change and Old World Collapse. NATO ASI Series I 49, Springer-Verlag, Berlin, Heidelberg.711723.Google Scholar