Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-15T05:17:15.943Z Has data issue: false hasContentIssue false

A 37-Meter Record of Paleoclimatological Events from Stable Isotope Data on Continental Molluscs in Valle di Castiglione, Near Rome, Italy

Published online by Cambridge University Press:  20 January 2017

Giovanni Zanchetta
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, via S. Maria 53, I-56126, Pisa, Italy
Francesco Paolo Bonadonna
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, via S. Maria 53, I-56126, Pisa, Italy
Gabriello Leone
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, via S. Maria 53, I-56126, Pisa, Italy

Abstract

New stable isotope analyses on molluscan shells from a long core drilled in the crater lake of Valle di Castiglione, near Rome, extended the investigated portion of the core to 37 m. The succession of δ18O‰ values in the core interval 37–2.3 m ranges from −2.8 to +6.9‰ with only six samples below 0‰ (PDB). These results point to arid climatic phases coupled with the high measured δ18O values of the biogenic carbonate. In contrast, depleted 18O samples correspond to wet climatic periods, in agreement with a strong evaporative control on the lake water isotopic composition. The 13C content of the shells shows sharp changes controlled by the dissolved inorganic carbon isotope budget. Isotopic data suggest that the whole body of water behaved as a closed system, thus resembling lacustrine systems located in arid and semiarid regions where hydrological control dominates the geochemical parameters.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alessio, M., Allegri, L., Bella, F., Calderoni, G., Cortesi, C., Dai Pra, G., De Rita, D., Esu, D., Follieri, M., Improta, S., Magri, D., Narcisi, B., Petrone, V., Sadori, L. (1988). 14C dating, geochemical features, faunistic and pollen analyses of the uppermost 10 m core from Valle di Castiglione. Geologica Romana. 25, 287308.Google Scholar
Ambrosetti, P., Azzaroli, A., Bonadonna, F.P., Follieri, M. (1972). A scheme of Pleistocene chronology for the Tyrrhenian side of Central Italy. Bollettino Società Geologica Italiana. 91, 169184.Google Scholar
Benson, L., White, L.D., Rye, R. (1996). Carbonate deposition, Pyramid Lake Subbasin, Nevada: 4. Comparison of the stable isotope values of carbonate deposits (tufas) and the Lahontan lake-level record. Palaeogeography Palaeoclimatology, Palaeoecology. 122, 4576.CrossRefGoogle Scholar
Bonadonna, F.P., Leone, G. (1995). Palaeoclimatological reconstruction using stable isotope data on continental molluscs from Valle di Castiglione, Roma, Italy. The Holocene. 5, 461469.CrossRefGoogle Scholar
Bottger, T., Hiller, A., Junge, F.W., Litt, T., Mania, D., Scheele, N. (1998). Late Glacial stable isotope record, radiocarbon stratigraphy, pollen and mollusc analyses from the Geiseltal area, Central Germany. Boreas. 27, 88100.CrossRefGoogle Scholar
Buchardt, B., Fritz, P. (1980). Environmental isotopes as environmental and climatological indicators. Fritz, P., Ch. Fontes, J. Handbook of Environmental Isotope Geochemistry. 473504.Google Scholar
Chaix, L., Chassaing, B., Olive, P. (1982). Premières données sur la composition isotopique du test de mollusques actuels de quelques plans d'eau nord-alpins. Archives des Sciences et Compte Rendu de Séances de la Société de Physique et d'Histoire Naturelle de Genéve. 35, 322.Google Scholar
Cortecci, G. (1973). Oxygen-isotope variations in sulfate ions in the water of some Italian lakes. Geochimica et Cosmochimica Acta. 37, 15311542.CrossRefGoogle Scholar
Follieri, M., Giardini, M., Magri, D., Sadori, L. (1997). Palynostratigraphy of the last glacial period in the volcanic region of Central Italy. Quaternary International. 47/48, 320.CrossRefGoogle Scholar
Follieri, M., Magri, D., Narcisi, B. (1990). A comparison between lithostratigraphy and palynology from the lacustrine sediments of Valle di Castiglione (Roma) over the last 0.25 Ma. Memorie della Società Geologica Italiana. 45, 889891.Google Scholar
Follieri, M., Magri, D., Sadori, L. (1988). 250,000-year pollen record from Valle di Castiglione (Roma). Pollen et Spores. 3/4, 239356.Google Scholar
Follieri, M., Magri, D., Sadori, L. (1989). Pollen stratigraphical synthesis from Valle di Castiglione (Roma). Quaternary International. 3/4, 8184.CrossRefGoogle Scholar
Gonfiantini, R. (1986). Environmental isotopes in lake studies. Fritz, P., Ch. Fontes, J. Handbook of Environmental Isotope Geochemistry. Elsevier, Amsterdam., 113168.Google Scholar
Guilizzoni, P., Oldfield, F. (1996). Palaeoenvironmental analysis of Italian Crater Lake and Adriatic sediments. Memorie Istituto Italiano di Idrobiologia. 55, 1357.Google Scholar
Hollander, D., McKenzie, J.A. (1991). CO2 control on carbon-isotope fractionation during aqueous photosynthesis: A paleo-pCO2 barometer. Geology. 19, 929932.2.3.CO;2>CrossRefGoogle Scholar
Kelly, M.G., Huntley, B. (1991). An 11,000-year record of vegetation and environment from Lago di Martignano, Latium, Italy. Journal of Quaternary Science. 6, 209224.CrossRefGoogle Scholar
Kerney, M.P., Cameron, R.A.D. (1979). A Field Guide to the Land Snails of Britain and North-West Europe. Collins, London., p. 228.Google Scholar
Lemeille, E. (1980). Contribution à la géochimie isotopique et à la minéralogie des carbonates lacustres: L'aragonite des coquilles de mollusques. Université, Paris Sud., p. 87.Google Scholar
Lemeille, E., Letolle, R., Meliere, F., Olive, P. (1983). Isotope and other physico-chemical parameters of palaeolake carbonates: Tools for climatic reconstruction. Palaeoclimates and Palaeowaters: A collection of environmental isotope studies. IAEA, International Atomic Energy Agency, Wien., p. 135150.Google Scholar
Li, H.-C., Ku, T.-L. (1997). δ13C–δ18O covariance as paleohydrological indicator for closed-basin lakes. Palaeogeography, Palaeoclimatology, Palaeoecology. 133, 6980.CrossRefGoogle Scholar
Magri, D. (1989). Interpreting long-term exponential growth of plant population in a 250,000-year pollen record from Valle di Castiglione (Roma). New Phytologist. 112, 123128.CrossRefGoogle Scholar
McCrea, J.M. (1950). On the isotopic chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics. 18, 849857.CrossRefGoogle Scholar
Narcisi, B., Anselmi, B., Catalano, F., Dai Pra, G., Magri, G. (1992). Lithostratigraphy of the 250,000 year record of lacustrine sediments from the Valle di Castiglione Crater, Roma. Quaternary Science Reviews. 11, 353362.CrossRefGoogle Scholar
Negendamk, J.F.W., Zolitschka, B. (1993). Paleolimnology of European Maar Lakes. Lectures Notes in Earth Sciences. Springer-Verlag, Berlin., p. 1514.Google Scholar
Rozanski, K. (1985). Deuterium and oxygen-18 european groundwater—Links to atmospheric circulation in the past. Chemical Geology (Isotope Geoscience Section). 50, 349363.CrossRefGoogle Scholar
Rozanski, K., Araguás-Araguás, L., Gonfiantini, R. (1993). Isotopic patterns in modern global precipitation. Swart, P.K., Lohmann, K.C., McKenzie, J., Savin, S. Climate Change in Continental Isotopic Records. 136.Google Scholar
Russo-Ermolli, E., Cheddadi, R. (1997). Climatic reconstruction during the Middle Pleistocene: A pollen record from Vallo di Diano (Southern Italy). Geobios. 30, 735744.CrossRefGoogle Scholar
Segre, A.G. (1975). Morfologia e Quaternario della zona Osa-Castiglione. Bollettino di Paletnologia Italiana, n.s. 23. 81, 259275.Google Scholar
Siegenthaler, U., Eicher, U. (1986). Stable oxygen and carbon isotope analyses. Berglund, B.E., Ralska-Jasiewiczowa, M. Handbook of Holocene Paleoecology and Paleohydrology. Wiley, Chichester., 407422.Google Scholar
Siegenthaler, U., Matter, H.A. (1983). Dependence of δ18O and δD in precipitation on climate. Palaeoclimates and Palaeowaters: A Collection of Environmental Isotope Studies. IAEA, International Atomic Energy Agency, Wien., p. 3752.Google Scholar
Stuiver, M. (1970). Oxygen and carbon isotope ratios of fresh-water carbonates as climatic indicators. Journal of Geophysical Research. 75, 52475257.CrossRefGoogle Scholar
Talbot, M.R. (1990). A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology (Isotope Geoscience Section). 80, 261279.CrossRefGoogle Scholar
Tomassetti, G. (1913). La Campagna Romana antica, medioevale e moderna. Via Cassia e Clodia, Flaminia e Tiberina, Labicana e Prenestina. Loescher, Rome., p. 490506.Google Scholar
Turner, J.V., Fritz, P., Karrow, P.F., Warner, B.G. (1983). Isotopic and geochemical composition of marl lake waters and implication for radiocarbon dating of marl lake sediments. Canadian Journal of Earth Sciences. 20, 599615.CrossRefGoogle Scholar
Tzedakis, P.C., Andrieu, V., de Beaulieu, J.L., Crowhurst, S., Follieri, M., Hooghiemistra, H., Magri, D., Reille, M., Sadori, L., Shackleton, N.J., Wijmstra, T.A. (1997). Comparison of terrestrial and marine records of changing climate of the last 500,000 year. Earth Planetary Science Letters. 150, 171176.CrossRefGoogle Scholar