Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-15T01:29:40.708Z Has data issue: false hasContentIssue false

δ13C of Loess Organic Matter as a Potential Proxy for Paleoprecipitation

Published online by Cambridge University Press:  20 January 2017

Christine Hatté
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, UMR1572 CEA/CNRS, Domaine du CNRS, F-91198 Gif-sur-Yvette cedex, France, E-mail: [email protected]
Pierre Antoine
Affiliation:
CNRS ESA 8018 “Préhistoire et Quaternaire,”, Unité Stratigraphie et Paléoenvironnements Quaternaires, UFR de Géographie, Université des Sciences et Technologies de Lille, Avenue P. Langevin, F-59655 Villeneuve d'Ascq cedex, France
Michel Fontugne
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, UMR1572 CEA/CNRS, Domaine du CNRS, F-91198 Gif-sur-Yvette cedex, France
Andreas Lang
Affiliation:
Geographisches Institut der Universität Bonn, Meckenheimer Allee 166, Bonn, D-53115, Germany
Denis-Didier Rousseau
Affiliation:
Laboratoire de Paléoenvironnement et Palynologie, Institut des Sciences de l'Évolution, UMR 5554-CNRS, Université Montpellier II, Place E. Bataillon, F-34095 Montpellier cedex 5, France and Lamont–Doherty Earth Observatory of Columbia University, Palisades, New York, 10964
Ludwig Zöller
Affiliation:
Geographisches Institut der Universität Bonn, Meckenheimer Allee 166, D-53115 Bonn, Germany

Abstract

Paleoprecipitation reconstructions on the basis of pollen are well known, but they do not provide high temporal resolution for glacial periods. High-resolution paleoprecipitation reconstructions for the last glaciation based on the isotopic record organic matter in loess from Nussloch (Rhine Valley, Germany) are consistent with paleoprecipitation inferred from peat in the same area using an independant method. Thus, δ13C of loess organic matter can be used as a proxy for paleoprecipitation.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antoine, P., Rousseau, D.-D., Lautridou, J.-P., Hatté, C., (1999). Last interglacial–glacial climatic cycle in loess–palaeosol successions of northwestern France. Boreas, 28, 551563.Google Scholar
Antoine, P, Rousseau, D.-D, Zöller, L, Lang, A, Munat, A.-V, Hatté, C, and Fontugne, M. R. (in press), High-resolution of the last interglacial–glacial cycle in the loess paleosol sequences of Nussloch (Upper Rhine Area, Germany). Quaternary International, .Google Scholar
Cowling, S.A., Sykes, M.T., (1999). Physiological significance of low atmospheric CO2 for plant–climate interactions. Quaternary Research, 52, 237242.Google Scholar
Farquhar, G.D., Ehleringer, J.R., Hubick, K.T., (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 503537.Google Scholar
Feng, X., Epstein, S., (1995). Carbon isotopes of trees from arid environments and implications for reconstructing atmospheric CO2 concentration. Geochimica et Cosmochimica Acta, 59, 25992608.Google Scholar
Garten, C.T.J., Taylor, G.E.J., (1992). Foliar δ13C within a temperate deciduous forest: Spatial, temporal, and species sources of variation. Oecologia, 90, 17.Google Scholar
Guiot, J., Pons, A., de Beaulieu, J.-L., Reille, M., (1989). A 140,000-year continental climate reconstruction from two European pollen records. Nature, 338, 309313.Google Scholar
Hatté, C., (2000). Les isotopes du carbone (14C et 13C) dans la matière organique des loess de l'Europe du Nord-Ouest; applications paléoclimatiques. U.F.R. Scientifique. Orsay, Paris XI.p. 177.Google Scholar
Hatté, C., Fontugne, M.R., Rousseau, D.-D., Antoine, P., Tisnérat-Laborde, N., Bentaleb, I., (1998). δ13C variations of loess organic matter as a record of the vegetation response to climatic changes during the Weichselian. Geology, 26, 583586.2.3.CO;2>CrossRefGoogle Scholar
Hatté, C., Pessenda, L.C.R., Fontugne, M.R., Zöller, L., Antoine, P., Rousseau, D.-D., Lang, A., (1999). 14C-AMS dating of loess organic matter of the Nussloch loess sequence, Rhine Valley, Germany.Google Scholar
Heaton, T.H.E., (1999). Spatial, species, and temporal variations in the 13C/12C ratios of C3 plants: Implications for palaeodiet studies. Journal of Archaeological Science, 26, 637649.Google Scholar
Kitagawa, H., Van der Plicht, J., (1998). Atmospheric radiocarbon calibration to 45,000 yr B.P.: Late glacial fluctuation of cosmogenic isotope production. Science, 279, 11871190.Google Scholar
Krishnamurthy, R.V., Epstein, S., (1990). Glacial–interglacial excursion in the concentration of atmospheric CO2: Effect in the 13C/12C ratio in wood cellulose. Tellus, 42B, 423434.Google Scholar
Leemans, R, and Cramer, W. (1991). The IIASA Climate Database for Mean Monthly Values of Temperature, Precipitation and Cloudiness on a Global Terrestrial Grid.. Laxenburg, International Institute of Applied Systems Analysis, .Google Scholar
Léger, M., (1990). Loess landforms. Quaternary International, 7/8, 5361.Google Scholar
Leuenberger, M., Siegenthaler, U., Langway, C.C., (1992). Carbon isotope composition of atmospheric CO2 during the last ice age from an Antarctica ice core. Nature, 357, 488490.Google Scholar
Lin, B., Liu, R., An, Z., (1991). Preliminary research on stable isotopic compositions of Chinese loess.Tungsheng, L. Loess, Environment and Global Change, Science Press, Beijing.124131.Google Scholar
O'Leary, M.H., (1981). Carbon isotope fractionation in plants. Phytochemistry, 20, 553567.Google Scholar
O'Leary, M.H., (1988). Carbon isotopes in photosynthesis. Bioscience, 38, 328336.CrossRefGoogle Scholar
Pasquier-Cardin, A., Allard, P., Ferreira, T., Hatté, C., Coutinho, R., Fontugne, M., Jaudon, M., (1999). Magma-derived CO2 emissions recorded in 14C and 13C content of plants growing in Furnas Caldera, Azores. Journal of Volcanology and Geothermal Research, 92, 195207.Google Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., Stievenard, M., (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429436.Google Scholar
Rousseau, D.-D. (1987). Paleoclimatology of the Achenheim series (Middle and Upper Pleistocene, Alsace, France).. A malacological analysis. Palaeogeography, Palaeoclimatology, Palaeoecology59, 293314.Google Scholar
Schleser, G.H., (1995). Parameters determining carbon isotope ratios in plants.Frenzel, B. Problems of Stable Isotopes in Tree-rings, Lake Sediments and Peat-Bogs as Climatic Evidence for the Holocene, 7196.Google Scholar
Stewart, G.R., Turnbull, M.H., Schmidt, S., Reskine, P.D., (1995). 13C natural abundance in plant communities along a rainfall gradient: A biological integrator of water availability. Australian Journal of Plant Physiology, 22, 5155.Google Scholar
Tieszen, L.L., (1991). Natural variations in the carbon isotope values of plants: Implications for archeology, ecology and paleoecology. Journal of Archaeological Science, 18, 227248.Google Scholar
Van de Water, P.K., Leavitt, S.W., Betancourt, J.L., (1994). Trends in stomatal density and 13C/12C ratios of pinus flexilis needles during the last glacial–interglacial cycle. Science, 264, 239243.Google Scholar
Van Vliet-Lanoë, B., (1998). Frost and soils: Implications for paleosols, paleoclimates and stratigraphy. Catena, 34, 157183.Google Scholar
Wang, H., Ambrose, S.H., Liu, C.-L.J., Follmer, L.R., (1997). Paleosol stable isotope evidence for early hominid occupation of east Asian temperate environments. Quaternary Research, 48, 228238.Google Scholar
Williams, J.W., Webb, T. III, Shurman, B.N., Bartlein, P.J., (2000). Do low CO2 concentrations affect pollen-based reconstructions of LGM climates? A response to “Physiological significance of low atmospheric CO2 for plant–climate interactions.”. Quaternary Research, 53, 402404.Google Scholar
Yakir, D., and Israeli, Y, (1995). Reduced solar irradiance effects on net primary productivity (NPP) and the δ13C and δ18O values in plantations of Musa sp., Musaceae.. Geochimica et Cosmochimica Acta 59, 21492151.CrossRefGoogle Scholar