Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T06:16:12.117Z Has data issue: false hasContentIssue false

A 1000-yr record of environmental change in NE China indicated by diatom assemblages from maar lake Erlongwan

Published online by Cambridge University Press:  17 April 2012

Luo Wang*
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
Patrick Rioual
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
Virginia N. Panizzo
Affiliation:
Environmental Change Research Centre, Department of Geography, UCL, Gower Street, London, WC1E 6BT, UK
Houyuan Lu
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
Zhaoyan Gu
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
Guoqiang Chu
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
Deguang Yang
Affiliation:
School of Geosciences and Resources, China University of Geosciences, Beijing, 100083, China
Jingtai Han
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
Jiaqi Liu
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
Anson W. Mackay
Affiliation:
Environmental Change Research Centre, Department of Geography, UCL, Gower Street, London, WC1E 6BT, UK
*
Corresponding author. Email Address:[email protected]

Abstract

Past environmental changes based on diatom relative abundances have been inferred from the maar Lake Erlongwan in northeast China. The limnology of Lake Erlongwan is affected by the strongly seasonal regional climate. The composition of diatom assemblages, in turn, responds to changes in the seasonal duration of ice cover in winter, water-column turnover in spring and autumn, and thermal stratification in summer. Statistical analysis of the sedimentary diatom assemblages reveals three significant stratigraphic zones over the past 1000 yr. The highest abundance of the planktonic species Discostella species occurs between AD 1050 and 1400 and suggests an annual ice-free period of long duration and well-developed summer stratification of the water column. This planktonic diatom peak between ca. AD 1150 and 1200 suggests that this period was the warmest over the past 1000 yr. The interval between AD 1400 and 1800 is marked by a decline in planktonic diatoms and suggests shorter duration of the ice-free season, weaker water stratification and possibly generally cold conditions. After AD 1800 relative abundances of planktonic diatoms, including Puncticulata praetermissa and Asterionella formosa, increase again, which indicates lengthening of the duration of the annual ice-free period and a stronger overturn of the water column. All these data imply that the pattern of the seasons is different between the MWP and the 20th century.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alefs, J., and Muller, J. Differences in the eutrophication dynamics of Ammersee and Starnberger See (Southern Germany), reflected by the diatom succession in varve-dated sediments. Journal of Paleolimnology 21, (1999). 395407.CrossRefGoogle Scholar
Anderson, N.J., Renberg, I., and Segerstrom, U. Diatom production responses to the development of early agriculture in a boreal forest lake-catchment (Kassjon, Northern Sweden). Journal of Ecology 83, (1995). 809822.CrossRefGoogle Scholar
Appleby, P.G. Chronostratigraphic techniques in recent sediments. Last, W.M., and Smol, J.P. Tracking Environmental Change Using Lake Sediments: Basin Analysis, Coring, and Chronological Techniques. (2001). Kluwer Academic Publishers, Dordrecht. 171203.Google Scholar
Appleby, P.G., and Oldfield, F. The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5, (1978). 18.CrossRefGoogle Scholar
Appleby, P.G., Nolan, P.J., Gifford, D.W., Godfrey, M.J., Oldfield, F., Anderson, N.J., and Battarbee, R.W. 210Pb dating by low background gamma counting. Hydrobiologia 141, (1986). 2127.CrossRefGoogle Scholar
Baier, J., Lücke, A., Negendank, J.F.W., Schleser, G.H., and Zolitschk, B. Diatom and geochemical evidence of mid-to late Holocene climatic changes at Lake Holzmaar, West-Eifel (Germany). Quaternary International 113, (2004). 8196.CrossRefGoogle Scholar
Battarbee, R.W. Diatom and chrysophyceae microstratigraphy of the annually laminated sediments of a small meromictic lake. Striae 14, (1981). 105109.Google Scholar
Battarbee, R.W. Palaeolimnological approaches to climate change, with special regard to the biological record. Quaternary Science Reviews 19, (2000). 107124.CrossRefGoogle Scholar
Battarbee, R.W., and Kneen, M.J. The use of electronically counted microspheres in absolute diatom analysis. Limnology and Oceanography 27, (1982). 184188.CrossRefGoogle Scholar
Battarbee, R.W., Jones, V.J., Flower, B.P., Cameron, N.G., Bennion, H., Carvalho, L., and Juggins, S. Diatoms. Smol, J.P., Birks, H.J.B., and Last, W.M. Tracking Environmental Change Using Lake Sediments. (2001). Kluwer Academic Publishers, Dordrecht. 155201.Google Scholar
Bennett, K.D. Determination of the number of zones in a biostratigraphical sequence. New Phytologist 132, (1996). 155170.CrossRefGoogle Scholar
Birks, H.J.B., and Gordon, A.D. Numerical Methods in Quaternary Pollen Analysis. (1985). Academic Press, London.Google Scholar
Bradbury, J.P. Diatom stratigraphy and human settlement in Minnesota. Geological Society of America, Special Paper 171, (1975). 174.CrossRefGoogle Scholar
Bradbury, J.P., and Dieterich-Rurup, K.V. Holocene diatom palelimnology of Elk Lake, Minnesota. Geological Society of America, Special Paper 276, (1993). 215236.CrossRefGoogle Scholar
Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, (2009). 337360.CrossRefGoogle Scholar
Butterwick, C., Heaney, S.I., and Talling, J.F. Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshwater Biology 50, (2005). 291300.CrossRefGoogle Scholar
Catalan, J., Pla, S., Rieradevall, M., Felip, M., Ventura, M., Buchaca, T., Camarero, L., Brancelj, A., Appleby, P.G., Lami, A., Grytnes, A., Agusti-Panareda, A., and Thompson, R. Lake Redo ecosystem response to an increasing warming in the Pyrenees during the twentieth century. Journal of Paleolimnology 28, (2002). 129145.CrossRefGoogle Scholar
Chu, G.Q., Liu, J.Q., Schettler, G., Li, J., Sun, Q., Gu, Z.Y., Lu, H.Y., Liu, Q., and Liu, T.S. Sediment fluxes and varve formation in Sihailongwan, a maar lake from northeastern China. Journal of Paleolimnology 34, (2005). 311324.CrossRefGoogle Scholar
Chu, G.Q., Sun, Q., Wang, X.H., Li, D., Rioual, P., Qiang, L., Han, J.T., and Liu, J.Q. A 1600 year multiproxy record of paleoclimatic change from varved sediments in Lake Xiaolongwan, northeastern China. Journal of Geophysical Research-Atmospheres 114, (2009). D22108 http://dx.doi.org/10.1029/2009JD012077CrossRefGoogle Scholar
Crowley, T.J. Causes of climate change over the past 1000 years. Science 289, (2000). 270277.CrossRefGoogle ScholarPubMed
De Bruin, A., Ibelings, B.W., Rijkeboer, M., Brehm, M., and van Donk, E. Genetic variation in Asterionella formosa (Bacillariophyceae): is it linked to frequent epidemics of host-specific parasitic fungi?. Journal of Phycology 40, (2004). 823830.CrossRefGoogle Scholar
Devaux, J. Succession écologique, diversité spécifique et production primaire dans un lac oligotrophe d'Auvergne (France). Verhein International Vereinigung Limnologie 19, (1975). 11651171.Google Scholar
Diehl, S. Phytoplankton, light, and nutrients in a gradient of mixing depths: theory. Ecology 83, (2002). 386398.CrossRefGoogle Scholar
Diehl, S., Berger, S., Ptacnik, R., and Wild, A. Phytoplankton, light, and nutrients in a gradient of mixing depths: field experiments. Ecology 83, (2002). 399411.CrossRefGoogle Scholar
Douglas, M.S.V., and Smol, J.P. Freshwater diatoms as indicators of environmental change in the High Artic. Stoermer, E.F., and Smol, J.P. The Diatoms: Application for the Environmental and Earth Sciences. (1999). Carmbridge University Press, Cambridge. 227244.Google Scholar
Editorial Board for flora of China, Flora of China. (1995). Science Press, Beijing.Google Scholar
Enache, M.D., Paterson, A.M., and Cumming, B.F. Changes in diatom assemblages since pre-industrial times in 40 reference lakes from the Experimental Lakes Area (northwestern Ontario, Canada). Journal of Paleolimnology 46, (2011). 115.CrossRefGoogle Scholar
Fahnenstiel, G.L., and Glime, J.M. Subsurface chlorophyll maximum and associated Cyclotella pulse in Lake Superior. International Revue Gesampt Hydrobiologie 68, (1983). 605616.CrossRefGoogle Scholar
Frank, U. Palaeomagnetic investigations on lake sediments from NE China: a new record of geomagnetic secular variation for the last 37 Ka. Geophysical Journal International 169, (2007). 2940.CrossRefGoogle Scholar
Gregory, J.M., and Oerlemans, J. Simulated future sea-level rise due to glacier melt bastes on reginally and seasonally resolved temperature changes. Nature 391, (1998). 474476.CrossRefGoogle Scholar
Håkansson, H. A compilation and evaluation of species in the genera Stephanodiscus, Cyclostephanos and Cyclotella with a new genus in the family stephanodiscaceae. Diatom Research 17, (2002). 1139.CrossRefGoogle Scholar
Hall, R.I., Leavitt, P.R., Quinlan, R., Dixit, A.S., and Smol, J.P. Effects of agriculture, urbanization, and climate on water quality in the northern Great Plains. Limnology and Oceanography 44, (1999). 739756.CrossRefGoogle Scholar
Happeywood, C.M., and Hughes, D.I. Morphological and physiological variations in clones of Asterionella-Formosa Hassall. New Phytologist 86, (1980). 441453.CrossRefGoogle Scholar
Hausmann, S., and Kienast, F. A diatom-inference model for nutrients screened to reduce the influence of background variables: application to varved sediments of Greifensee and evaluation with measured data. Palaeogeography Palaeoclimatology Palaeoecology 233, (2006). 96112.CrossRefGoogle Scholar
Haworth, E.Y., and Hurley, M.A. Comparison of the stelligeroid taxa of the centric diatom genus Cyclotella . Ricard, M. Proceedings of the 8th International Diatom Symposium — Paris Koeltz Scientific Books, Koenigstein. (1984). 4358.Google Scholar
Hillebrand, H., Dürselen, C.D., Kirschtel, D., Pollingher, U., and Zohary, T. Biovolume calculations for pelagic and benthic microalgae. Journal of Phycology 35, (1999). 403424.CrossRefGoogle Scholar
Horn, H., and Horn, W. Sedimentary losses in the reservoir Saidenbach: flux and sinking velocities of dominant phytoplankton species. International Revue der Gesamten Hydrobiologie 78, (1993). 3957.CrossRefGoogle Scholar
Horn, H., Paul, L., Horn, W., and Petzoldt, T. Long-term trends in the diatom composition of the spring bloom of a German reservoir: is Aulacoseira subarctica favored by warm winters?. Freshwater Biology 56, (2011). 24832499.CrossRefGoogle Scholar
Houk, V., Klee, R., and Tanaka, H. Atlas of freshwater centric diatoms with a brief key and descriptions Part III. Stephanodiscaceae A Cyclotella, Tertiarius, Discostella PREFACE. Fottea 10, (2010). 1498.Google Scholar
Ibelings, B.W., Gsell, A.S., Mooij, W.M., van Donk, E., van den Wyngaert, S., and Domis, L.N.D. Chytrid infections and diatom spring blooms: paradoxical effects of climate warming on fungal epidemics in lakes. Freshwater Biology 56, (2011). 754766.CrossRefGoogle Scholar
Interlandi, S.J., and Kilham, S.S. Responses of phytoplankton to varied to varied resource availability in large lakes of the Greater Yellowstone Ecosystem. Limnology and Oceanography 44, (1999). 668682.CrossRefGoogle Scholar
Jha, S.K., Chavan, S.B., Pandit, G.G., and Sadasivan, S. Geochronology of Pb and Hg pollution in a coastal marine environment using global fallout. Journal of Environmental Radioactivity 69, (2003). 145157.CrossRefGoogle Scholar
Juggins, S. Software: C2 Data Analysis. Version 1.5.1. (2007). Google Scholar
Kaiser, D.P. Analysis of total cloud amount over China, 1951–1994. Geophysical Research Letters 25, (1998). 35993602.CrossRefGoogle Scholar
Kienel, U., Schwab, M.J., and Schettler, G. Distinguishing climatic from direct anthropogenic influences during the past 400 years in varved sediments from Lake Holzmaar (Eifel, Germany). Journal of Paleolimnology 33, (2005). 327347.CrossRefGoogle Scholar
Kilham, S.S., Theriot, E.C., and Fritz, S.C. Linking planktonic diatoms and climate change in the large lakes of the Yellowstone ecosystem using resource theory. Limnology and Oceanography 41, (1996). 10521062.CrossRefGoogle Scholar
Koinig, K.A., Kamenik, C., Schmidt, R., Agusti-Panareda, A., Appleby, P., Lami, A., Prazakova, M., Rose, N., Schnell, O.A., Tessadri, R., Thompson, R., and Psenner, R. Environmental changes in an alpine lake (Gossenkollesee, Austria) over the last two centuries the influence of air temperature on biological parameters. Journal of Paleolimnology 28, (2002). 147160.CrossRefGoogle Scholar
Krammer, K., and Lange-Bertalot, H. Bacillariophyceae. Süsswasserflora von Mitteleuropa, Band 2. (1986–1991). Spektrum Akademischer Verlag Heidelberg, Berlin.Google Scholar
Leps, J., and Smilauer, P. Multivariate Analysis of Ecological Data Using CANOCO. (2003). Cambridge University Press, Cambridge.Google Scholar
Li, J.J., Li, J., and Wang, L. The best duration of settling for diatom suspension. Quaternary Sciences 29, (2009). 183184.Google Scholar
Liu, M.Y. Huinan County Annals. (1989). Shenzhen Haitian Press, Shenzhen.Google Scholar
Liu, B.H., Xu, M., Henderson, M., and Qi, Y. Observed trends of precipitation amount, frequency, and intensity in China, 1960–2000. Journal of Geophysical Research-Atmospheres 110, (2005). D08103 http://dx.doi.org/10.1029/2004JD004864CrossRefGoogle Scholar
Lotter, A.F., and Bigler, C. Do diatoms in the Swiss Alps reflect the length of ice-cover?. Aquatic Sciences 62, (2000). 125141.CrossRefGoogle Scholar
Lotter, A., and Lemcke, G. Methods for preparing and counting biochemical varves. Boreas 28, (1999). 243252.CrossRefGoogle Scholar
Maberly, S.C., Hurley, M.A., Butterwick, C., Corry, J.E., Heaney, S.I., Irish, A.E., Jaworski, G.H.M., Lund, J.W.G., Reynolds, C.S., and Roscoe, J.V. The rise and fall of Asterionella formosa in the South Basin of Windermere: analysis of a 45-year series of data. Freshwater Biology 31, (1994). 1934.CrossRefGoogle Scholar
Mackay, A.W., Battarbee, R.W., Flower, R.J., Granin, N.G., Jewson, D.H., Ryves, D.B., and Sturm, M. Assessing the potential for developing internal diatom-based transfer functions for Lake Baikal. Limnology and Oceanography 48, (2003). 11831192.CrossRefGoogle Scholar
Mackay, A.W., Jones, V.J., and Battarbee, R.W. Approaches to Holocene climate reconstruction using diatoms. Mackay, A.W., Battarbee, R.W., Birks, H.J.B., and Oldfield, F. Global Change in The Holocene. (2003). Arnold, London. 294309.Google Scholar
Mingram, J., Allen, J.R.M., Bruchmann, C., Liu, J., Luo, X., Negendank, J.F.W., Nowaczyk, N., and Schettler, G. Maar and crater lakes of the Long Gang Volcanic Field (NE China) — overview, laminated sediments, and vegetation history of the last 900 years. Quaternary International 123–25, (2004). 135147.CrossRefGoogle Scholar
Moberg, A., Sonechkin, D.M., Holmgren, K., Datsenko, N.M., and Karlen, W. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433, (2005). 613617.CrossRefGoogle ScholarPubMed
Morabito, G., Ruggiu, D., and Panzani, P. Recent dynamics (1995–1999) of the phytoplankton assemblages in Lago Maggiore as a basic tool for defining association patterns in the Italian deep lakes. Journal of Limnology 61, (2002). 129145.CrossRefGoogle Scholar
Neale, P.J., Talling, J.F., Heaney, S.I., Reynolds, C.S., and Lund, J.W.G. Long-time series from the English Lake District — irradiance-dependent phytoplankton dynamics during the spring maximum. Limnology and Oceanography 36, (1991). 751760.CrossRefGoogle Scholar
Pappas, J.L., and Stoermer, E.F. Fourier shape analysis and fuzzy measure shape group differentiation of Great Lakes Asterionella Hassall (Heterokontophyta, Bacillariophyceae). Proceedings of the 16th International Diatom Symposium. Athens and Aegean Islands 25 August–1 September 2000. (2001). University of Athens, Faculty of Biology, Athens. 485501.Google Scholar
Piao, S.L., Ciais, P., Huang, Y., Shen, Z.H., Peng, S.S., Li, J.S., Zhou, L.P., Liu, H.Y., Ma, Y.C., Ding, Y.H., Friedlingstein, P., Liu, C.Z., Tan, K., Yu, Y.Q., Zhang, T.Y., and Fang, J.Y. The impacts of climate change on water resources and agriculture in China. Nature 467, (2010). 4351.CrossRefGoogle ScholarPubMed
Pilskaln, C.H., and Johnson, T.C. Seasonal signals in Lake Malawi sediments. Limnology and Oceanography 36, (1991). 544557.CrossRefGoogle Scholar
Ptacnik, R., Diehl, S., and Berger, S. Performance of sinking and nonsinking phytoplankton taxa in a gradient of mixing depths. Limnology and Oceanography 48, (2003). 19031912.CrossRefGoogle Scholar
Reynolds, C.S. Phytoplankton Periodicity: Its Motivation, Mechanisms and Manipulation. Report of the Freshwater Biological Association 50, (1982). 6075.Google Scholar
Reynolds, C. Ecology of Phytoplankton. (2006). Cambridge University Press, New York.CrossRefGoogle Scholar
Rimet, F., Druart, J.C., and Anneville, O. Exploring the dynamics of plankton diatom communities in Lake Geneva using emergent self-organizing maps (1974–2007). Ecological Informatics 4, (2009). 99110.CrossRefGoogle Scholar
Rioual, P., Andrieu-Ponel, V., de Beaulieu, J.L., Reille, M., Svobodova, H., and Battarbee, R.W. Diatom responses to limnological and climatic changes at Ribains maar (French Massif Central) during the Eemian and early Wurm. Quaternary Science Reviews 26, (2007). 15571609.CrossRefGoogle Scholar
Rioual, P., Chu, G.Q., Li, D., Mingram, J., Han, J., and Liu, J. Climate-induced shifts in planktonic diatoms in lake Sihailongwan (North-East China): a study of the sediment trap and palaeolimnological records. 11th International Paleolimnology Symposium. (2009). 120 Guadalajara, Mexico Google Scholar
Rühland, K., Priesnitz, A., and Smol, J.P. Paleolimnological evidence from diatoms for recent environmental changes in 50 lakes across Canadian arctic treeline. Arctic, Antarctic, and Alpine Research 35, (2003). 110123.CrossRefGoogle Scholar
Rühland, K., Paterson, A.M., and Smol, J.P. Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Global Change Biology 14, (2008). 115.CrossRefGoogle Scholar
Rühland, K.M., Paterson, A.M., Hargan, K., Jenkins, A., Clark, B.J., and Smol, P. Reorganization of algal communities in the Lake of the Woods (Ontario, Canada) in response to turn-of-the-century damming and recent warming. Limnology and Oceanography 55, (2010). 24332451.CrossRefGoogle Scholar
Saros, J.E., Interlandi, S.J., Wolfe, A.P., and Engstrom, D.R. Recent changes in the diatom community structure of lakes in the Beartooth Mountain Range, USA. Arctic, Antarctic, and Alpine Research 35, (2003). 1823.CrossRefGoogle Scholar
Schettler, G., Liu, Q., Mingram, J., and Negendank, J.F.W. Palaeovariations in the East-Asian monsoon regime geochemically recorded in varved sediments of Lake Sihailongwan (Northeast China, Jilin Province). Part 1: hydrological conditions and dust flux. Journal of Paleolimnology 35, (2006). 239270.CrossRefGoogle Scholar
Shinneman, A.L.C., Edlund, M.B., Almendinger, J.E., and Soninkhishig, N. Diatoms as indicators of water quality in Western Mongolian lakes: a 54-site calibration set. Journal of Paleolimnology 42, (2009). 373389.CrossRefGoogle Scholar
Simola, H. Diatom succession in the formation of annually laminated sediment in Lovojärvi, a small eutrophicated lake. Annales Botanici Fennici 14, (1977). 143148.Google Scholar
Simola, H. Population dynamics of plankton diatoms in a 69-year sequence of annually laminated sediment. Oikos 43, (1984). 3040.CrossRefGoogle Scholar
Simola, H., Hanski, I., and Liukkonean, M. Stratigraphy, species richness and seasonal dynamics of plankton diatoms during 418 years in Lake Lovojärvi. Annales Botanici Fennici 27, (1990). 241259.Google Scholar
Smol, J.P. Paleophycology of a high arctic lake near Cape Herschel, Ellesmere island. Canadian Journal of Botany 61, (1983). 21952204.CrossRefGoogle Scholar
Smol, J.P., and Cumming, B.F. Tracking long-term changes in climate using algal indicators in lake sediments. Journal of Phycology 36, (2000). 9861011.CrossRefGoogle Scholar
Smol, J.P., Wolfe, A.P., Birks, H.J.B., Douglas, M.S., Jones, V.J., Korhola, A., Pienitz, R., Rühland, K., Sorvari, S., Antoniades, D., Brooks, S.J., Fallu, M.A., Mike, H., Keatley, B.E., Laing, T.E., Michelutti, N., Nazarova, L., Nyman, M., Paterson, A.M., Perren, B., Quinlan, R., Rautio, M., TAlbot, E.S., Siitonen, S., Solovieva, N., and Wechström, J. Climate-driven regime shifts in the biological communities of arctic lakes. Proceedings of the National Academy of Sciences 102, (2005). 43924402.CrossRefGoogle ScholarPubMed
Solovieva, N., Jones, V.J., Nazarova, L., Brooks, S.J., Birks, H.J.B., Grytnes, J.A., Appleby, P.G., Kauppila, T., Kondratenok, B., Renberg, I., and Ponomarev, V. Palaeolimnological evidence for recent climatic change in lakes from the northern Urals, Arctic Russia. Journal of Paleolimnology 33, (2005). 463482.CrossRefGoogle Scholar
Sommer, U. Nutrient competition between phytoplankton species in multispecies chemostat experiments. Archiv für Hydrobiologie 96, (1983). 399416.Google Scholar
Sorvari, S., Korhola, A., and Thompson, R. Lake diatom response to recent Arctic warming in Finnish Lapland. Global Change Biology 8, (2002). 153163.CrossRefGoogle Scholar
Soudek, D., and Robinson, G.G.C. Electrophoretic analysis of the species and population-structure of the diatom Asterionella formosa . Canadian Journal of Botany-Revue Canadienne De Botanique 61, (1983). 418433.Google Scholar
St Jacques, J.M., Cumming, B.F., and Smol, J.P. A 900-yr diatom and chrysophyte record of spring mixing and summer stratification from varved Lake Mina, west-central Minnesota, USA. The Holocene 19, (2009). 537547.CrossRefGoogle Scholar
Stenger-Kovács, C., Padisák, J., and Bíró, P. Temporal variability of Achnanthidium minutissimum (Kützing) Czarnecki and its relationship to chemical and hydrological features of the Torna-stream, Hungary. Ács, E., Kiss, K.T., Padisák, J., and Szabó, K.É. 6th International Symposium on Use of Algae for Monitoring Rivers. (2006). Göd: Magyar Algológiai Társaság, 133138.Google Scholar
Stoermer, E.F., and Ladewski, T.B. Apparent Optimal Temperatures for the Occurrence of Some Common Phytoplankton Species in Southern lake Michigan. Great Lakes Research Division, Publications 18, (1976). 49 Ann Arbor Google Scholar
Talling, J.F. Comparative seasonal changes, and inter-annual variability and stability, in a 26-year record of total phytoplankton biomass in four English lake basins. Hydrobiologia 268, (1993). 6598.CrossRefGoogle Scholar
Tanaka, H. Taxonomic studies of the genera Cyclotella (Kützing) Brébisson, Discostella Houk et Klee and Puncticulata Håkansson in the family Stephanodiscaceae Glezer et Makarova (Bacillariophyta) in Japan. Bibliotheca Diatomologica. (2007). J. Cramer, Berlin. 204 Google Scholar
ter Braak, C.J.F., and Smilauer, P. CANOCO Reference Manual and Canodraw for Windows User's Guide: Software for Canonical Community Ordination (version 4.5). (2002). Microcomputer Power, Ithaca, New York.Google Scholar
Tolotti, M., Corradini, F., Boscaini, A., and Calliari, D. Weather-driven ecology of planktonic diatoms in Lake Tovel (Trentino, Italy). Hydrobiologia 578, (2007). 147156.CrossRefGoogle Scholar
Wang, Y.Q., and Zhou, L. Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophysical Research Letters 32, (2005). L09707 http://dx.doi.org/10.1029/2005GL022574Google Scholar
Wang, L., Lu, H.Y., Liu, J.Q., Gu, Z.Y., Mingram, J., Chu, G.Q., Li, J.J., Rioual, P., Negendank, J.F.W., Han, J.T., and Liu, T.S. Diatom-based inference of variations in the strength of Asian winter monsoon winds between 17,500 and 6000 calendar years BP. Journal of Geophysical Research-Atmospheres 113, (2008). D21101 http://dx.doi.org/10.1029/2008JD010145CrossRefGoogle Scholar
Wang, L., Li, J., Lu, H., Gu, Z., Rioual, P., Hao, Q., Mackay, A.W., Jiang, W., Cai, B., Xu, B., Han, J., and Chu, G. The East Asian winter monsoon over the last 15,000 years: its links to high-latitudes and tropical climate systems and complex correlation to the summer monsoon. Quaternary Science Reviews 32, (2012). 131142.CrossRefGoogle Scholar
Weckstrom, J., and Korhola, A. Patterns in the distribution, composition and diversity of diatom assemblages in relation to ecoclimatic factors in Arctic Lapland. Journal of Biogeography 28, (2001). 3145.CrossRefGoogle Scholar
Weyhenmeyer, G.A., Blenckner, T., and Pettersson, K. Changes of the plankton spring outburst related to the North Atlantic Oscillation. Limnology and Oceanography 44, (1999). 17881792.CrossRefGoogle Scholar
Winder, M., and Hunter, D.A. Temporal organization of phytoplankton communities linked to physical forcing. Oecologia 156, (2008). 179192.CrossRefGoogle ScholarPubMed
Wunsam, S., Schmidt, R., and Klee, R. Cyclotella-taxa (Bacillariophyceae) in lakes of the Alpine region and their relationship to environmental variables. Aquatic Sciences 57, (1995). 43604386.CrossRefGoogle Scholar
Yang, B., Braeuning, A., Johnson, K.R., and Shi, Y.F. General characteristics of temperature variation in China during the last two millennia. Geophysical Research Letters 29, (2002). 1324 http://dx.doi.org/10.1029/2001GL014485CrossRefGoogle Scholar
Yang, X.D., Kamenik, C., Schmidt, R., and Wang, S.M. Diatom-based conductivity and water-level inference models from eastern Tibetan (Qinghai-Xizang) Plateau lakes. Journal of Paleolimnology 30, (2003). 119.CrossRefGoogle Scholar
Yang, X.D., Anderson, N.J., Dong, X.H., and Shen, J. Surface sediment diatom assemblages and epilimnetic total phosphorus in large, shallow lakes of the Yangtze floodplain: their relationships and implications for assessing long-term eutrophication. Freshwater Biology 53, (2008). 12731290.CrossRefGoogle Scholar
You, H.T., Liu, J.Q., Liu, Q., Chu, G.Q., Rioual, P., and Han, J.T. Study of the varve record from Erlongwan maar lake, NE China, over the last 13 ka BP. Chinese Science Bulletin 53, (2008). 262266.CrossRefGoogle Scholar
Zolitschka, B., Brauer, A., Negendank, J.F.W., Stockhausen, H., and Lang, A. Annually dated late Weichselian continental paleoclimate record from the Eifel, Germany. Geology 28, (2000). 783786.2.0.CO;2>CrossRefGoogle Scholar