Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-23T13:22:11.992Z Has data issue: false hasContentIssue false

Transport across plant roots

Published online by Cambridge University Press:  17 March 2009

M. G. Pitman
Affiliation:
School of Biological Sciences, A12, University of Sydney, NSW 2006, Australia

Extract

The plant root is a complex system that has evolved under the constraints of a number of functions. It is a pressure-probe that can penetrate the soil; it is a scavenger of nutrients that may be either tightly bound to soil particles or in low concentrations in the soil solution; it is an absorber of water from the soil. The tip of the root contains the region of dividing cells from which the root is formed, and is pushed through the soil by the extension of these cells some 10–20 times as they develop and differentiate.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allaway, W. G., Pitman, M. G., Storey, R. & Tyerman, S. (1981). Relationships between sap flow and water potential in woody or perennial plants on islands of the Great Barrier Reef. P1. Cell & Environ. 4, 329337.Google Scholar
Anderson, W. P. (1975). Long distance transport in roots. In Ion Transport in Plant Cells and Tissues (ed. Baker, D. A. and Hall, J. L.), pp. 231267. Amsterdam, London: North-Holland.Google Scholar
Anderson, W. P. (1976). Transport through roots. In Encyclopedia of Plant Physiology, New Series (ed. Lüttge, U. and Pitman, M. G.), vol. 2B, pp. 129156. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Anderson, W. P., Aikman, D. P. & Meiri, A. (1970). Excised root exudation: a standing gradient osmotic flow. Proc. R. Soc. Lond. B 174, 445458.Google Scholar
Anderson, W. P., Hendrix, D. L. & Higinbotham, N. (1974). The effect of cyanide and carbon monoxide on the electrical potential and resistance of cell membranes. Pl. Physiol. 54, 712716.CrossRefGoogle ScholarPubMed
Anderson, W. P. & House, C. R. (1967). A correlation between structure and function in the root of Zea mays. J. exp. Bot. 18, 544555.CrossRefGoogle Scholar
Arisz, W. H., Helder, R. J. & Van, Nie R. (1951). Analysis of the xudation process in tomato plants. J. exp. Bot. 2, 257297.CrossRefGoogle Scholar
Ashford, A. E. & Allaway, W. G. (1982). A sheathing mycorrhiza on Pisonia Grandis R. Br (Nyctaginaceae) with development of transfer cells rather than a harting net. New Phytol. (in the Press).Google Scholar
Aston, M. J. & Lawlor, D. W. (1979). The relationship between transpiration, root water uptake, and leaf water potential. J. exp. Bot. 30, 169181.Google Scholar
Bange, G. G. J. (1973). Diffusion and absorption of ions in plant tissue. III. The role of the root cortex in ion absorption. Acta bot. neerl. 22, 529542.Google Scholar
Barley, K. P. (1970). The configuration of the root system in relation to nutrient uptake. Adv. Agron. 22, 159207.CrossRefGoogle Scholar
Behl, R. & Jeschke, W. D. (1979). On the action of abscisic acid on transport, accumulation, and uptake of K+ and Na+ in excised barley roots; effects of the accompanying anions. Z. Pflanzenphysiol. 95, 335354.CrossRefGoogle Scholar
Bieleski, R. L. (1973). Phosphate pools, phosphate transport and phosphate availability. A. Rev. P1. Physiol. 24, 225252.CrossRefGoogle Scholar
Bowen, G. D. & Rovira, A. D. (1967). Phosphate uptake along attached and excised wheat root measured by an automatic scanning method. Aust. J. biol. Sci. 20, 369378.Google Scholar
Bowling, D. J. F. (1976). Uptake of Ions by Plant Roots. London: Chapman and Hall.Google Scholar
Brouwer, R. (1954). The regulating influence of transpiration and suction tension on water and salt uptake of roots. Acta. bot. neerl. 3, 264312.CrossRefGoogle Scholar
Camacho-B, S. E., Hall, A. E. & Kaufmann, M. R. (1974). Efficiency and regulation of water transport in some woody and herbaceous species. P1. Physiol. 54, 169172.Google Scholar
Cheeseman, J. M. & Hanson, J. B.Mathematical analysis of the dependence of cell potential on external potassium in corn roots. P1. Physiol. 63, 14.Google Scholar
Clarkson, D. T. (1974). Ion Transport and Cell Structure in Plants. London: McGraw-Hill.Google Scholar
Clarkson, D. T. & Hanson, J. B. (1980). The mineral nutrition of higher plants. A. Rev P1. Physiol. 31, 239298.CrossRefGoogle Scholar
Clarkson, D. T. & Robards, A. W. (1974). The endodermis, its structural development and physiological role. In Root Structure and Function (ed. Torrey, J. and Clarkson, D. T.), pp. 415436. London: Academic Press.Google Scholar
Clarkson, D. T., Robards, A. W. & Sanderson, J. (1971). The tertiary endodermis of barley roots; fine structure in relation to radial transport of ions and water. Planta 96, 292305.Google Scholar
Clarkson, D. T., Robards, A. W., Sanderson, J. & Peterson, C. A. (1978). Permeability studies on epidermal–hypodermal sleeves isolated from roots of Allium cepa (onion). Can. J. Bot. 6, 15261532.CrossRefGoogle Scholar
Clarkson, D. T. & Sanderson, J. (1971). Inhibition of the uptake and long distance transport of calcium by aluminium and other polyvalent cations. J. exp. Bot. 22, 837851.CrossRefGoogle Scholar
Clement, C. R., Hopper, M. J., Canaway, R. J. & Jones, L. H. D. (1974). A system for measuring uptake of ions by plants from flowing solutions of controlled composition. J. exp. Bot. 25, 8199.CrossRefGoogle Scholar
Cram, W. J. (1973). Chloride fluxes in cells of the isolated root cortex of Zea Mays. Aust. J. biol. Sci. 26, 757779.Google Scholar
Cram, W. J. (1973 b). Internal factors regulating nitrate and chloride influx in plant cells. J. exp. Bot. 24, 328341.Google Scholar
Cram, W. J. (1980). Chloride accumulation as a homeostatic system: negative feedback signals for concentration and turgor maintenance differ in a glycophyte and a halophyte. Aust. J. P1. Physiol. 7, 237249.Google Scholar
Crossett, R. N. (1968). Effect of light upon the translocation of phosphorus by seedlings of Hordeum Vulgare (L.). Aust. J. biol. Sci. 21, 225233.CrossRefGoogle Scholar
Dainty, J. (1963). Water relations of plant cells. Adv. bot. Res. 1, 279326.CrossRefGoogle Scholar
Dainty, J. (1976). Water relations of plant cells. In Encyclopedia of Plant Physiology, New Series (ed. Lüttge, U. and Pitman, M. G.), vol. 2A, pp. 1235. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Dainty, J. & Ginzburg, B. Z. (1964). The reflection coefficient of plant cell membranes for certain solutes. Biochim. biophys. Acta. 79, 129137.Google Scholar
Dalton, F. N., Raats, P. A. C. & Gardner, W. R. (1975). Simultaneous uptake of water and solutes by plant roots. Agron. J. 67, 334339.CrossRefGoogle Scholar
Davis, R. F. & Hginbotham, N. (1976). Electrochemical gradients and K+ and C1- fluxes in excised corn roots. P1. Physiol. 57, 129136.Google Scholar
Davis, R. F. & Jaworski, A. Z. (1979). Effects of ouabain and low temperature on the sodium effiux pump in excised corn roots. Pl. Physiol. 63, 940946.CrossRefGoogle Scholar
Demarty, M., Ripoll, C. & Thellier, M. (1980). Ion exchange in plant cell walls. In Plant Membrane Transport: Current Conceptual Issues (ed. Spanswick, R. M., Lucas, W. J. and Dainty, J.), pp. 3347. Amsterdam, New York, Oxford: Elsevier/North-Holland Biomedical Press.Google Scholar
Dieffenbach, H., Lüttge, U. & Pitman, M. G. (1980). Release of guttation fluid from passive hydathodes of intact barley plants. II. The effects of abscisic acid and cytokinins. Ann. Bot. 45, 703712.CrossRefGoogle Scholar
Doddema, H., Hofstra, J. J. & Feenstra, W. J. (1978). Uptake of nitrate by mutants of Arabidopsis thaliana, disturbed in uptake or reduction of nitrate. I. Effect of nitrogen source during growth on uptake of nitrate and chlorate. Physiologia P1. 43, 343350.Google Scholar
Drake, G. A., Carr, D. J. & Anderson, W. P. (1978). Plasmolysis, plasmodesmata, and the electrical coupling of oat coleoptile cells. J. exp. Bot. 29, 12051214.CrossRefGoogle Scholar
Drew, M. C., Chamel, A., Garrec, J. & Fourcy, A. (1980). Cortical air spaces (aerenchyma) in roots of corn subjected to oxygen stress: Structure and influence on uptake and translocation of rubidium ions. P1. Physiol. 65, 506511.CrossRefGoogle ScholarPubMed
Ehwald, R., Sammler, P. & Goring, H. (1973). Die Bedeutung der Diffusion im ‘Freien Raum’ fur die Konzentrationsabhangigkeit der Aufnahme von Zuckern und lonen durch pflanzliche Gewebe. Biochem. Physiol. Pflanzen 164, 596613.CrossRefGoogle Scholar
Epstein, E. (1966). Dual pattern of ion absorption by plant cells and by plants. Nature, Lond. 212, 13241327.Google Scholar
Epstein, E. (1972). Mineral Nutrition of Plants: Principles and Perspectives. New York: Wiley.Google Scholar
Epstein, E. (1976). Kinetics of ion transport and the carrier concept. In Encyclopedia of Plant Physiology, New Series (ed. Lüttge, U. and Pitman, M. G.), vol. 2B, 7094. Berlin, Heidelberg, New York:Springer-Verlag.Google Scholar
Eshel, A. & Waisel, Y. (1973). Heterogeneity of ion uptake mechanisms along primary roots of corn seedlings. In Ion Transport in Plants (ed. Anderson, W. P.) pp. 531537. London: Academic.Google Scholar
Fiscus, E. L. (1975). The interaction between osmotic- and pressure- induced water flow in plant roots. Pl. Physiol. 55, 917922.Google Scholar
Fiscus, E. L. (1977 a). Determination of hydraulic and osmotic properties of soybean root systems. P1. Physiol. 59, 10131020.CrossRefGoogle ScholarPubMed
Fiscus, E. L. (1977 b). Effects of coupled solute and water flow in plant roots with special reference to Brouwer's experiment. J. exp. Bot. 28, 7177.CrossRefGoogle Scholar
Fiscus, E. L. & Kramer, P. J. (1975). General model for osmotic and pressure induced flow in plant roots. Proc. natn Acad. Sci. U.S.A. 72, 31143118.Google Scholar
Fiscus, E. L. & Markhart, A. H. III. (1979). Relationships between root system water transport properties and plant size in Phaseolus. P1. Physiol. 64, 770773.Google Scholar
Glass, A. D. M. (1976). Regulation of potassium absorption in barley roots: an allosteric model. P1. Physiol. 58, 3337.CrossRefGoogle ScholarPubMed
Glass, A. D. M. & Perley, J. E. (1979). Cytoplasmic streaming in the root cortex and its role in the delivery of potassium to the shoot. Planta 145, 399401.CrossRefGoogle Scholar
Glinka, Z. (1973). Abscisic acid effect on root exudation related to increased permeability to water. P1. Physiol. 51, 217219.CrossRefGoogle ScholarPubMed
Goring, H., Ehwald, R. & Sammler, P. (1974). Bestimmung des ‘Freien Raumes’ pflanzlicher Gewebe und seine Bedeutung fur die Stoffaufnahme. Arch. Acker Pflanzenbau Bodenk. 18, 223232.Google Scholar
Greenway, H. (1965). Plant responses to saline substrates. Aust. J. biol. Sci. 18, 249268.Google Scholar
Greenway, H. & Munns, R. (1980). Mechanisms of salt tolerance in nonhalophytes. A. Rev. Pl. Physiol. 31, 149190.CrossRefGoogle Scholar
Grunwaldt, G., Ehwald, R., Pietzsch, W. & Goring, H. (1979). A special role of the rhizodermis in nutrient uptake by plant roots. Biochem. Physiol. 174, 831837.Google Scholar
Hanson, J. B. (1978). Application of the chemiosmotic hypothesis to ion transport across the root. Pl. Physiol. 62, 402405.Google Scholar
Hiatt, A. J. (1967). Relationship of cell sap pH to organic acid change during ion uptake. Pl. Physiol. 42, 294298.CrossRefGoogle ScholarPubMed
Hill, A. E. & Hill, B. S. (1976). Mineral ions. In Encyclopedia of Plant Physiology, New Series (ed. Lüttge, U. and Pitman, M. G.),, vol. 2B, pp. 225243. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Hill, R. & Whittingham, C. P. (1955). Photosynthesis. London: Methuen. New York: Wiley.Google Scholar
Hoagland, D. R. & Broyer, T. C. (1940). Hydrogen-ion effects and the accumulation of salt by barley roots as influenced by metabolism. Am. J. Bot. 27, 173185.Google Scholar
Hodges, T. K. & Vaadia, Y. (1964). Uptake and transport of radiochloride and tritiated water by various zones of onion roots of different chloride status. Pl. Physiol. 39, 104108.CrossRefGoogle ScholarPubMed
House, C. R. & Findlay, N. (1966). Water transport in isolated maize roots. J. exp. Bat. 17, 344354.CrossRefGoogle Scholar
Jacoby, B. (1964). Function of bean roots and stems in sodium retention. P1. Physiol. 39, 445449.CrossRefGoogle ScholarPubMed
Jacoby, B. (1979). Sodium recirculation and loss from Phaseolus vulgaris L. Ann. Bot. 43, 741744.CrossRefGoogle Scholar
Jackson, J. E. & Weatherley, P. E. (1962 a). The effect of hydrostatic pressure gradients on the movement of potassium across the root cortex. J. exp. Bot. 13, 128143.Google Scholar
Jackson, J. E. & Weatherley, P. E. (1962 b). The effect of hydrostatic pressure gradients on the movement of sodium and calcium across the root cortex. J. exp. Bat. 13, 404413.CrossRefGoogle Scholar
Jackson, P. C. & Adams, H. R. (1963). Cation-anion balance during potassium and sodium absorption by barley roots. J. gen. Physiol. 46, 369386.Google Scholar
Jackson, W. A. (1978). Nitrate acquisition and assimilation by higher plants: processes in the root system. In Nitrogen in the Environment, vol. II (ed. Nielsen, D. R. and MacDonald, J. G.), pp. 4588. New York: Academic.Google Scholar
Jackson, W. A., Flasher, D. & Hageman, R. H. (1973). Nitrate uptake by dark-grown corn seedlings. P1. Physiol. 51, 120127.Google Scholar
Jefferies, R. L. (1973). The ionic relations of seedlings of the halophyte Triglochin maritima L. In Ion Transport in Plants (ed. Anderson, W. P.), pp. 297321. London, New York: Academic.Google Scholar
Jenny, H. (1966). Pathways of ions from soil into root according to diffusion models. pl. Soil. 25, 255285.CrossRefGoogle Scholar
Jensen, P. & Pettersson, S. (1978). Allosteric regulation of potassium uptake in plant roots. P1. Physiol. 42, 207213.Google Scholar
Jeschke, W. D. (1973). K+-stimulated Na+ efflux and selective transport in barley roots. In Ion Transport in Plants (ed. Anderson, W. P.), pp. 285296. London, New York: Academic Press.Google Scholar
Jeschke, W. D. (1974). The effect of inhibitors on the K+-dependent Na+ effiux and the K+-Na+ selectivity of barley roots. Membrane Transport in Plants (ed. Zimmermann, U. and Dainty, J.), pp. 397405. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Jeschke, W. D. (1979). Net K+-Na+ exchange across the plasmalemma of meristematic root tissues. Z. Pflanzenphysiol. 94, 325330.Google Scholar
Jeschke, W. D. (1980). Roots: cation selectivity and compartmentation, involvement of protons and regulation. In Plant Membrane Transport: Current Conceptual Issues (ed. Spanswick, R. M., Lucas, W. J. and Dainty, J.), pp. 1731. Amsterdam, New York, Oxford: Elsevier/North-Holland Biomedical Press.Google Scholar
Jones, L. H. P. & Handreck, K. A. (1965). Studies of silica in the oat plant. III. Uptake of silica from soils by the plant. P1. Soil. 23, 7996.Google Scholar
Jones, P. W., Johnson, C. B. & Whittington, W. J. (1981). Nitrate uptake and the induction of nitrate reductase activity in wheat (Triticum aestivum L.) seedlings. J. exp. Bot. 32, 918.Google Scholar
Katchalsky, A. & Curran, P. F. (1965). Nonequilibrium Thermodynamics in Biophysics. Cambridge, Massachusetts: Harvard University Press.CrossRefGoogle Scholar
Kedem, O. & Katchalsky, A. (1958). Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. biophys. Acta 27, 229246.Google Scholar
Kedem, O. & Katchalsky, A. (1961). A physical interpretation of the phenomenological coefficients of membrane permeability. J. gen. Physiol. 45, 143179.CrossRefGoogle ScholarPubMed
Kramer, D. (1980). Transfer cells in the epidermis of roots. In Plant Membrane Transport: Current Conceptual Issues (ed. Spanswick, R. M., Lucas, W. J. and Dainty, J.), pp. 393394. Amsterdam, New York, Oxford: Elsevier/North-Holland Biomedical Press.Google Scholar
Kramer, D., Läuchli, A. & Yeo, A. R. (1977). Transfer cells in roots of Transport across plant Phaseolus coccineus: ultrastructure and possible function in exclusion of sodium from the shoot. Ann. Bot. 41, 10311040.Google Scholar
Läuchli, A. (1972). Translocation of inorganic solutes. A. Rev. P1. Physiol. 23, 197218.Google Scholar
Läuchli, A. (1976 a). Symplasmic transport and ion release to the xylem. Transport and Transfer Processes in Plants (ed. Wardlaw, I. F. and Passioura, J. B.), pp. 101112. New York, San Francisco, London: Academic Press.CrossRefGoogle Scholar
Läuchli, A. (1976 b). Apoplasmic transport in tissues. In Encyclopedia of Plant Physiology (ed. Lüttge, U. and Pitman, M. G.), vol. 2B, pp. 334. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Läuchli, A. & Epstein, E. (1970). Transport of potassium and rubidium in plant roots: the significance of calcium. P1. Physiol. 45, 639641.CrossRefGoogle ScholarPubMed
Läuchli, A. & Epstein, E. (1971). Lateral transport of ions into the xylem of corn roots. I. Kinetics and energetics. P1. Physiol. 48, 111117.Google Scholar
Läuchli, A., Spurr, A. R. & Epstein, E. (1971). Lateral transport of ions into the xylem of corn roots. I. Evaluation of a stelar pump. P1. Physiol. 48, 118124.Google Scholar
Lazaroff, N. & Pitman, M. G. (1966). Calcium and magnesium uptake by barley seedlings. Aust. J. biol. Sci. 19, 9911005.Google Scholar
Leggett, J. E. & Gilbert, W. A. (1969). Magnesium uptake by soybeans. Pl. Physiol. 44 11821186.Google Scholar
Lessani, H. & Marschner, H. (1978). Relation between salt tolerance and long-distance transport of sodium and chloride in various crop species. Aust. J. P1. Physiol. 5, 2737.Google Scholar
Lopushinsky, W. (1964). Effect of water movement on ion movement into the xylem of tomato roots. Pl. Physiol. 39, 494501.Google Scholar
Lüttge, U. (1974). Co-operation of organs in intact higher plants: a review. In Membrane Transport in Plants (ed. Zimmermann, U. and Dainty, J.), pp. 353362. Berlin, Heidelberg, New York: Springer-Verlag.CrossRefGoogle Scholar
Lüttge, U. (1975). Salt glands. Ion Transport in Plant Cells and Tissues. (ed. Baker, D. A. and Hall, J. L.), pp. 335376. Amsterdam, London: North-Holland.Google Scholar
Lüttge, U. & Higinbotham, N. (1979). Transport in Plants. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Lüttge, U. & Laties, G. G. (1967). Selective inhibition of absorption and long distance transport in relation to the dual mechanisms of ion absorption in maize seedlings. P1. Physiol. 42 181185.CrossRefGoogle Scholar
Macklon, A. E. S. (1975). Cortical cell fluxes and transport to the stele in excised root segments of Allium cepa L. I. Potassium, sodium and chloride. Planta. 122, 109130.CrossRefGoogle Scholar
Marré, E. (1979). Fusicoccin: A tool in plant physiology. A. Rev. Pl. Physiol. (ed. Briggs, W. R., Green, P. B. and Jones, R. L.), 30, 273–88. Palo Alto: Annual Reviews Inc.Google Scholar
Marschner, H. & Mengel, K. (1966). The effect of Ca and H ions at different metabolic conditions on the membrane permeability of young barley roots. Z. PfErnähr. Düng. Bodenk. 112, 3949.Google Scholar
Mess, G. C. & Weatherley, P. E. (1957). The mechanism of water absorption by roots. I. Preliminary studies on the effects of hydrostatic pressure gradients. Proc. R. Soc. Lond. B. 147, 367391.Google Scholar
Molz, F. J. & Ikenberry, E. (1974). Water transport through plant cells and cell walls: theoretical development. Soil Sci. Soc. Am. Proc. 38, 699704.CrossRefGoogle Scholar
Morgan, M. A. & Jackson, W. A. (1976). Calcium and magnesium in ryegrass - some differences in accumulation by roots and in translocation to shoots. Pl. Soil. 623637.CrossRefGoogle Scholar
Morgan, M. A., Volk, R. J. & Jackson, W. A. (1973). Simultaneous influx and efflux of nitrate during uptake by perennial ryegrass. P1. Physiol. 51, 267272.CrossRefGoogle ScholarPubMed
Newman, E. I. (1974). Root and soil water relations. In The Plant Root and Its Environment (ed. Carson, E. W.), pp. 363440. Charlottesville: University Press of Carolina.Google Scholar
Newman, E. I. (1976). Interaction between osmotic- and pressure-induced water flow in plant roots. Pl. Physiol. 57, 738739.Google Scholar
Nissen, P. (1971). Uptake of sulfate by roots and leaf slices of barley: mediated by single, multiphasic mechanisms. Physiologia P1. 24, 315324.Google Scholar
Nulsen, R. A. & Thurtell, G. W. (1978). Osmotically induced changes in the pressure-flow relationship of maize root systems. Aust. J. P1. Physiol. 5, 469476.Google Scholar
Nulsen, R. A. & Thurtell, G. W. (1980). Effects of osmotica around the roots on water uptake by maize plants. Aust. J. P1. Physiol. 7, 2734.Google Scholar
Nye, P. H. & Tinker, P. B. (1977). Solute Movement in the Soil-root System. Oxford, London, Edinburgh, Melbourne: Blackwell Scientific Publications.Google Scholar
Oertli, J. J. (1969). Terminology of plant-water energy relations. Z. Pflanzenphysiol. 61, 264265.Google Scholar
O'Leary, J. W. (1965). Root-pressure exudation in woody plants. Bot. Gaz. 126, 108115.CrossRefGoogle Scholar
O'Leary, J. W. (1969). The effect of salinity on permeability of roots to water. Israel J. Bot. 18, 19.Google Scholar
Osmond, C. B. (1976). Ion absorption and carbon metabolism in cells of higher plants. In Encyclopedia of Plant Physiology, New Series (ed. Lüttge, U. and Pitman, M. G.), vol. 2A, pp. 347372. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Parsons, L. R. & Kramer, P. J. (1974). Diurnal cycling in root resistance to water movement. Physiologia P1. 30, 1923.Google Scholar
Perry, M. W. & Greenway, H. (1973). Permeation of uncharged organic molecules and water through tomato roots. Ann. Bot. 37, 225232.Google Scholar
Peterson, C. A., Emanuel, M. E. & Humphreys, G. B. (1981). Pathway of movement of apoplastic fluorescent dye tracers through the endodermis at the site of secondary root formation in corn (Zea mays) and broad bean (Vicia faba). Can. J. Bot. 59, 618625.CrossRefGoogle Scholar
Peterson, C. A., Peterson, R. L. & Robards, A. W. (1978). A correlated histochemical and ultrastr.uctural study of the epidermis and hypodermis of onion roots. Protoplasma. 96, 121.Google Scholar
Pettersson, S. (1960). Ion absorption in young sunflower plants. I. Uptake and transport mechanisms for sulphate. Physiologia P1. 13, 133147.CrossRefGoogle Scholar
Pitman, M. G. (1965 a). Sodium and potassium uptake by seedlings of Hordeum vulgare. Aust. J. biol. Sci. 18, 1024.CrossRefGoogle Scholar
Pitman, M. G. (1965 b). Transpiration and the selective uptake of potassium by barley seedlings (Hordeum vulgare cv. bolivia). Aust. J. biol. Sci. 18, 987998.Google Scholar
Pitman, M. G. (1969). Simulation of Cl- uptake by low-salt barley roots as a test of models of salt uptake. P1. Physiol. 44, 14171427.Google Scholar
Pitman, M. G. (1970). Active H+ efliux from cells of low-salt barley roots during salt accumulation. P1. Physiol. 45, 787790.CrossRefGoogle ScholarPubMed
Pitman, M. G. (1971). Uptake and transport of ions in barley seedlings. I. Estimation of chloride fluxes in cells of excised roots. Aust. J. biol. Sci. 24, 407421.CrossRefGoogle Scholar
Pitman, M. G. (1972 a). Uptake and transport of ions in barley seedlings. II. Evidence for two active stages in transport to the shoot. Aust. J. biol. Sci. 25, 243257.Google Scholar
Pitman, M. G. (1972 b). Uptake and transport of ions in barley seedlings. III. Correlaton of potassium transport to the shoot with plant growth. Aust. J. biol. Sci. 25, 905919.CrossRefGoogle Scholar
Pitman, M. G. (1975). Whole plants. Ion Transport in Plant Cells and Tissues. (ed. Baker, D. A. and Hall, J. L.), pp. 267308. Amsterdam, London: North-Holland.Google Scholar
Pitman, M. G. (1976). Ion uptake by plant roots. In Encyclopedia of Plant Physiology, New Series(ed. Lüttge, U. and Pitman, M. G.), vol. 2B, pp. 95128. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Pitman, M. G. (1977). Ion transport into the xylem. A. Rev. P1. Physiol. 28, 7188.Google Scholar
Pitman, M. G. (1980). Measurement of hydraulic conductivity of barley roots during inhibition of ion transport by azetidine 2-carboxylic acid. P1., Cell & Environ. 3, 5961.Google Scholar
Pitman, M. G. (1981). Ion uptake. In Physiology and Biochemistry of Drought Resistance in Plants (ed. Paleg, L. G. and Aspinall, D.), pp. 7196. Sydney: Academic.Google Scholar
Pitman, M. G., Couritice, A. C. & Lee, B. (1968). Comparison of potassium and sodium uptake by barley roots at high and low salt status. Aust. J. biol. Sci. 21, 871881.Google Scholar
Pitman, M. G. & Cram, W. J. (1973). Regulation of Inorganic Ion Transport in Plants (ed. Anderson, W. P.), pp. 465481. London and New York: Academic Press.CrossRefGoogle Scholar
Pitman, M. G. & Cram, W. J. (1976). Regulation of ion content in whole plants. In Integration of Activity in the Higher Plant. Symp. Soc. exp. Biol. no. 31, pp. 391424. Cambridge University Press.Google Scholar
Pitman, M. G., Läuchli, A. & Stelzer, R. (1981). Ion distribution in roots of barley seedlings measured by electron probe X-ray microanalysis. P1. Physiol. 68, 673679.Google Scholar
Pitman, M. G. & Lüttge, U. (1982). The ionic environment and plant ionic relations. In Encyclopedia of Plant Physiology (ed. Osmond, C. B. and Ziegler, H.). London, Berlin, New York: Springer-Verlag.Google Scholar
Pitman, M. G., Lüttge, U., Lauchli, A. & Ball, E. (1974). Action of abscisic acid on ion transport as affected by root temperature and nutrient status. J. exp. Bot. 25, 147155.Google Scholar
Pitman, M. G. & Saddler, H. D. W. (1967). Active sodium and potassium transport in cells of barley roots. Proc. natn. Acad. Sci. U.S.A. 57, 4449.Google Scholar
Pitman, M. G., Schaefer, N. & Wildes, R. A. (1974). Effect of abscisic acid on fluxes of ions in barley roots. In Membrane Transport in Plants (ed. Zimmermann, U. and Dainty, J.), pp. 391396. Berlin, Heidelberg, New York: Springer-Verlag.CrossRefGoogle Scholar
Pitman, M. G., Schaefer, N. & Wildes, R. A. (1975). Relation between permeability to potassium and sodium ions and fusicoccin-stimulated hydrogen-ion effiux in barley roots. Planta 126, 6173.Google Scholar
Pitman, M. G. & Wellfare, D. (1978). Inhibition of ion transport in excised barley roots by abscisic acid; relation to water permeability of the roots. J. exp. Bot. 29, 11251138.Google Scholar
Pitman, M. G., Wellfare, D. & Carter, C. (1981). Reduction of hydraulic conductivity during inhibition of exudation from excised maize and barley roots. P1. Physiol. 67, 802808.CrossRefGoogle ScholarPubMed
Pitman, M. G., Wildes, R. A., Schaefer, N. & Wellfare, D. (1977). Effect of azetidine 2-carboxylic acid on ion uptake and ion release to the xylem of excised barley roots. P1. Physiol. 60, 240246.Google Scholar
Ratner, A. & Jacoby, B. (1976). Effect of K+, its counter anion, and pH on sodium efflux of barley root tips. J. exp. Bot. 27, 843852.Google Scholar
Raven, J. A. (1971 a). Ouabain-insensitive K+ influx in Hydrodictyon africanum. Plant. 97, 2838.CrossRefGoogle ScholarPubMed
Raven, J. A. & Smith, F. A. (1980). The chemiosmotic viewpoint. Plant Membrane Transport: Current Conceptual Issues (ed. Spanswick, R. M., Lucas, W. J. and Dainty, J.), pp. 161174. Amsterdam, New York, Oxford: Elsevier/North-Holland Biomedical Press.Google Scholar
Robards, A. W. & Clarkson, D. T. (1976). The role of plasmodesmata in the transport of water and nutrients across roots. In Intercellular Communication in Plants: Studies on Plasmodesmata (ed. Gunning, B. E. S. and Robards, A. W.), pp. 181–20,. Berlin, Heidelberg, New York: Springer-Verlag.CrossRefGoogle Scholar
Russell, R. Scott. (1977). Plant Root Systems. London: McGraw-Hill.Google Scholar
Sanders, D. (1980). The mechanism of Cl- transport at the plasma membrane of Chara corallina. I. Cotransport with H+. J. Membrane Biol. 53, 129142.Google Scholar
Schlögl, R. (1964). Stofftransport durch Membranen. Darmstadt: Steinkopf-Verlag.Google Scholar
Scott, B. I. H., Gullin, H. & Pallaghy, C. K. (1968). The electro chemical state of cells of broad bean roots. I. Investigations of elongating roots of young seedlings. Aust. J. biol. Sci. 21, 185200.Google Scholar
Shone, M. G. T., Clarkson, D. T., Sanderson, J. & Wood, A. V. (1973). A Comparison of the Uptake and Translocation of Some Organic Molecules and Ions in Higher Plants. In Ion Transport in Plants (ed. Anderson, W. P.), pp. 571582. London and New York: Academic Press.Google Scholar
Simmelsgaard, S. E. (1976). Adaptation to water stress in wheat. Physiologia P1. 37, 167174.Google Scholar
Singh, C. & Jacobson, L. (1979). The accumulation and transport of calcium in barley roots. Physiologia P1. 45, 443447.Google Scholar
Sinha, B. K. & Singh, N. T. (1974). Effect of transpiration rate on salt accumulation around corn roots in a saline soil. Agron. J. 66, 557560.Google Scholar
Smith, F. A. & Raven, J. A. (1976). Transport and regulation of cell pH. In Encyclopedia of Plant Physiology, New Series (ed. Lüttge, U. and Pitman, M. G.), vol. 2A, pp. 317346. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Smith, F. A. & Raven, J. A. (1979). Intracellular pH and its regulation. In A. Rev. P1. Physiol. 30, 289311. Palo Alto: Annual Reviews Inc.Google Scholar
Smith, F. A. & Walker, N. A. (1980). Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and HCO3- and to carbon isotopic discrimination. New Phytol. 86, 245259.Google Scholar
Smith, S. E. (1980). Mycorrhizas of autotrophic higher plants. Biol. Rev. 55, 475510.Google Scholar
Spanswick, R. M. (1976). Symplasmic transport in tissues. In Encyclopedia of Plant Physiology, New Series (ed. Luttge, U. and Pitman, M. G.), vol. 2B, pp. 3553. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Steudle, E. & Zimmermann, U. (1974). Determination of the hydraulic conductivity and of reflection coefficients in Nitella flexilis by means of direct cell-turgor pressure measurements. Biochim. biophys. Acta 332, 399412.CrossRefGoogle Scholar
Storey, R. & Wyn, Jones R. G. (1978). Salt stress and comparative physiology in the Gramineae. I. Ion relations of two salt- and water-stressed barley cultivars, California mariout and arimar. Aust. J. P1. Physiol. 5, 801816.Google Scholar
Tyree, M. T. & Hammel, H. T. (1972). The measurement of the turgor pressure and the water relations of plants by the pressure bomb technique. J. exp. Bot. 23, 267282.CrossRefGoogle Scholar
Van, Iren F. & Boers-Van, Der Sluijs P. (1980). Symplasmic and apoplasmic radial ion transport in plant roots – cortical plasmalemmas lose absorption capacity during differentiation. Planta 148, 130137.Google Scholar
Walker, N. A. (1976). Membrane transport: theoretical background. In Encyclopedia of Plant Physiology, New Series (ed. Lüttge, U. and Pitman, M. G.), vol. 2A, pp. 1235. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Walker, N. A. & Pitman, M. G. (1976). Measurement of fluxes across membranes. In Encyclopedia of Plant Physiology (ed. Lüttge, U. and Pitman, M. G.), vol. 2A, pp. 93126. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Weatherley, P. W. (1963). The pathway of water movement across the root cortex and leaf mesophyll of transpiring plants. In The Water Relations of Plants (ed. Rutterand, A. J. and Whitehead, F. H.), pp. 85100. Oxford: Blackwell.Google Scholar
Weigl, J. & Lüttge, U. (1962). Mikroautoradiographische Untersuchungen ber die Aufnahme von SO4- durch Wurzeln von Zea mays L. Die Funktion der primären Endodermis. Planta 59, 1528.Google Scholar
Wignarajah, J. D., Jenings, D. H. & Handley, J. F. (1975). The effect of salinity on growth of Phaseolus vulgaris L. II. Effect on internal solute concentration. Ann. Bot. 39, 10291038.Google Scholar
Wild, A., Woodhouse, P. J. & Hopper, M. J. (1979). A comparison between the uptake of potassium by plants from solutions of constant potassium concentration and during depletion. J. exp. Bot. 30, 697704.Google Scholar
Woermann, D. (1976). Mass transport across membranes. In Encyclopedia of Plant Physiology (ed. Stocking, C. R. and Heber, U.), vol. 3, pp. 419464. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Zimmermann, U. & Steudle, E. (1978). Physical aspects of water relations of plant cells. Adv. Bot. Res. 6, 45117.Google Scholar