Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T19:00:46.590Z Has data issue: false hasContentIssue false

Soft X-ray microscopes and their biological applications

Published online by Cambridge University Press:  17 March 2009

Janos Kirz
Affiliation:
Physics Department, State University of New York, Stony Brook, NY 11794–3800 USA
Chris Jacobsen
Affiliation:
Physics Department, State University of New York, Stony Brook, NY 11794–3800 USA
Malcolm Howells
Affiliation:
Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, CA 94720 USA

Extract

In this review we propose to address the question: for the life-science researcher, what does X-ray microscopy have to offer that is not otherwise easily available?

We will see that the answer depends on a combination of resolution, penetrating power, analytical sensitivity, compatibility with wet specimens, and the ease of image interpretation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ade, H., Kirz, J., Hulbert, S. L., Johnson, E., Anderson, E. & Kern, D.. (1990). X-ray spectromicroscopy with a zone plate generated microprobe. Appl. Phys. Lett. 56, 18411843.CrossRefGoogle Scholar
Ade, H., Zhang, X., Cameron, S., Costello, C., Kirz, J. & Williams, S. (1992). Chemical contrast in X-ray microscopy and spatially resolved XANES spectroscopy of organic specimens. Science 258, 927975.CrossRefGoogle ScholarPubMed
Ade, H. & Hsiao, B.. (1993). X-ray linear dichroism microscopy. Science 262, 14271429.CrossRefGoogle ScholarPubMed
Ade, H.. (1994). NEXAFS microscopy of polymeric samples. Synchrotron Radiation News 7 (2), 1115.CrossRefGoogle Scholar
Ade, H., Smith, A. P., Cameron, S., Cieslinski, R., Costello, C., Hsiao, B., Mitchell, G.. & Rightor, E. (1995). X-ray microscopy in polymer science: prospects of a ‘new’ imaging technique. Polymer, Vol. 36 (in press).CrossRefGoogle Scholar
Anderson, E.. & Kern, D.. (1992). Nanofabrication of zone plate lenses for high resolution X-ray microscopy. In Michette et al.. 1992; 7578.Google Scholar
Aoki, S., Ichihara, Y.. & Kikuta, S.. (1972). X-ray hologram obtained by using synchrotron radiation. Jap. J. Appl. Phys. 11, 1857.CrossRefGoogle Scholar
Aoki, S.. & Kikuta, S.. (1974). X-ray holographic microscopy. Jap. J. Appl. Phys. 13, 13851392.CrossRefGoogle Scholar
Aoki, S.. (1994). Recent developments in X-ray microscopy at Photon Factory. In Aristov & Erko, 1994, 3540.Google Scholar
Aristov, V. V. & Erko, A. I., eds. (1994). X-ray Microscopy, IV. Chernogolovka, Moscow Region: Bogorodski Pechatnik.Google Scholar
Artyukov, I. A., Fedorenko, A. I., Kondtratenko, V. V., Yulin, S. A.. & Vinogradov, A. V.. (1993). Soft X-ray submicron imaging experiments with nanosecond exposure. Optics Comm. 102, 401406.CrossRefGoogle Scholar
Ashchoff, H.. (1994). Diplomarbeit, Universität Göttingen.Google Scholar
Asunmaa, S. K.. (1963). Electron microscopic enlargements of X-ray absorption micrographs. In Pattee et at. 1963; 3351.Google Scholar
Attwood, D. T.. & Henke, B. L., eds. (1981). Low Energy X-ray Diagnostics, vol. 75, New York: American Institute of Physics.Google Scholar
Attwood, D., Halbach, K.. & Kim, K.-J. (1985). Tunable coherent X-rays. Science 228, 12651272.Google ScholarPubMed
Attwood, D.. (1994). X-ray optics, microscopy and lithography in Berkeley. In Aristov & Erko, 1994; 2034.Google Scholar
Baez, A. V.. (1952). A study in diffraction microscopy with special reference to X-rays. J. Opt. Soc. Am. 42, 756762.CrossRefGoogle Scholar
Baez, A. V.. (1961). Fresnel zone plate for optical image formation using extreme ultraviolet and soft X radiation. J. Opt. Soc. Am. 51, 405412.CrossRefGoogle Scholar
Bailey, G. W.. & Garratt-Reed, A. J., eds. (1994) Proceedings of the 52nd Annual Meeting of the Microscopy Society of America. San Francisco: San Francisco Press.Google Scholar
Balhorn, R., Corzett, M.., Allen, M. J., Lee, C., Barbee, T. W. Jr, Koch, J. A., MacGowan, B. J., Matthews, D. L., Mrowka, S. J., Trebes, J. E., McNulty, I., DaSilva, L. B., Gray, J. W., Anderson, E. H., Kern, D.. & Attwood, D. T. (1992). Application of X-rays to the analysis of DNA packaging in mammalian sperm. In Jacobsen & Trebes, 1992 d; 374385.Google Scholar
Barbee, T. W.. & Keith, D. C.. (1978). Synthetic structures layered on the atomic scale. In Workshop on Instrumentation for Synchrotron Radiation Research, vol. Report 78/04 (ed. Winick, H. and Brown, G.), pp. III-36III-45. Stanford Synchrotron Radiation Laboratory.Google Scholar
Barbee, T. W. Jr. (1981). Sputtered layered synthetic microstructure (LSM) dispersion elements. In Attwood & Henke 1981; 131145. Monterey.Google Scholar
Bates, R. H. T.. (1982). Fourier phase problems are uniquely solvable in more than one dimension. I. Underlying theory. Optik 61, 247262.Google Scholar
Benattar, R., ed. (1989). X-ray Instrumentation in Medicine and Biology, Plasma Physics, Astrophysics, and Synchrotron Radiation, vol. 1140. Bellingham, Washington: Society of Photo-Optical Instrumentation Engineers (SPIE).Google Scholar
Bennett, P. M., Foster, G. F., Buckley, C. J.. & Burge, R. E.. (1993). The effect of soft X-radiation on myofibrils. J. Microsc. 172, 109119.CrossRefGoogle ScholarPubMed
Berger, M. J.. & Seltzer, S. M.. (1964). Tables of energy-losses and ranges of electrons and positrons, pp. 205268. Technical Report Publication 1133. Committee on Nuclear Science, National Research Council, National Academy of Sciences, Washington, D.C.Google Scholar
Bigler, E., Polack, F.. & Lowenthal, S.. (1983). Quantitative mapping of atomic species by X-ray absorption spectroscopy and contact microradiography. Nucl. Instrum. Meth. 208, 387392.CrossRefGoogle Scholar
Bilderback, D. H., Hoffman, S. A.. & Thiel, D. J.. (1994). Nanometer spatial resolution achieved in hard X-ray imaging and Laue diffraction experiments. Science 263, 201203.CrossRefGoogle ScholarPubMed
Bionta, R. M., Jankowski, A. F.. & Makowiecki, D. M. (1988). Sputtered-sliced linear zone plates for 8 keV X-rays. In Sayre et al.. 1988a; 142145.Google Scholar
Bjorkholm, J. E., Bokor, J., Eichner, L., Freeman, R. R., Gregus, J., Jewell, T. E., Mansfield, W. M., MacDowell, A. A., Raab, E. L., Silfvast, W. T., Szeto, L. H., Tennant, D. M., Waskiewicz, W. K., White, D. L., Windt, D. L., Wood, O. R. II. & Bruning, J. H.. (1990). Reduction imaging at 14 nm using multilayer-coated optics: printing of features smaller than o-i μm. J. Vac. Sci. Tech. B 8, 15091513.CrossRefGoogle Scholar
Born, M.. & Wolf, E.. (1980). Principles of Optics, 6th ed. Oxford: Pergamon Press.Google Scholar
Botto, R. E., Cody, G. D., Kirz, J., Ade, H., Behal, S.. & Disko, M.. (1994). Selective chemical mapping of coal microheterogeneity by scanning transmission X-ray microscopy. Energy and Fuels 8, 151154.CrossRefGoogle Scholar
Brown, G., Halbach, K., Harris, J.. & Winick, H.. (1983). Wiggler and undulator magnets – a review. Nucl. Instrum. Meth. 208, 65–77.CrossRefGoogle Scholar
Browne, M. T. (1992). Aspects of nanopositioning in stage design for scanning X-ray microscopes. In Michette et al. 1992; 355358.Google Scholar
Buckley, C. J. (1987). The fabrication of gold zone plates and their use in scanning X ray microscopy. Ph.D. Thesis, Department of Physics, King's College, London.Google Scholar
Buckley, C., Rarback, H., Alforque, R., Shu, D., Ade, H., Hellman, S., Iskander, N., Kirz, J., Lindaas, S., McNulty, I., Oversluizen, M., Tang, E., Attwood, D., DiGennaro, R., Howells, M., Jacobsen, C., Vladimirsky, Y., Rothman, S., Kern, D. & Sayre, D. (1989). Soft X-ray imaging with the 35 period undulator at the NSLS. Rev. Scient. Instrum. 60, 24442447.CrossRefGoogle Scholar
Buckley, C. J. (1992 a). Imaging of calcium deposits in cartilage by scanning X-ray microscopy. Bone 13, 100.CrossRefGoogle Scholar
Buckley, C. J., Burge, R. E., Foster, G. F., Ali, S. Y., Scotchford, C. A., Dunsmuir, J. H., Ferguson, S. R. & Rivers, M. L. (1992 b). X-ray imaging of calcium deposits in human cartilage. In Jacobsen & Trebes, 1992d; 363373.Google Scholar
Buckley, C. J., Burge, R. E., Foster, G. F., Ali, S. Y. & Scotchford, C. A. (1992 c). X-ray probe mapping of calcium deposits in articular cartilage. In X-Ray Optics and Microanalysis 1992 (ed. Kenway, P. B., Duke, P. J., Lorimer, G. W., Mulvey, T., Drummond, I. W., Love, G., Michette, A. G., and Stedman, M.) pp. 621626. Bristol: IOP Publishing.Google Scholar
Buckley, C. J., Foster, G. F., Burge, R. E., Ali, S. Y., Scotchford, C. A., Kirz, J. & Rivers, M. L. (1992). Elemental imaging of cartilage by scanning X-ray microscopy. Rev. Scient. Instrum. 63, 588590.CrossRefGoogle Scholar
Buckley, C. J., Downes, S., Khaleque, N., Bellamy, S. J. & Zhang, X. (1994). Mapping the density and mineral phase of calcium in bone at the interface with biomaterials using scanning X-ray microscopy. In Bailey & Garratt-Reed, 1994; 4445.Google Scholar
Buckley, C. J. (1995 a). The measuring and mapping of calcium in mineralised tissues by absorption difference imaging. Rev. Scient. Instrum. 66, 13181321.CrossRefGoogle Scholar
Buckley, C. J., Bellamy, S. J., Zhang, X., Dermody, G. & Hulbert, S. (1995 b). The Nexafs of biological calcium phosphates. Rev. Scient. Instrum. 66, 13221324.CrossRefGoogle Scholar
Burge, R. E. (1993). The interaction of X-rays. In X-ray Science and Technology (ed. Michette, A. G. and Buckley, C. J.), pp. 160206. Bristol: Institute of Physics.Google Scholar
Cabana, C., Magny, P., Nadeau, D., Grondin, G. & Beaudoin, A. (1988). Freezefracture study of the zymogen granule membrane of pancreas: two novel types of intramembrane particles. Eur. J. Cell Biol. 42, 245255.Google Scholar
Capasso, C., Ray-Chaudhury, A. K., Ng, W., Liang, S., Cole, R. K., Wallace, J. P., Cerrina, F., Margaritondo, G., Underwood, J., Kortright, J. B. & Perera, R. C. C. (1991). High resolution X-ray microscopy using an undulator source: photoelectron studies with MAXIMUM. J. Vac. Sci. Tech. 9 A, 12481253.CrossRefGoogle Scholar
Ceglio, N. M., Hawryluk, A. M. & Schattenburg, M. (1983). X-ray phase lens design and fabrication. J. Vac. Sci. Tech. B 1, 12851288.CrossRefGoogle Scholar
Chance, B., Deisenhober, D., Ebashi, S., Goodhead, D. T., Helliwell, J. R., Huxley, H. E., Iizuka, T., Kirz, J., Mitsui, T., Rubenstein, E., Sakabe, N., Sasaki, T., Schmahl, G., Sturhmann, H., Wuthrich, K. & Zaccai, G., eds. (1994). Synchrotron Radiation in the Biosciences. Oxford: Clarendon Press.Google Scholar
Chapman, H., Williams, S. & Jacobsen, C. (1994 a). Imaging of 30 nm gold spheres by dark-field scanning transmission X-ray microscopy. In Bailey & Garratt-Reed, 1994; 5253.Google Scholar
Chapman, H. N. (1994 b). Applications of a CCD detector in a scanning transmission Xray microscope. Rev. Scient. Instrum. 66, 13321334.CrossRefGoogle Scholar
Charalambous, P. S. & Morris, D. (1992). Status of zone plate fabrication at King's College, London. In Michette et al. 1992; 7982.Google Scholar
Charalambous, P. & Firsov, A. (1994). Optimization of the process parameters for the fabrication of high resolution diffraction optical elements. In Aristov & Erko, 1994; 510517.Google Scholar
Cheng, P. C. (1987 a). Recent advances in contact imaging of biological materials. In Cheng & Jan, 1987b; 65104.Google Scholar
Cheng, P. C. & Jan, G. J., eds. (1987 b). X-ray Microscopy: Instrumentation and Biological Applications. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Cheng, P. C., Shinozaki, D. M., Lin, T. H., Newberry, S. P., Sridhar, R., Tarng, W., Chen, M. T. & Chen, L. H. (1992). X-ray shadow projection microscopy and microtomography. In Michette et al. 1992; 184189.Google Scholar
Cinotti, F., Voisin, M. C., Jacobsen, C., Kenney, J. M., Kirz, J., McNulty, I., Rarback, H., Rosser, R. & Shu, D. (1987). Studies of calcium distribution in bone by scanning X-ray microscopy. In Cheng & Jan, 1987b; 311329.Google Scholar
Cody, G. D., Botto, R. E., Ade, H., Behal, S., Disko, M. & Wirick, S. (1995). C-NEXAFS microanalysis and scanning X-ray microscopy of microheterogeneities in a high volatile A bituminous coal. Energy and Fuels 9, 7583.CrossRefGoogle Scholar
Collier, R. J., Burckhardt, C. B. & Lin, L. H. (1971). Optical Holography. New York: Academic Press.Google Scholar
Cosslett, V. E. & Nixon, W. C. (1951). X-ray shadow microscope. Nature 168, 2425.CrossRefGoogle ScholarPubMed
Cosslett, V. E., Engström, A. & Pattee, H. H. Jr., eds. (1957). International Symposium on X-ray Optics and X-ray Microanalysis. New York: Academic Press.Google Scholar
Cosslett, V. E. & Nixon, W. C. (1960). X-ray Microscopy. London: Cambridge University Press.Google Scholar
Cotton, R. A., Dooley, M. D., Fletcher, J. H., Stead, A. D. & Ford, T. W. (1992). Atomic force microscopy employed as the final imaging stage for soft X-ray contact microscopy. In Jacobsen & Trebes, 1992 d; 204212.Google Scholar
Cotton, R. A., Tomie, T., Shimizu, H., Majima, T., Miura, E., Stead, A. D. & Ford, T. W. (1994). A study of the factors affecting the resolution in soft X-ray contact microscopy. In Aristov & Erko, 1994; 450454.Google Scholar
Cramer, S. P., Chen, J., GeorgeS. J., v. S. J., v. Elp, J., Moore, J., Tensch, O., Colaresi, J., Yocum, M., Cullins, O. C. & Chen, C. T. (1992). Soft X-ray spectroscopy of metalloproteins using fluorescence detection. Nucl. Instrum. Meth. Phys. Res. A 319, 285289.CrossRefGoogle Scholar
Dasilva, L. B., Trebes, J. E., Balhorn, R., Mrowka, S., Anderson, E., Attwood, D. T., Barbee, T. W. Jr, Brase, J., Corzett, M., Gray, J., Koch, J. A., Lee, C., Kern, D., London, R. A., Macgowan, B. J., Matthews, D. L. & Stone, G. (1992). X-ray laser microscopy of rat sperm nuclei. Science 258, 269271.CrossRefGoogle Scholar
DaSilva, L. B., Trebes, J. E., Mrowka, S., Barbee, T. W. Jr, Brase, J., Koch, J. A., London, R. A., McGowan, B. J., Matthews, D. L., Minyard, D., Stone, D., Yorkey, T., Anderson, E., Attwood, D. T. & Kern, D. (1992). Demonstration of X-ray microscopy with an X-ray laser operating near the carbon K edge. Opt. Lett. 17, 754756.CrossRefGoogle Scholar
David, C., Medenwaldt, R., Thieme, J., Guttmann, P., Rudolph, D. & Schmahl, G. (1992). Electron beam generated phase zone plates with 30 nm zonewidth for high resolution X-ray microscopy. J. Opt. (Paris) 23, 255258.CrossRefGoogle Scholar
Davis, T. J., Gao, D., Gureyev, T. E., Stevenson, A. W. & Wilkins, S. W. (1995). Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature 373, 595598.CrossRefGoogle Scholar
De Stasio, G., Hardcastle, S., Koranda, S. F., Tonner, B. P., Mercanti, D., Ciotti, M. Teresa, Perfetti, P. & Margaritondo, G. (1993). Photoemission spectromicroscopy of neurons. Phys. Rev. E 47, 21172121.Google Scholar
Devaney, A. J. (1986). Reconstructive tomography with diffracting wavefields. Inverse Problems 2, 161183.CrossRefGoogle Scholar
Di Fabrizio, E., Gentili, M., Grella, L., Baciocchi, M., Krasnoperova, A., Cerrina, F., Yun, W., Lai, B. & Gluskin, E. (1994). High-performance multilevel blazed X-ray microscopy Fresnel zone plates fabricated using X-ray lithography. J. Vac. Sci. Tech. B12, 39793985.CrossRefGoogle Scholar
DiCicco, D. S., Kim, D., Rosser, R. & Suckewer, S. (1992). First stage in the development of a soft-X-ray reflection imaging microscope in the Schwarzschild configuration using a soft X-ray laser at 18·2 nm. Opt. Lett. 17, 157159.CrossRefGoogle ScholarPubMed
Diehl, M. (1994). Imaging properties of the X-ray microscope with a pulsed plasma source. In Aristov & Erko, 1994; 373379.Google Scholar
Dubochet, J., Adrian, M., Chang, J. J., Homo, J.-C., Lepault, J., McDowell, A. W. & Schultz, P. (1988). Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129228.CrossRefGoogle ScholarPubMed
Early, K., Shattenburg, M. L. & Smith, H. I. (1990). Absence of resolution degradation in X-ray lithography for A from 4·5 nm to 0·83 nm. Microelectr. Engin. 11, 317321.CrossRefGoogle Scholar
Engström, A. (1946). Quantitative micro- and histochemical elementary analysis by Roentgen absorption spectrography. Acta Radiol. (Supp.) 63, 1.Google Scholar
Engström, A., Cosslett, V. E. & Pattee, H. H. Jr., eds. (1960). X-ray Microscopy and X-ray Microanalysis. Amsterdam: Elsevier.Google Scholar
Feder, R. (1970). X-ray projection printing of electrical circuit patterns. Technical Report IBM Technical Report TR 22.1065, IBM Components Division, East Fishkill facility, Hopewell Junction, NY.Google Scholar
Feder, R., Sayre, D., Spiller, E., Topalian, J. & Kirz, J. (1976). Specimen replication for electron microscopy using X-rays and X-ray resist. J. Appl. Phys. 47, 11921193.CrossRefGoogle Scholar
Folkard, M. (1992). Radiation damage to cells by ultrasoft X-rays. In Michette et al. 1992; 306312.Google Scholar
Ford, T. W., Page, A. M., Foster, G. F. & Stead, A. D. (1992). Effects of soft X-ray irradiation on cell ultrastructure. In Jacobsen & Trebes, 1992d; 325332.Google Scholar
Ford, T. W., Cotton, R. A., Page, A. M. & Stead, A. D. (1994). The use of soft X-ray microscopy to study the internal ultrastructure of living cells and their cellular organelles. In Aristov & Erko, 1994; 277289.Google Scholar
Foster, G. F., Bennett, P. M., Buckley, C. J. & Burge, R. E. (1994). Structural radiation damage to mammalian myofibrils. In Aristov & Erko, 1994; 246255.Google Scholar
Gilbert, J. R. (1992). Soft X-ray microimaging of whole wet cells. Ph.D. thesis, California Institute of Technology, Pasadena, California.Google Scholar
Gilbert, J. R. & Pine, J. (1992 b). Imaging and etching: soft X-ray microscopy on whole wet cells. In Jacobsen & Trebes 1992d; 402408.Google Scholar
Gilbert, J. R., Pine, J., Kirz, J., Jacobsen, C., Williams, S., Buckley, C. J. & Rarback, H. (1992 c). Soft X-ray absorption imaging of whole wet tissue culture cells. In Michette et al. 1992; 388391.Google Scholar
Giles, J. W. Jr (1969). Image reconstruction from a Fraunhofer X-ray hologram with visible light. J. Opt. Soc. Am. 59, 11791188.CrossRefGoogle Scholar
Glaeser, R. M. (1971). Limitations to significant information in biological electron microscopy as a result of radiation damage. J. Ultrastruct. Res. 36, 466482.CrossRefGoogle ScholarPubMed
Glaeser, R. M. (1975). Radiation damage and biological electron microscopy. In Physical Aspects of Electron Microscopy and Microbeam Analysis (ed. Siegel, B. M. and Beaman, D. R.), pp. 205227. New York: Wiley.Google Scholar
Glaeser, R. M. & Taylor, K. A. (1978). Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: a review. J. Microsc. 112, 127138.CrossRefGoogle ScholarPubMed
Goby, P. (1913). Une application nouvelle des rayons X: la microradiographie. C. R. Acad. Sci., Paris 156, p. 686.Google Scholar
Gölz, P. (1992). Calculations on radiation dosages of biological materials in phase contrast and amplitude contrast X-ray microscopy. In Michette et al. 1992; 313315.Google Scholar
Goncz, K. K., Batson, P., Ciarlo, D., Loo, B. W. Jr. & Rothman, S. S. (1992). An environmental sample chamber for X-ray microscopy. J. Microsc. 168, 101110.CrossRefGoogle Scholar
Goncz, K. K. & Rothman, S. S. (1992). Protein flux across the membrane of single secretion granules. Biochim. Biophys. Ada 1109, 716.CrossRefGoogle ScholarPubMed
Goncz, K. K. (1994). A comprehensive study of the physical properties of isolated zymogen granules using scanning transmission X-ray microscopy. Ph.D. thesis, Department of Biophysics, University of California, Berkeley.Google Scholar
Goncz, K. K., Bersing, R. & Rothman, S. S. (1995). The protein content and morphogenesis of zymogen granules. Cell and Tissue Research. (In the press.)CrossRefGoogle Scholar
Goncz, K. K. & Rothman, S. S. (1995). A trans-membrane pore can account for protein movement across zymogen granule membranes. Biophys. Biochim Ada. (In the press.)CrossRefGoogle Scholar
Goodman, J. W. (1968). An Introduction to Fourier Optics. San Francisco: McGraw-Hill.Google Scholar
Goodman, J. W. (1985). Statistical Optics. New York: John Wiley & Sons.Google Scholar
Greinke, B. & Gölz, P. (1992). Temperature rise of objects in X-ray microscopymeasurements and calculations. In Michette et al. 1992; 316318.Google Scholar
Gutman, G. (1994). High-performance Mo/Si and W/B4C multilayer mirrors for soft X-ray imaging optics. J. X-ray Sci. Tech. 4, 142150.Google Scholar
Guttmann, P., Schneider, G., Robert-Nicoud, M., Niemann, B., Rudolph, D., Thieme, J., Jovin, T. M. & Schmahl, G. (1992 a). X-ray microscopic investigations on giant chromosomes isolated from salivary glands of Chironomus thummi larvae. In Michette et al. 1992; 404407.Google Scholar
Guttmann, P., Schneider, G., Thieme, J., David, C., Diehl, M., Medenwaldt, R., Niemann, B., Rudolph, D. H. & Schmahl, G. A. (1992 b). X-ray microscopy studies with the Göttingen X-ray microscopes. In Jacobsen & Trebes, 1992d; 5261.Google Scholar
Guttmann, P. & Klösgen, B. (1994). X-ray microscopy studies of artificial lipid membranes. In Aristov & Erko, 1994; 217229.Google Scholar
Haddad, W. S., McNulty, I., Trebes, J. E., Anderson, E. H., Levesque, R. A. & Yang, L. (1994). Ultra high resolution X-ray tomography. Science 266, 12131215.CrossRefGoogle Scholar
Haddad, W. S., McNulty, I., Trebes, J. E., Anderson, E. H., Yang, L. & Brase, J. M. (1994 b). Demonstration of ultra-high-resolution soft X-ray tomography using a scanning transmission X-ray microscope. In Bailey & Garratt-Reed, 1994; 312313.Google Scholar
Haelbich, R.-P. (1980). A scanning ultrasoft X-ray microscope with multilayer coated reflection optics: first test with synchrotron radiation around 60 ev photon energy. In Scanned Image Microscopy (ed. Ash, E. A.), pp. 413433. London: Academic Press.Google Scholar
Haelbich, R.-P., Staehr, W. & Kunz, C. (1980 b). A scanning ultrasoft X-ray microscope with large aperture reflection optics for use with synchrotron radiation. In Parsons 1980; 148157.Google Scholar
Hall, T. A., Rockert, H. O. E. & Saunders, R. L. Dec. (1972). X-ray Microscopy in Clinical and Experimental Medicine. Springfield, Illinois: C. C. Thomas.Google Scholar
Hare, A. R. & Morrison, G. R. (1994). Near-field soft X-ray diffraction modelled by the multislice method. J. Mod. Opt. 41, 3148.CrossRefGoogle Scholar
Hatzakis, M. (1969). Electron resists for microcircuit and mask production. J. Electrochem. Soc. 116, 10331037.CrossRefGoogle Scholar
Hayes, M. H. (1982). The reconstruction of a multidimensional sequence from the phase or magnitude of its fourier transform. IEEE Transactions on Acoustics and Speech Signal Processing ASSP-30, 140154.CrossRefGoogle Scholar
Head, A. K. (1957). The two-mirror aplanat. Proc. Phys. Soc. (Lond.) B 70, 945949.CrossRefGoogle Scholar
Hegerl, R. & Hoppe, W. (1976). Influence of electron noise on three-dimensional image reconstruction. Z. Naturf. 31 a, 17171721.CrossRefGoogle Scholar
Heitler, W. (1954). The Quantum Theory of Radiation. New York: Dover.Google Scholar
Henderson, R. (1992). Image contrast in high-resolution electron microscopy of biological macromolecules: TMV in ice. Ultramicroscopy 46, 118.CrossRefGoogle ScholarPubMed
Henke, B. L. & DuMond, J. W. M. (1955). Submicroscopic structure determination by long wavelength X-ray diffraction. J. Appl. Phys. 26, 903917.CrossRefGoogle Scholar
Henke, B. L. (1981). Low energy X-ray interactions: photoionization, scattering, specular and Bragg reflection. In Attwood & Henke, 1981, 146155.Google Scholar
Henke, B. L., Gullikson, E. M. & Davis, J. C. (1993). X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. Atomic Data and Nuclear Data Tables 54, 181342.CrossRefGoogle Scholar
Henke, B. L. (1994). The data set of Henke et al. (Henke et al. 1993) can be obtained on Internet using anonymous ftp to X-rayi.physics.sunysb.edu with cd pub/henke, or by WWW access to http://X-rayi.physics.sunysb.edu/index.htmlGoogle Scholar
Hilkenbach, R. (1992). Experiments for the construction of sputtered sliced zone plates. In Michette et al. 1992; 9497.Google Scholar
Hoover, R. B., Baker, P. C., Shealy, D. L., Gore, D. B., Walker, A. B. C. Jr., Barbee, T. W. Jr. & Kerstetter, T. (1993). Imaging Schwarzschild multilayer X-ray microscope. In Multilayer and Grazing Incidence X-ray/EUV Optics for Astronomy and Projection Lithography, vol. 1742 (ed. Hoover, R. B. and Walker, A. B.), pp. 660673. Society of Photo-Optical Instrumentation Engineers (SPIE).CrossRefGoogle Scholar
Horikawa, Y., Nagai, K., Mochimaru, S. & Iketaki, Y. (1993). A compact Schwarzschild soft X-ray microscope with a laser-produced plasma source. J. Microsc. 172, 189194.CrossRefGoogle Scholar
Horowitz, P. & Howell, J. A. (1972). A scanning X-ray microscope using synchrotron radiation. Science 178, 608611.CrossRefGoogle ScholarPubMed
Horowitz, P. (1978). Some experiences with X-ray and proton microscopes. In Short Wavelength Microscopy (Annals of the New York Academy of Sciences), vol. 306 (ed. Parsons, D. F.), pp. 203222. New York.Google Scholar
Howells, M. R. & Kirz, J. (1983). Coherent soft X-rays in high resolution imaging. In Free Electron Generation of Extreme Ultraviolet Coherent Radiation, vol. 118 (ed. Madey, J. M. J. and Pellegrini, C.), pp. 8595, New York: American Institute of Physics.Google Scholar
Howells, M., Kirz, J. & Sayre, D. (1985). Proposal for a 4·1 keV submicron microprobe at the 6 GeV ring. In Report of the workshop on the scientific case for a 6 GeV synchrotron source, pp. II-29II-31, Argonne, Illinois: Argonne National Laboratory.Google Scholar
Howells, M., Kirz, J., Sayre, D. & Schmahl, G. (1985). Soft-X-ray microscopes. Physics Today 38, 2232.CrossRefGoogle Scholar
Howells, M., Jacobsen, C., Kirz, J., Feder, R., McQuaid, K. & Rothman, S. (1987). X-ray holograms at improved resolution: a study of zymogen granules. Science 238, 514517.CrossRefGoogle ScholarPubMed
Howells, M. R. (1990 a). Soft X-ray imaging for the life sciences. In Biophysics and Synchrotron Radiation (ed. Hasnain, S. S.), pp. 295329. Chichester: Ellis Horwood. Also available as Lawrence Berkeley Laboratory report LBL-27420.Google Scholar
Howells, M. R., Jacobsen, C., Kirz, J., McQuaid, K. & Rothman, S. S. (1990 b). Progress and prospects in soft X-ray holographic microscopy. In Modern Microscopies (ed. Duke, P. J. and Michette, A. G.), pp. 119132. New York: Plenum.CrossRefGoogle Scholar
Howells, M. R., Kirz, J. & Sayre, D. (1991). X-ray microscopes. Scient. Am. 264 (2), 8894.CrossRefGoogle ScholarPubMed
Howells, M. R., Burge, R., Buckley, C. J., Miller, A., Morrison, G., Rudolph, D., Schmahl, G., Thieme, J. & Vollbrecht, M. (1992). Conceptional design for an X-ray microscopy facility at the ESRF. Technical report, European Synchrotron Radiation Facility, Grenoble, France.Google Scholar
Howells, M. R., Jacobsen, C. J. & Lindaas, S. (1994). X-ray holographic microscopy using the atomic-force microscope. In Aristov & Erko, 1994; 413427.Google Scholar
Hubbell, J. H., Gimm, H. A. & Øverbø, I. (1980). Pair, triplet, and total atomic cross sections (and mass attenuation coefficients) for 1 MeV-100 GeV photons in elements Z = 1−100. J. Phys. Chem. Ref. Data 9, 10231147.CrossRefGoogle Scholar
Irtel von Brenndorff, A., Moronne, M. M., Larabell, C., Selvin, P. & Meyerilse, W. (1994). Soft X-ray stimulated high resolution luminescence microscopy. In Aristov & Erko, 1994; 337343.Google Scholar
Isaacson, M. S. (1976). Specimen damage in the electron microscope. In Principles and Techniques of Electron Microscopy, vol. 7 (ed. Hayat, M. A.), pp. 178. New York: Van-Nostrand Publishing.Google Scholar
Jackson, J. D. (1962). Classical Electrodynamics. New York: John Wiley & Sons.Google Scholar
Jackson, J. D. (1975). Classical Electrodynamics, znded. New York: John Wiley & Sons.Google Scholar
Jacobsen, C., Kenney, J., Kirz, J., Rosser, R., Cinotti, F., Rarback, H. & Pine, J. (1987). Quantitative imaging and microanalysis with a scanning soft X-ray microscope. Phys. Med. Biol. 32, 431437.CrossRefGoogle ScholarPubMed
Jacobsen, C. (1990 a). X-ray holography: a history. In Shinohara et al. 1990 b; 167177. Also Japan Scientific Societies Press, Tokyo.Google Scholar
Jacobsen, C., Howells, M., Kirz, J. & Rothman, S. (1990). X-ray holographic microscopy using photoresists. J. Opt. Soc. Am. A7, 18471861.CrossRefGoogle Scholar
Jacobsen, C., Williams, S., Anderson, E., Browne, M. T., Buckley, C. J., Kern, D., Kirz, J., Rivers, M. & Zhang, X. (1991). Diffraction-limited imaging in a scanning transmission X-ray microscope. Optics Comm. 86, 351364.CrossRefGoogle Scholar
Jacobsen, C. (1992 a). Making soft X-ray microscopy harder: considerations for sub 0·1 μm resolution imaging at ∼ 4 Å wavelengths. In Michette et al. 1992; 274277.Google Scholar
Jacobsen, C., Kirz, J. & Williams, S. (1992). Resolution in soft X-ray microscopes. Ultramicroscopy 47, 5579.CrossRefGoogle Scholar
Jacobsen, C., Lindaas, S., Oehler, V., Williams, S. P., Wirick, S., Zhang, X., Guo, S. & Spector, I. (1992 c). Experiments in scanning luminescence X-ray microscopy. In Jacobsen & Trebes, 1992d; 223231.Google Scholar
Jacobsen, C. & Trebes, J., eds. (1992 d). Soft X-ray Microscopy, vol. 1741. Bellingham, Washington: Society of Photo-Optical Instrumentation Engineers (SPIE).Google Scholar
Jacobsen, C. & Williams, S. (1992). X-ray microscopy and holography with third generation sources. In Optics for High-Brightness Synchrotron Radiation Beamlines, vol. 1740 (ed. Arthur, J.), pp. 108116. Society of Photo-Optical Instrumentation Engineers (SPIE).CrossRefGoogle Scholar
Jacobsen, C., Lindaas, S., Williams, S. & Zhang, X. (1993). Scanning luminescence X-ray microscopy: imaging fluorescence dyes at suboptical resolution. J. Microsc. 172, 121129.CrossRefGoogle Scholar
Jacobsen, C., Anderson, E., Chapman, H., Kirz, J., Lindaas, S., Rivers, M., Wang, S., Williams, S., Wirick, S. & Zhang, X. (1994 a). The X-iA scanning transmission X-ray microscope: optics and instrumentation. In Aristov & Erko, 1994; 304321.Google Scholar
Jacobsen, C. & Williams, S. (1994). Contrast and dose for ice-embedded biological specimens in electron and X-ray microscopy. (In preparation.)Google Scholar
James, R. W. (1982). The Optical Principles of the Diffraction of X-rays. Woodbridge, Connecticut: Ox Bow Press. Originally published as The Crystalline State, vol. II, ed. Bragg, L. (1948).Google Scholar
Jochum, L. (1992). The validity of the Born approximation for the imaging of 3-D objects in X-ray microscopy. In Michette et al. 1992; 281283.Google Scholar
Jochum, L. & Meyer-Ilse, W. (1994). Partially coherent image formation with X-ray microscopes. Appl. Opt. (submitted.)Google Scholar
Joy, R. T. (1973). The electron microscopical observation of aqueous biological specimens. In Advances in Electron and Optical Microscopy, vol. 5 (ed. Barer, R. and Cosslett, V. E.), pp. 297352. London: Academic Press.Google Scholar
Joyeux, D., Lowenthal, S., Polack, F. & Bernstein, A. (1988 a). X-ray microscopy by holography at Lure. In Sayre et al. 1988a; 246252.Google Scholar
Joyeux, D. & Polack, F. (1988 b). Progress in optical reconstruction of submicron X-ray holograms. In OSA Proceedings on Short Wavelength Coherent Radiation: Generation and Applications, vol. 2 (ed. Falcone, R. W. and Kirz, J.), pp. 295302. Washington, D.C.: Optical Society of America.CrossRefGoogle Scholar
Joyeux, D., Polack, F. & Mercier, R. (1989). Principle of a ‘reconstruction microscope’ for high resolution X-ray holography. In Benattar, 1989; 399405.CrossRefGoogle Scholar
Kagoshima, Y., Aoki, S., Kakuchi, M., Sekimoto, M., Maezawa, H., Hyodo, K. & Ando, M. (1989). Soft X-ray microscope at the undulator beamline of the Photon Factory. Rev. Scient. Instrum. 60, 24482451.CrossRefGoogle Scholar
Kagoshima, Y., Miyahara, T., Ando, M. & Aoki, S. (1992). Present status and future plan for X-ray microscopy at the Photon Factory. Rev. Scient. Instrum. 63, 605608.CrossRefGoogle Scholar
Kenney, J. M., Jacobsen, C., Kirz, J., Rarback, H., Cinotti, F., Thomlinson, W., Rosser, R. & Schidlovsky, G. (1985). Absorption microanalysis with a scanning soft X-ray microscope: mapping the distribution of calcium in bone. J. Microsc. 138, 321328.CrossRefGoogle Scholar
Kenney, J. M., Morrison, G. R., Browne, M. T., Buckley, C. J., Burge, R. E., Cave, R. C., Charalambous, P. S., Duke, P. D., Hare, A. R., Hills, C. P. B., Michette, A. G., Ogawa, K. & Rogoyski, A. M. (1989). Evaluation of a scanning transmission X-ray microscope using undulator radiation at the SERC Daresbury Laboratory. J. Phys. E 22, 234238.Google Scholar
Kern, D., Coane, P., Acosta, R., Chang, T. H. P., Feder, R., Houzego, P., Molzen, W., Powers, J., Speth, A., Viswanathan, R., Kirz, J., Rarback, H. & Kenney, J. (1984). Electron beam fabrication and characterization of Fresnel zone plates for soft X-ray microscopy. In Science with Soft X-Rays, vol. 447 (ed. Himpsel, F. J. and Klaffky, R. W.), pp. 204213. Bellingham, Washington: Society of Photo-Optical Instrumentation Engineers (SPIE).CrossRefGoogle Scholar
Kinjo, Y., Shinohara, K., Ito, A., Nakano, H., Watanabe, M., Horiike, Y., Kikuchi, Y., Richardson, M. C. & Tanaka, K. A. (1994). Direct imaging in a water layer of human chromosome fibres composed of nucleosomes and their higher order structures by laser plasma X-ray contact microscopy. J. Micros. 176, 6374.CrossRefGoogle Scholar
Kinoshita, K., Matsumura, T., Inagaki, Y., Hirai, N., Sugiyama, M., Kihara, H., Watanabe, N., Shimanuki, Y. & Yagashita, A. (1992). The electronic zooming TV readout system for an X-ray microscope. In Michette et al. 1992; 335337.CrossRefGoogle Scholar
Kirkpatrick, P. & Baez, A. V. (1948). Formation of optical images by X-rays. J. Opt. Soc. Am. 38, 766774.CrossRefGoogle ScholarPubMed
Kirkpatrick, P. (1949). The X-ray microscope. Scient. Am.1 180(3), 4447.CrossRefGoogle ScholarPubMed
Kirtley, S. M., Mulluns, O. C., Chen, J., Van Elp, J., George, S. J., Chen, C. T., O'Halloran, T. & Cramer, S. P. (1992). Nitrogen chemical structure in DNA and related molecules by X-ray absorption spectroscopy. Biochim. Biophys. Acta 1132, 249254.CrossRefGoogle ScholarPubMed
Kirz, J. (1974). Phase zone plates for X rays and the extreme UV. J. Opt. Soc. Am. 64, 301309.CrossRefGoogle Scholar
Kirz, J. & Sayre, D. (1980). Soft X-ray microscopy of biological specimens. In Synchrotron Radiation Research (ed. Winick, H. and Doniach, S.), pp. 277322. New York: Plenum Press.CrossRefGoogle Scholar
Kirz, J. & Rarback, H. (1985). Soft X-ray microscopes. Rev. Scient. Instrum. 56, 113.CrossRefGoogle Scholar
Kondratenko, A. M. & Skrinsky, A. N. (1977). Use of radiation of electron storage rings in X-ray holography of objects. Optics Spectrosc. 42, 189192.Google Scholar
Koster, A. J., Braunfeld, M. B., Fung, J. C., Abbey, C. K., Han, K. F., Liu, W., Chen, H., Sedat, J. W. & Agard, D. A. (1993). Towards automatic three dimensional imaging of large biological structures using intermediate voltage electron microscopy. Microsc. Soc. Am. Bull. 23, 176188.Google Scholar
Kozhevnikov, I. V., Fedorenko, A. I., Kondratenko, V. V., Pershin, Y., Yulin, S. A., Zubarev, E. N., Padmore, H. A., Cheung, K. C., Van Dorssen, G. E., Roper, M., Balakireva, L. L., Serov, R. V. & Vinogradov, A. V. (1994). Synthesis and measurement of normal incidence X-ray multilayer mirrors optimized for a photon energy of 390 eV. Nucl. Instrum. Meth. Phys. Res. A 345, 594603.CrossRefGoogle Scholar
Krasnoperova, A. A., Xiao, J., Cerrina, F., Di Fabrizio, E., Luciani, L., Figliomeni, M., Gentili, M., Yun, W., Lai, B. & Gluskin, E. (1993). Fabrication of hard X-ray phase zone plate by X-ray lithography. J. Vac. Set. Tech. B 11, 25882591.Google Scholar
Krause, M. O. (1979). Atomic radiative and radiationless yields for K and L shells. J. Phys. Chem. Ref. Data 8, 307327.CrossRefGoogle Scholar
Krinsky, S. (1983). Undulators as sources of synchrotron radiation. IEEE Transactions: Nuclear Science, NS-30, 30783082.Google Scholar
Ladd, W. A., Hess, W. M. & Ladd, M. W. (1956). High-resolution microradiography. Science 123, 370371.CrossRefGoogle ScholarPubMed
Lai, B., Yun, W. B., Legnini, D., Xiao, Y., Chrzas, J., Viccaro, P. J., White, V., Bajikar, S., Denton, D., Cerrina, F., Difabrizio, E., Gentili, M., Grella, L. & Baciocchi, M. (1992). Hard X-ray phase zone plate fabricated by lithographic techniques. Appl. Phys. Lett. 61, 18771879.CrossRefGoogle Scholar
Lamvik, M. K. (1991). Radiation damage in dry and frozen hydrated organic material. J. Microsc. 161, 171181.CrossRefGoogle Scholar
Langmore, J. P. & Smith, M. F. (1992). Quantitative energy-filtered electron microscopy of biological molecules in ice. Ultramicroscopy 46, 349373.CrossRefGoogle ScholarPubMed
Lei, X., Zhao, Y., Wang, M. & Xie, X. (1992). Scanning X-ray microscope project at Hefei. In Jacobsen & Trebes, 1992d 104111.Google Scholar
Lin, T. H., Wang, G. & Cheng, P. C. (1992). A multiple cone-beam projection algorithm for X-ray microtomography. In Michette et al. 1992; 296300.Google Scholar
Lindaas, S., Jacobsen, C. J., Howells, M. R. & Frank, K. (1992). Development of a linear scanning-force microscope for X-ray Gabor hologram readout. In Jacobsen & Trebes, 1992d; 213222.Google Scholar
Lindaas, S. A. (1994). X-ray Gabor holography using a scanning force microscope. Ph.D. thesis, Department of Physics, State University of New York at Stony Brook.Google Scholar
Lipson, H. & Taylor, C. A. (1958). Fourier Transforms and X-Ray Diffraction. London: G. Bell and Sons.Google Scholar
London, R. A., Rosen, M. D. & Trebes, J. E. (1989). Wavelength choice for soft X-ray laser holography of biological samples. Appl. Optics 28, 33973404.CrossRefGoogle ScholarPubMed
London, R., Matthews, D. & Suckewer, S., eds. (1992). Applications of X-ray Lasers, NTIS CONF-9206170. Washington, D.C.; National Technical Information Service.Google Scholar
London, R. A., Trebes, J. E. & Jacobsen, C. (1992 b). Role of X-ray induced damage in biological microimaging. In Jacobsen & Trebes, 1992d; 333340.Google Scholar
Lonsdale, K., ed. (1962). International Tables for X-ray Crystallography. Birmingham: International Union of Crystallography.Google Scholar
Loo, B. W. Jr., Williams, S., Lin, W. T., Love, W. H., Meizel, S. & Rothman, S. S. (1992 a). High resolution X-ray stereomicroscopy: true three-dimensional imaging of biological samples. In Jacobsen and Trebes, 1992d; 392396.CrossRefGoogle Scholar
Loo, B. W. Jr., Williams, S., Meizel, S. & Rothman, S. S. (1992 b). X-ray stereomicroscopy: high resolution 3-D imaging of human spermatozoa in aqueous suspension with natural-contrast. J. Microsc. 166, RP5–RP6.CrossRefGoogle Scholar
Maser, J. & Schmahl, G. (1992). Coupled wave description of the diffraction by zone plates with high aspect ratios. Optics Comm. 89, 355362.CrossRefGoogle Scholar
Matsumura, T., Kinoshita, K., Shimanuki, Y. & Kihara, H. (1994). Experimental evaluation of the semitransparent soft X-ray photocathodes and observation of various samples with the X-ray zooming tube using the photocathodes. In Aristov & Erko, 1994; 461468.Google Scholar
Matthews, D. L., Hagelstein, P. L., Rosen, M. D., Eckart, M. J., Ceglio, N. M., Hazi, A. U., Medecki, H., Macgowan, B. J., Trebes, J. E., Whitten, B. L., Campbell, E. M., Hatcher, C. W., Hawryluck, A. M., Kauffman, R. L., Pleasance, L. D., Rambach, G., Schofield, J. H., Stone, G. & Weaver, T. A. (1985). Demonstration of a soft X-ray amplifier. Phys. Rev. Lett. 54, 110113.CrossRefGoogle ScholarPubMed
McNulty, I., Kirz, J., Jacobsen, C., Anderson, E., Kern, D. & Howells, M. (1992a). High-resolution imaging by Fourier transform X-ray holography. Science 256, 10091012.CrossRefGoogle ScholarPubMed
McNulty, I., Trebes, J. E., Brase, J. M., Yorkey, T. J., Levesque, R., Szoke, H., Anderson, E. H., Jacobsen, C. & Kern, D. (1992b). Experimental demonstration of high resolution three-dimensional X-ray holography. In Jacobsen & Trebes, 1992d; 7884.Google Scholar
Medenwaldt, R. (1994a). Development of X-ray microscopy in Aarhus and ultra thin foil production to speed up high resolution X-ray optics. Ph.D. thesis, Aarhus University.Google Scholar
Medenwaldt, R., David, C, Hertel, N. & Uggerhøj, E. (1994b). The Aarhus X-ray microscope. In Aristov & Erko, 1994; 322326.Google Scholar
Meyer-Ilse, W., Koike, M., Beguiristain, H. R., Maser, J. & Attwood, D. T. (1992). X-ray microscopy resource center at the Advanced Light Source. In Jacobsen & Trebes, 1992d; 112115.Google Scholar
Meyer-Ilse, W., Wilheinc, T. & Guttmann, P. (1993). Thinned back-illuminated CCD for X-ray microscopy. In Charge-Coupled Devices and Solid State Optical Sensors III, vol. 1900 (ed. Blouke, M. M.), Society of Photo-Optical Instrumentation Engineers (SPIE). (1993).Google Scholar
Meyer-Ilse, W., Attwood, D. & Koike, M. (1994a). The X-ray microscopy resource Center at the Advanced Light Source. In Chance et al. 1994; 624636.Google Scholar
Meyer-Ilse, W., Moronne, M., Magowan, C., Medecki, H., Hearst, J., Attwood, D., Guttmann, P., Schneider, G. & Wilhein, T. (1994b). Techniques and applications of X-ray microscopy. In Aristov & Erko, 1994; 297303.Google Scholar
Michette, A. G. (1986). Optical Systems for Soft X Rays. New York: Plenum.CrossRefGoogle Scholar
Michette, A. G. (1988a). X-ray microscopy. Rep. Prog. Phys. 51, 15251606.CrossRefGoogle Scholar
Michette, A. G., Burge, R. E., Charalambous, P., Hills, C. P. B. & Rogoyski, A. M. (1988b). The potential of laser-plasma sources in scanning X-ray microscopy. In Sayre et al. 1988 a.Google Scholar
Michette, A. G., Morrison, G. R. & Buckley, C. J., eds. (1992). X-ray Microscopy III (Springer Series in Optical Sciences, vol. 67). Berlin: Springer-Verlag.CrossRefGoogle Scholar
Michette, A. G., Turcu, I. C. E., Schulz, M. S., Browne, M. T., Morrison, G. R., Fluck, P., Buckley, C. J. & Foster, G. F. (1993). Scanning X-ray microscopy using a laser-plasma source. Rev. Scient. Instrum. 64, 14781482.CrossRefGoogle Scholar
Michette, A., Fluck, P., Pfauntsch, S. J., Buckley, C. J., Fedoseyevs, R., Bobkowski, R. & Turku, I. C. E. (1994). Laser plasma sources for X-ray microscopy. In Aristov & Erko, 1994; 354363.Google Scholar
Mochimaru, S., Masui, S., Horikawa, Y., Yamada, H. & Kihara, H. (1994). The Schwarzschild soft X-ray microscope using the compact SR-ring ‘Aurora’. In Aristov & Erko, 1994; 327331.Google Scholar
Moewes, A., Zhang, H., Kunz, C., Pretorius, M., Sievers, H., Storjohann, I. & Voss, J. (1994). Scanning luminescence microscopy at HASYLAB/DESY. In Aristov & Erko, 1994; 344353.Google Scholar
Moronne, M., Larabell, C., Selvin, P. & Von Brenndorff, A. I. (1994). Development of fluorescent probes for X-ray microscopy. In Bailey & Garratt-Reed, 1994; 4849.Google Scholar
Morrison, G. R. (1989). Some aspects of quantitative X-ray microscopy. In Benattar, 1989; 4149.Google Scholar
Morrison, G. R. (1992 a). Phase contrast and darkfield imaging in X-ray microscopy. In Jacobsen & Trebes, 1992d; 186193.Google Scholar
Morrison, G. R. & Browne, M. T. (1992). Darkfield imaging with the scanning transmission X-ray microscope. Rev. Scient. Instrum. 63, 611614.CrossRefGoogle Scholar
Morrison, G. R., Browne, M. T., Beelen, T. P. M. & Van Garderen, H. F. (1992 c). X-ray imaging of aggregation in silica and zeolitic precursors. In Jacobsen & Trebes, 1992d; 312315.Google Scholar
Morrison, G. R., Browne, M. T., Buckley, C. J., Burge, R. E., Charalambous, P. S., Foster, G. F., Michette, A. G., Morris, D., Palmer, J. R. & Slark, G. E. (1992 c). Recent progress with the King's College scanning transmission X-ray microscope. In Michette et al. 1992; 139142.Google Scholar
Morrison, G. R. (1994 c). X-ray imaging with a configured detector. In Aristov & Erko, 1994; 478486.Google Scholar
Morrison, G. R., Browne, M. T., Beelen, T. P. M., Van Garderen, H. F. & Anastasi, P. A. F. (1994 b). Transmission X-ray imaging of hydrated silica gels. In Aristov & Erko, 1994; 269273.Google Scholar
Mott, N. F. & Massey, H. S. W. (1949). The Theory of Atomic Collisions, Oxford: Oxford University Press.Google Scholar
Murakami, K., Oshino, T., Nakamura, H., Ohtani, M. & Nagata, H. (1992). Normal-incidence X-ray microscope with Carbon Kα radiation with 0·5 μm resolution. Jap. J. Appl. Phy. 31, L1500L1502.CrossRefGoogle Scholar
Myers, O. E. Jr. (1951). Studies of transmission zone plates. Am.J. Phys. 19, 359365.CrossRefGoogle Scholar
Nasa, . (1993). Nasa inventor of the year: Richard B. Hoover. NASA Tech Briefs 17,1415.Google Scholar
Neff, W. J., Lebert, R. & Richter, F. (1988). Plasmafocus as radiation source for soft X-rays. In Sayre et al. 1988a; 2229.Google Scholar
Newberry, S. P. & Summers, S. E. (1956). The General Electric shadow X-ray microscope. In Proceedings of the International Conference on Electron Microscopy (1954), pp. 305307. London: Royal Microscopical Society.Google Scholar
Newberry, S. P. (1987 c). History of X-ray microscopy. In Cheng & Jan, 1987b; 346360.Google Scholar
Newberry, S. P. (1987 c). The shadow projection type of X-ray microscope. In Cheng & Jan, 1987b; 126141.Google Scholar
Newberry, S. P. (1992). Time lapse X-ray microscopy by shadow projection microscopy. In Michette et al. 1992; 367369.Google Scholar
Ng, W., Ray-Choudhury, A. K., Liang, S. H., Welnak, J., Wallace, J. P., Singh, S., Capasso, C., Cerrina, F., Margaritondo, G., Underwood, J. H., Kortright, J. B. & Perera, R. C. C. (1992). New results from MAXIMUM: an X-ray scanning photoemission microscope. In Jacobsen & Trebes, 1992d; 296305.Google Scholar
Niemann, B., Rudolph, D. & Schmahl, G. (1974). Soft X-ray imaging zone plates with large zone numbers for microscopic and spectroscopic applications. Optics Comm. 12, 160163.CrossRefGoogle Scholar
Niemann, B., Rudolph, D. & Schmahl, G. (1976). X-ray microscopy with synchrotron radiation. Appl. Optics, 15, 18831884.CrossRefGoogle ScholarPubMed
Niemann, B., Rudolph, D. & Schmahl, G. (1983). The Göttingen X-ray microscopes. Nucl. Instrum. Meth. Phys. Res. 208, 367372.CrossRefGoogle Scholar
Niemann, B. (1987). The Göttingen scanning X-ray microscope. In Soft X-ray Optics and Technology, vol. 733 (ed. Koch, E.-E. and Schmahl, G.), pp. 422427. Bellingham, Washington: Society of Photo-Optical Instrumentation Engineers (SPIE).Google Scholar
Niemann, B., Guttmann, P., Hilkenbach, R., Thieme, J. & Meyer-Ilse, W. (1988). The Göttingen scanning X-ray microscope. In Sayre et al. 1988a; 209215.Google Scholar
Niemann, B., Rudolph, D., Schmahl, G., Diehl, M., Thieme, J., Meyer-Ilse, W., Neff, W., Holz, R., Lebert, R., Richter, F. & Herziger, G. (1990). An X-ray microscope with a plasma X-ray source. Optik 84, 3536.Google Scholar
Niemann, B. (1992). X-ray microscopy with the Göttingen scanning X-ray microscope at 2·4 nm. In Michette et al. 1992; 143146.Google Scholar
Niemann, B., Schneider, G., Guttmann, P., Rudolph, D. & Schmahl, G. (1994). The new Göttingen X-ray microscope with object holder in air for wet specimens. In Aristov & Erko, 1994; 6675.Google Scholar
Niemeyer, J., Thieme, J. & Guttmann, P. (1994). Colloidal systems in the soil investigated by X-ray microscopy. In Aristov & Erko, 1994; 164170.Google Scholar
Nixon, W. C. (1955). High resolution X-ray projection microscopy. Proceedings of the Royal Society A232, 475485.Google Scholar
Oehler, V., Fu, J., Jacobsen, C., Mangel, W., McGrath, W., Williams, S. & Zhang, X. (1994). Short-term radiation effects on cultured cells studied using X-ray microscopy. (In preparation.)Google Scholar
Okada, S. (1970). Cells. In Radiation Biochemistry, vol. I (ed. Altman, K. I., Gerber, G. B., and Okada, S.). New York: Academic Press.Google Scholar
Palmer, J. R. & Morrison, G. R. (1992 c). Differential phase contrast imaging in X-ray microscopy. In Michette et al. 1992; 278280.Google Scholar
Palmer, J. R. & Morrison, G. R. (1992 c). The use of avalanche photodiodes for the detection of soft X-rays. Rev. Scient. Instrum. 63, 828831.CrossRefGoogle Scholar
Parsons, D. F. & Matricardi, V. R. (1974). Environmental wet cells. In High Voltage Electron Microscopy: Proceedings of the Third International Conference (ed. Swann, P. R., Humphreys, C.J. and Goringe, M. J.), pp. 396402. London: Academic Press.Google Scholar
Parsons, D. F., ed. (1980). Ultrasoft X-ray Microscopy: Its Application to Biological and Physical Sciences (Annals of the New York Academy of Sciences), volume 342. New York.Google Scholar
Pattee, H. H. Jr., Cosslett, V. E. & Engström, A., eds. (1963). X-ray Optics and X-ray Microanalysis, New York: Academic Press.Google Scholar
Paulson, J. R. & Laemmli, U. K. (1977). The structure of histone-depleted metaphase chromosomes. Cell 12, 817828.CrossRefGoogle ScholarPubMed
Pellegrini, C., Rosenzweig, J., Nuhn, H.-D., Pianetta, P., Tatchyn, R., Winick, H., Bane, K., Morton, P., Raubenheimer, T., Seeman, J., Halbach, K., Kim, K.-J. & Kirz, J. (1993). A 2–4 nm high power FEL on the SLAC linac. Nucl. Instrum. Meth. Phys. Res. A 331, 223227.CrossRefGoogle Scholar
Pianetta, P., Lindau, I., King, P. L., Keenlyside, M., Knapp, G. & Browning, R. (1989). Core-level photoelectron microscopy with synchrotron radiation. Rev. Scient. Instrum. 60, 16861689.CrossRefGoogle Scholar
Pine, J. & Gilbert, J. (1992). Live cell specimens for X-ray microscopy. In Michette et al. 1992; 384387.Google Scholar
Polack, F. & Lowenthal, S. (1981). Photoelectron microscope for X-ray microscopy and microanalysis. Rev. Scient. Instrutn. 52, 207212.CrossRefGoogle Scholar
Polack, F., Lowenthal, S., Phalippou, D. & Fournet, P. (1988). First images with the soft X-ray image converting microscope at Lure. In Sayre et al. 1988a; 220227.Google Scholar
Polack, F. & Joyeux, D. (1994). Soft X-ray interferential scanning microscopy: a feasibility assessment. In Aristov & Erko, 1994; 432437.Google Scholar
Pouvelle, B., Spiegel, R., Hsiao, L., Howard, R. J., Morris, R. L., Thomas, A. P. & Taraschi, T. F. (1991). Direct access to serum by intraerythrocytic malaria parasites. Nature 353, 7375.CrossRefGoogle ScholarPubMed
Raju, M. R., Carpenter, S. G., Chmielewski, J. J., Schillaci, M. E., Wilder, M. E., Freyer, J. P., Johnson, N. F., Schor, P. L., Sebring, R. J. & Goodhead, D. T. (1987). Radiobiology of ultrasoft X-rays. Radiat. Res. 110, 396412.CrossRefGoogle ScholarPubMed
Ranwez, F. (1896). Application de la photographie par les rayons Röntgen au recherche analytiques des matieres vegetales. C. R. Acad. Sci., Paris 122, 841842.Google Scholar
Rarback, H. M. (1983). The development of a scanning soft X-ray microscope. Ph.D. thesis, Department of Physics, State University of New York at Stony Brook.Google Scholar
Rarback, H., Kenney, J. M., Kirz, J., Howells, M. R., Chang, P., Coane, P. J., Feder, R., Houzego, P. J., Kern, D. P. & Sayre, D. (1994). Recent results from the Stony Brook scanning microscope. In Schmahl & Rudolph, 1984a; 203215.Google Scholar
Rarback, H., Buckley, C., Ade, H., Camilo, F., Digennaro, R., Hellman, S., Howells, M., Iskander, N., Jacobsen, C., Kirz, J., Krinsky, S., Lindaas, S., McNulty, I., Oversluizen, M., Rothman, S., Sayre, D., Sharnoff, M. & Shu, D. (1990). Coherent radiation for X-ray imaging – the soft X-ray undulator and the X1A beamline at the NSLS. J. X-ray Sci. Tech. 2, 274296.Google ScholarPubMed
Reimer, L. (1993). Transmission Electron Microscopy: Physics of Image Formation and Microanalysis, third edition. Berlin: Springer-Verlag. Springer Series in Optical Sciences 36.CrossRefGoogle Scholar
Rodenburg, J. M. & Bates, R. H. T. (1992). The theory of super-resolution electron microscopy via Wigner-distribution deconvolution. Phil. Trans. Roy. Soc. (Lond.) A339, 521553.Google Scholar
Rodenburg, J. M., McCallum, B. C. & Nellist, P. D. (1993). Experimental tests on double-resolution coherent imaging via STEM. Ultramicroscopy 48, 304314.CrossRefGoogle Scholar
Röntgen, W. C. (1895). Über eine neue art von Strahlen. I Mitteilung. Sitzungsber. Phys.-Med. Ges. Würzburg 137, 41.Google Scholar
Rose, A. (1948). Television pickup tubes and the problem of vision. In Advances in Electronics, vol. 1 (ed. Marton, L.), pp. 131166. New York: Academic Press.Google Scholar
Rosenbluth, A. (1983). Reflecting properties of X-ray multilayer devices. Ph.D. thesis, University of Rochester.Google Scholar
Rosser, R. J., Baldwin, K. G., Bassett, D., Coles, A. & Eason, R. W. (1985). Soft X-ray contact microscopy with nanosecond exposure times. Journal of Microscopy 138, 311320.CrossRefGoogle Scholar
Rothweiler, D., Eidmann, K., Lebert, R., Winhart, G. & Neff, W. (1994). Laserand pinch plasma X-ray sources for imaging microscopy. In Aristov & Erko, 1994; pp. 386396.Google Scholar
Rudolph, D., Schmahl, G. & Niemann, B. (1976). Applications of holographic structures as optical elements – X-ray microscopy. In Proceedings of the International Conference on Applications of Holography and Optical Data Processing, pp. 499506, London: Pergamon Press.Google Scholar
Rudolph, D. & Schmahl, G. (1980). High power zone plates for soft X-rays. In Parsons, 1980; 94104.Google Scholar
Rudolph, D., Niemann, B. & Schmahl, G. (1982). Status of sputtered sliced zone plates for X-ray microscopy. In High Resolution Soft X-ray Optics, vol. 316 (ed. Spiller, E.), pp. 103105, Bellingham, Washington; Society of Photo-Optical Instrumentation Engineers (SPIE).CrossRefGoogle Scholar
Rudolph, D., Niemann, B., Schmahl, G. & Christ, O. (1984). The Göttingen X-ray microscope and X-ray microscopy experiments at the BESSY storage ring. In Schmahl and Rudolph, 1984a; 192202.Google Scholar
Rudolph, D., Schmahl, G. & Niemann, B. (1990). Amplitude and phase contrast in X-ray microscopy. In Modern Microscopies (ed. Duke, P. J. & Michette, A. G.), pp.5967. New York: Plenum.CrossRefGoogle Scholar
Rymell, L. & Hertz, H. M. (1993). Droplet target for low-debris laser-plasma soft X-ray generation. Optics Comm. 103, 105110.CrossRefGoogle Scholar
Rymell, L., Hertz, H. M. & Engström, L. (1994). Very-low-debris laser-plasma soft X-ray source for microscopy. In Aristov & Erko, 1994; 364367.Google Scholar
Sayre, D. (1972). Proposal for the utilization of electron beam technology in the fabrication of an image forming device for the soft X-ray region. Technical Report RC 3974 (No. 17965), IBM T. J. Watson Research Laboratory, Yorktown Heights, New York.Google Scholar
Sayre, D., Kirz, J., Feder, R., Kim, D. M. & Spiller, E. (1977 c). Potential operating region for ultrasoft X-ray microscopy of biological specimens. Science 196, 13391340.CrossRefGoogle Scholar
Sayre, D., Kirz, J., Feder, R., Kim, D. M. & Spiller, E. (1977 c). Transmission microscopy of unmodified biological materials: comparative radiation dosages with electrons and ultrasoft X-ray photons. Ultra-microscopy 2, 337341.Google ScholarPubMed
Sayre, D. & Feder, R. (1979). Exposure and development of X-ray resist in microscopy. Technical Report RC-7498, IBM.Google Scholar
Sayre, D. (1980). Prospects for long-wavelength X-ray microscopy and diffraction. In Imaging Processes and Coherence in Physics (ed.Schlenker, M.), pp. 229235. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Sayre, D., Haelbich, R. P., Kirz, J. & Yun, W. (1984). On the possibility of imaging microstructures by soft X-ray diffraction pattern analysis. In Schmahl & Rudolph, 1984a; 314316.Google Scholar
Sayre, D. (1987). Diffraction-imaging possibilities with soft X-rays. In Cheng & Jan, 1987b; 213223.Google Scholar
Sayre, D., Howells, M. R., Kirz, J. & Rarback, H., eds. (1988 c). X-ray Microscopy, II (Springer Series in Optical Sciences, vol. 56), Berlin: Springer-Verlag.Google Scholar
Sayre, D., Yun, W. & Kirz, J. (1988 b). Experimental observation of diffraction patterns from microspecimens. In Sayre et al. 1988a; 272275.Google Scholar
Sayre, D. (1991). Note on ‘superlarge’ structures and their phase problem. Direct Methods of Solving Crystal Structures (ed. Schenk, H.), pp. 353356. New York: Plenum.CrossRefGoogle Scholar
Sayre, D. & Chapman, H. N. (1995). X-ray microscopy. Acta Crystallographica A 51.Google ScholarPubMed
Schattenburg, M. L., Li, K., Shin, R. T., Kong, J. A., Olster, D. B. & Smith, H. I. (1991). Electromagnetic calculation of soft X-ray diffraction from 0·1-μm scale gold structures. J. Vac. Sci. Tech. B9, 32323236.CrossRefGoogle Scholar
Schmahl, G. & Rudolph, D. (1969). Lichtstarke Zonenplatten als abbildende Systeme für weiche Röntgenstrahlung (High power zone plates as image forming systems for soft X-rays). Optik 29, 577585.Google Scholar
Schmahl, G. (1974). Holographic structures for applications in the vacuum ultraviolet and soft X-ray region. In Vacuum Ultraviolet Radiation Physics (ed. Koch, E.-E., Haensel, R. & Kunz, C.), 667681. London: Pergamon/Vieweg.Google Scholar
Schmahl, G., Rudolph, D., Niemann, B. & Christ, O. (1980). Zone-plate X-ray microscopy. Q. Rev. Biophys. 13, 297315.CrossRefGoogle ScholarPubMed
Schmahl, G. & Rudolph, D. eds. (1984 c). X-ray Microscopy (Springer Series in Optical Sciences, Vol. 43), Berlin: Springer-Verlag.CrossRefGoogle Scholar
Schmahl, G., Rudolph, D., Guttmann, P. & Christ, O. (1984 c). Zone plate lenses for X-ray microscopy. In Schmahl & Rudolph, 1984a; 6374.Google Scholar
Schmahl, G. & Rudolph, D. (1987). Proposal for a phase contrast X-ray microscope. In Cheng & Jan 1987b; 231338.Google Scholar
Schmahl, G. & Cheng, P.-C. (1991). X-ray microscopy. In Handbook on Synchrotron Radiation, vol. 4 (ed. Ebashi, S., Koch, M. & Rubenstein, E.), pp. 483536. Amsterdam: Elsevier.Google Scholar
Schmahl, G., Guttmann, P., Schneider, G., Niemann, B., David, C., Wilhein, T., Thieme, J. & Rudolph, D. (1994 a). Phase contrast studies of hydrated specimens with the X-ray microscope at BESSY. In Aristov & Erko, 1994, 196206.Google Scholar
Schmahl, G., Rudolph, D., Guttmann, P., Schneider, G., Thieme, J., Niemann, B. & Wilhein, T. (1994 b). Phase contrast X-ray microscopy. Synchrotron Radiation News 7, 1922.CrossRefGoogle Scholar
Schneider, G. (1992 a). Röntgenmikroskopie mit Synchrotronstrahlung an wäßrigen biologischen Systemen - experimentelle und theoretische Untersuchungen. Ph.D. thesis, Universitä Göttingen.Google Scholar
Schneider, G. & Niemann, B. (1992 c). Environmental chamber for X-ray imaging of wet biological specimens. In Michette et al. 1992; 350354.Google Scholar
Schneider, G. (1994 c). Investigations of soft X-radiation induced structural changes in wet biological objects. In Aristov & Erko, 1994; 181195.Google Scholar
Schneider, G. & Niemann, B. (1994 c). Cryo X-ray microscopy: first images of specimens at low temperatures. X-ray Science 2, 8–9, (1994). Summer 1994 newsletter, Centre for X-ray Science, King's College, London.Google Scholar
Schröder, R. R., Hofmann, W. & Menétrét, J.-F. (1990). Zero-loss energy filtering as improved imaging mode in cryoelectronmicroscopy of frozen-hydrated specimens. J. Struct. Biol. 105, 2834.CrossRefGoogle Scholar
Seely, J. F., Gutman, G., Wood, J., Herman, G. S., Kowalski, M. P., Rife, J. C. & Hunter, W. R. (1993). Normal-incidence reflectance of W/B4C multilayer mirrors in the 34–50-Å wavelength region. Applied Optics 32, 35413543.CrossRefGoogle Scholar
Shealy, D. L., Wang, C., Jiang, W., Jin, L. & Hoover, R. B. (1992). Design and analysis of a fast, two-mirror soft X-ray microscope. In Jacobsen & Trebes, 1992d; 2031.Google Scholar
Sheppard, C. J. R. & Wilson, T. (1986). On the equivalence of scanning and conventional microscopes. Optik 73, 3943.Google Scholar
Shi, W. D., Morrison, G. R., Browne, M. T., Beelen, T. P. M., van Garderen, H. F. & Pantos, E. (1994). Microstructural investigation of aggregates formed from aged silica sol by STXM. Nuclear Instruments and Methods in Physics Research, B. (In the press.)Google Scholar
Shinohara, K., Aoki, S., Yanagihara, M., Yagishita, A., Iguchi, Y. & Tanaka, A. (1986). A new approach to the observation of the resist in X-ray contact microscopy. Photochem. Photobiol. 44, 401403.CrossRefGoogle Scholar
Shinohara, K., Nakano, H., Kinjo, Y. & Watanabe, M. (1990 c). Fine structure of unstained human chromosome fibers dried with no fixative as observed by X-ray contact microscopy. J. Microscopy 158, 335342.CrossRefGoogle ScholarPubMed
Shinohara, K., Yada, K., Kihara, H. & Saito, T., eds. (1990 c). X-ray Microscopy in Biology and Medicine. Berlin: Springer-Verlag. Also Japan Scientific Societies Press, Tokyo.Google Scholar
Shinohara, K. & Ito, A. (1991). Radiation damage in soft X-ray microscopy of live mammalian cells. J. Microscopy 161, 463472.CrossRefGoogle ScholarPubMed
Shinohara, K., Kinjo, Y., Richardson, M. C., Ito, A., Miromoto, N., Horiike, Y., Watanabe, M., Yada, K. & Tanaka, K. A. (1992). Observation of human chromosome fibers in a water layer by laser-plasma X-ray contact microscopy. In Jacobsen & Trebes, 1992d; 386392.Google Scholar
Shinozaki, D. M. (1988). High resolution image storage in polymers. In Sayre et al. 1988a; 118123.Google Scholar
Shinozaki, D. M., Cheng, P. C. & Lin, T. H. (1992). Statistical noise in soft X-ray images stored in PMMA resist. In Michette et al. 1992; 329334.Google Scholar
Shu, D., Wang, W., Wang, M., Liu, J., He, W., Zhang, Y., Zheng, H., Zhang, Y. & Xie, Q. (1992). The X-ray scanning microscope beam branch line and its scanning system design at BEPC. In Michette et al. 1992; 154156.Google Scholar
Simpson, M. J. & Michette, A. G. (1983). The effects of manufacturing inaccuracies on the imaging properties of Fresnel zone plates. Optica Acta 30, 14551462 (now Journal of Modern Optics).CrossRefGoogle Scholar
Skinner, C. H., Dicicco, D. S., Kim, D., Rosser, R. J., Suckewer, S., Gupta, A. P. & Hirschberg, J. G. (1990). Contact microscopy with a soft X-ray laser, J. Microscopy 159. 5160.CrossRefGoogle Scholar
Solem, J. C. & Baldwin, G. C. (1982). Microholography of living organisms. Science 281, 229235.CrossRefGoogle Scholar
Solem, J. C. (1986). Imaging biological specimens with high-intensity soft X rays. J. Optical Soc. America B3, 15511565.CrossRefGoogle Scholar
Spears, D. L. & Smith, H. I. (1972 c). High-resolution pattern replication using soft X-rays. Electronics Letters 8, 102104.CrossRefGoogle Scholar
Spears, D. L. & Smith, H.I. (1972 b). X-ray lithography – a new high-resolution replication process. Solid State Technology 15, 2126.Google Scholar
Spiller, E. (1972). Low-loss reflection coatings using absorbing materials. Applied Physics Letters 20, 365367.CrossRefGoogle Scholar
Spiller, E., Feder, R., Topalian, J., Eastman, D., Gudat, W. & Sayre, D. (1976). X-ray microscopy of biological objects with Carbon Kα and with synchrotron radiation. Science 191, 11721174.CrossRefGoogle ScholarPubMed
Spiller, E. & Feder, R. (1977). X-ray lithography. In X-ray Optics (ed. Queisser, H.-J.) (Topics in Applied Physics 22), pp. 3592. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Spiller, E. (1978). A zone plate monochromator for synchrotron radiation. Technical report, Stanford Synchrotron Radiation Laboratory, Stanford, California.Google Scholar
Spiller, E. (1993). Early history of X-ray lithography at IBM. IBM J Research and Development, 37, 291297.CrossRefGoogle Scholar
Spiller, E. (1994). Soft X-ray Optics. Society of Photo-Optical Instrumentation Engineers (SPIE), Bellingham, Washington.CrossRefGoogle Scholar
Stead, A. D., Ford, T. W., Myring, W. J. & Clarke, D. T. (1987). A comparison of soft X-ray contact microscopy with light and electron microscopy for the study of algal cell ultrastructure. J. Microscopy, 149, 207216.CrossRefGoogle Scholar
Stead, A. D. & Ford, T. W. (1989). A structural study of the floral epidermal hairs of Digitalis purpurea using light, electron and X-ray microscopy. Annals of Botany 64, 713719.CrossRefGoogle Scholar
Stead, A. D., Cotton, R. A., Page, A. M., Dooley, M. D. & Ford, T. W. (1992). Visualization of the effects of electron microscopy fixatives on the structure of hydrated epidermal hairs of tomato (Lycopersicum peruvianum) as revealed by soft X-ray contact microscopy. In Jacobsen & Trebes, 351362.Google Scholar
Stead, A. D., Cotton, R. A., Page, A. M., Goode, J. A., Duckett, J. G. & Ford, T. W. (1994 c). The use of soft X-ray contact microscopy using laser-plasmas to study the ultrastructure of moss protonemal cells. In Aristov & Erko, 1994; 290296.Google Scholar
Stead, A. D., Cotton, R. A., Page, A. M., Steele, C. G., Bagby, R. & Ford, T. W. (1994 c). High resolution images of hydrated biological specimens by soft X-ray contact microscopy using TA4. Technical report, Rutherford Appleton Laboratory. Annual report to the Laser Facility Committee.Google Scholar
Stöhr, J., Wu, Y., Hermsmeier, B. D., Samant, M. G., Harp, G. R., Koranda, S., Dunham, D. & Tonner, B. P. (1993). Element-specific magnetic microscopy with circularly polarized X-rays. Science 259, 658661.CrossRefGoogle Scholar
Suckewer, S., Skinner, C. H., Milchberg, H., Keane, C. & Voorhees, D. (1985). Amplification of stimulated soft-X-ray emission in a confined plasma column. Physical Review Letters 55, 17531756.CrossRefGoogle Scholar
Talmon, Y. (1987). Electron beam radiation damage to organic and biological cryospecimens. In Cryotechniques in Biological Electron Microscopy (ed. Steinbrecht, R. A. & Zierold, K.), pp. 6484. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Taraschi, T. F. & Pouvelle, B. (1994). There is no ducking the duct. Parasitology Today 10, 212213.CrossRefGoogle ScholarPubMed
Tatchyn, R. Csonka, P. L. & Lindau, I. (1984). The constant-thickness zone plate as a variational problem. Optica Acta 31, 729733.CrossRefGoogle Scholar
Tennant, D. M., Gregus, J. E., Jacobsen, C. & Raab, E. L. (1991). Construction and test of phase zone plates for x-ray microscopy. Optics Letters 16, 621623.CrossRefGoogle ScholarPubMed
Thieme, J. (1988). Theoretical investigations of imaging properties of zone plates and zone plate systems using diffraction theory. In Sayre et al. 1988 a, 7079.Google Scholar
Thieme, J., Guttmann, P., Niemeyer, J., Schneider, G., David, D., Niemann, B. Rudolph, D. & Schmahl, G. (1992). Röntgenmikroskopie zur Untersuchung von wäßrigen biologischen und kolloidchemischen Systemen. Nachr. Chem. Tech. Lab. 40, 562563.CrossRefGoogle Scholar
Thieme, J., David, C., Fay, N., Kaulich, B., Medenwaldt, R., Hettwer, M., Guttmann, P., Kogler, U., Maser, J., Schneider, G., Rudolph, D. & Schmahl, G. (1994 a). Zone plates for high resolution x-ray microscopy. In Aristov & Erko, 1994; 487493.Google Scholar
Thieme, J., Wilhein, T., Guttmann, P., Niemeyer, J., Jacob, K.-H. & Dietrich, S. (1994 c). Direct visualization of iron and manganese accumulating microorganisms by X-ray microscopy. In Aristov & Erko, 1994; 152156.Google Scholar
Thomas, X., Cazaux, J., Erre, D., Mouze, D. & Collard, P. (1992). X-ray projection microscopy and microtomography in a scanning electron microscope. In Michette et al. 1992; 190194.Google Scholar
Tomie, T., Shimizu, H., Majima, T., Yamada, M., Kanayama, T., Kondo, H., Yano, M. & Ono, M. (1991). Three-dimensional readout of flash X-ray images of living sperm in water by atomic-force microscopy. Science 252, 691693.CrossRefGoogle ScholarPubMed
Tomie, T., Shimizu, H., Majima, T., Kanayama, T., Yamada, M. & Miura, E. (1992). Flash contact X-ray microscopy of biological specimen in water. In Jacobsen & Trebes, 1992d; 118128.Google Scholar
Tonner, B. & Harp, G. R. (1988). Photoelectron microscopy with synchrotron radiation. Rev. Scientif. Instruments 59, 853858.CrossRefGoogle Scholar
Trail, J. A. & Byer, R. L. (1989). Compact scanning soft-X-ray microscope using a laser-produced plasma source and normal-incidence multilayer mirrors. Optics Letters 14. 539541.CrossRefGoogle ScholarPubMed
Trebes, J. E., Brown, S. B., Campbell, E. M., Matthews, D. L., Nilson, D. G., Stone, G. F. & Whelan, D. A. (1987). Demonstration of x-ray holography with an X-ray laser. Science 238, 517519.CrossRefGoogle ScholarPubMed
Trebes, J., Anderson, E., Balhorn, R., Barbee, T. Jr., Brase, J., Dasilva, L., Hackel, L., Haddad, W., Herman, M., Koch, J., Lee, H., London, R., Macgowan, B., Matthews, I. M. D. & Mrowka, S. (1994). X-ray imaging and x-ray source development at Lawrence Livermore National Laboratory. In Aristov & Erko, 1994; 8286.Google Scholar
Tregear, R. T. (1977). Insect Flight Muscle. Amsterdam: North Holland.Google Scholar
Underwood, J., Kortright, J. B., Perera, R. C. C., Cerrina, F., Capasso, C., Raychaudhury, A. K., Ng, W., Welnak, J., Wallace, J., Liang, S. & Margaritondo, G. (1994). X-ray microscopy with multilayer mirrors: the MAXIMUM photoelectron microscope. In Chance et al. 1994; 601609.Google Scholar
Voss, J., Dadras, H., Kunz, C., Moewes, A., Roy, G., Sievers, H., Storjohann, I. & Wongel, H. (1992). A scanning soft X-ray microscope with an ellipsoidal focusing mirror. J. X-ray Set. Techn. 3, 85108.Google ScholarPubMed
Voss, J., Storjohann, I., Kunz, C., Moewes, A., Pretorius, M., Ranck, A., Sievers, H., Wedemeier, V., Wochnowski, M. & Zhang, H. (1994). Soft X-ray microscopy at HASYLAB/DESY. In Aristov & Erko, 1994; 103122.Google Scholar
Wang, Y. & Jacobsen, C. (1994) Modelling of dissolution and resolution in contact X-ray microscopy. In Bailey & Garratt-Reed, 1994; 6263.Google Scholar
Wang, S. & Jacobsen, C. (1995). Contact microscopy modelling (in preparation).Google Scholar
Watanabe, N., Aoki, S., Shimanuki, Y., Kawasaki, K., Taniguchi, M., Anderson, E., Attwood, D., Kern, D., Shimizu, S., Nagata, H. & Kihara, H. (1994). Soft X-ray imaging microscope with sub-optical resolution at UVSOR. In Aristov & Erko, 1994; 332336.Google Scholar
Wijnen, P. W. J. G., Beelen, T. P. M., Saejis, H. C. P. L. & Van Santen, R. A. (1991). Silica gel from waterglass: a SAXS study of the formation and aging of fractal aggregates. J. Appl. Cryst. 24, 759764.CrossRefGoogle Scholar
Wilhein, T., Rothweiler, D., Tusche, A., Scholze, F. & Meyer-Ilse, W. (1994). Thinned back illuminated CCDs for X-ray microscopy. In Aristov & Erko, 1994; 469477.Google Scholar
Williams, S., Zhang, X., Jacobsen, C., Kirz, J., Lindaas, S., Van't Hof, J. & Lamm, S. S. (1993). Measurements of wet metaphase chromosomes in the scanning transmission X-ray microscope. J Microscopy 170, 155165.CrossRefGoogle Scholar
Williams, S., Jacobsen, C., Kirz, J., Lamm, S. S., Oehler, V., Van't Hof, J., Wirick, S. & Zhang, X. (1994 c). Metaphase chromosome DNA mass fraction is a constant, independent of species. Chromsoma. (Submitted.)CrossRefGoogle Scholar
Williams, S., Jacobsen, C., Kirz, J., Lamm, S. S., Van't Hof, J. & Zhang, X. (1994 c). Metaphase chromosome DNA mass fraction is independent of species. In Bailey & Garratt-Reed, 1994; 4647.Google Scholar
Witt, P. (1994). Preparation and thinning of sputtered sliced zone plates. In Aristov & Erko, 1994; 500503.Google Scholar
Wolf, E. (1969). Three-dimensional structure determination of semi-transparent objects from holographic data. Optics Comm. 1, 153156.CrossRefGoogle Scholar
Wolter, H. (1952). Spiegelsysteme streifenden Einfalls als abbildende Optiken für Röntgenstrahlen. Ann. Phys. 10, 94114, 286.CrossRefGoogle Scholar
Wooten, F. (1972). Optical Properties of Solids. New York: Academic Press.Google Scholar
Yada, K., Takahashi, S. (1990). Projection X-ray microscope observation of biological samples. In Shinohara et al., 1990b; 193202. Also Japan Scientific Societies Press, Tokyo.Google Scholar
Yada, K., Takahashi, S. (1992). The recent development of projection X-ray microscopy for biological applications. In Michette et al., 1992; 195198.Google Scholar
Yun, W. B., Kirz, J. & Sayre, D. (1987). Observation of the soft X-ray diffraction pattern of a single diatom. Acta Cryst. A43, 141.Google Scholar
Yun, W.-B., Viccaro, P. J., Chrzas, J. & Lai, B. (1992). Coherent hard X-ray focussing optics and applications. Rev Scientific Instruments 63, 582585.CrossRefGoogle Scholar
Yun, W., Lai, B., Krasnoperova, A. A., Cerrina, F., Di Fabrizio, E., Luciani, L., Figliomeni, M. & Gentili, M. (1995). X-ray zone plates and their applications. Rev. Scientific Instruments 66. (In the press.)Google Scholar
Zeitler, E. & Thomson, M. G. R. (1970). Scanning transmission electron microscopy. Optik. 31, 258280, 359–366.Google Scholar
Zhang, X., Jacobsen, C. & Williams, S. (1992). Image enhancement through deconvolution. In Jacobsen & Trebes, 1992d 251259.Google Scholar
Zhang, X., Ade, H., Jacobsen, C., Kirz, J., Lindaas, S., Williams, S. & Wirick, S. (1994 a). Micro-XANES: chemical contrast in the scanning transmission X-ray microscope. Nuclear Instruments and Methods in Physics Research A347, 431435.CrossRefGoogle Scholar
Zhang, X., Balhorn, R., Jacobsen, C., Kirz, J. & Williams, S. (1994 c). Mapping DNA and protein in biological samples using the scanning transmission X-ray microscope. In Bailey & Garratt-Reed, 1994; 5051.Google Scholar
Zhang, X., Jacobsen, C., Lindaas, S. & Williams, S. (1994 c). Exposure strategies for PMMA from in situ XANES spectroscopy. (Submitted.)Google Scholar
Zolfaghari, A. & Trebbia, P. (1994). 3D reconstruction in conical geometry from data obtained with an X-ray microtomograph. In Aristov & Erko, 1994; 438449.Google Scholar