Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T13:16:52.027Z Has data issue: false hasContentIssue false

Relation between structure and function of α/β–protejns*

Published online by Cambridge University Press:  17 March 2009

Carl-Ivar Brändén
Affiliation:
Department of Chemistry and Molecular Biology, SwedishUniversity of Agricultural Sciences, 750 07 Uppsala

Extract

Protein chains are usually folded into one or several discrete globular units called domains (Schulz & Schirmer, 1979). Levitt & Chothia (1976) have shown that the structures of such domains frequently fall into one of the following three classes; α-proteins which are mainly α-helical, β-proteins which contain antiparallel β-strands and α/β proteins which have a central core consisting of a sheet of strands, most of which are parallel. The connexions between the parallel strands in αβ-proteins frequently contain helices which are packed on both sides of the sheet in a regular way (Chothia, Levitt & Richardson, 1977).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, M. J., Ford, G. C., Koekok, R., Lentz, P. J. JrMcpherson, A. JrRossmann, M. G., Smiley, I. E., Schevitz, R. W. & Wonnacott, A (1970). Structure of lactate dehydrogenase at 2·8 Å resolution. Nature, Lond. 227, 10981103.CrossRefGoogle ScholarPubMed
Banks, R. D., Blake, C. C. F., Evans, P. R., Haser, R., Rice, D. W., Hardy, G. W., Merrett, M. & Phillips, A. W. (1979). Sequence, structure and activity of phosphoglycerate kinase: a possible hingebendingble enzyme. Nature, Lond. 279, 773777CrossRefGoogle ScholarPubMed
Banner, D. W., Bloomer, A. C., Petsko, G. A., Phillips, D. C., Pogson, C. I., Wilson, I. A., Corran, P. H., Furth, A. J., Milman, J. D., Offord, R. E., Priddle, J. D. & Waley, S. G. (1975). Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2·5 Å resolution using amino acid sequence data. Nature, Lond. 255, 609614.CrossRefGoogle ScholarPubMed
Biesecker, G., Harris, J. I., Thierry, J. C., Walter, J. E. & Wonnacott, A. J. (1977). Sequence and structure of D-glyceraldehyde 3-phosphate from Bacillus stearothermophilus. Nature, Lond. 266, 328333.CrossRefGoogle ScholarPubMed
Bräén, C-I., Eklund, H., Nordström, B., Boiwe, T., Söderlund, G., Zeppezauer, E., Ohlsson, L & Åkeson, Å. (1973). Structure of liver alcohol dehydrogenase at 2·9 Å resolution. Proc. natn. Acad. Sci. U.S.A. 70, 24392442.CrossRefGoogle Scholar
Brändén, C-I. & Eklund, H. (1980). Structure and mechanism of liver alcohol dehydrogenase, lactate dehydrogenase and glyceraldehyde 3–phosphate dehydrogenase. In Dehydrogenases requiring nicotinamide coenzymes, (ed. Jeffery, J.) Experientia Supplementum 36, pp. 4084. Basel: Birkhäuser.Google Scholar
Bryant, T. N., Watson, H. C. & Wendell, P. L. (1974). Structure of yeast phosphoglycerate kinase. Nature, Lond. 247, 1417.CrossRefGoogle ScholarPubMed
Buehner, M., Ford, G. C., Moras, D., Olsen, K. W. & Rossmann, M. G. (1973). D-glyceraldehyde 3-phosphate dehydrogenase: three-dimensional structure and evolutionary significance. Proc. natn. Acad. Sci. U.S.A. 70, 30523054.CrossRefGoogle ScholarPubMed
Burnett, R. M., Darling, G. D., Kendall, D. S., Le, Quesne M. E., Mayhew, S. G., Smith, W. W. & Ludwig, M. (1974). The structure of the oxidized form of clostridial flavodoxin at1·9 Å resolution. J. biol. Chem. 249, 43834392.CrossRefGoogle ScholarPubMed
Campbell, J. W., Watson, H. C. & Hodgson, G. I. (1974). Structure of yeast phorphoglycerate mutase. Nature, Lond. 250, 301303.CrossRefGoogle ScholarPubMed
Chothia, C., Levitt, M. & Richardson, D. (1977). Structure of proteins: packing of α-helices and pleated sheets. Proc. natn. Acad. Sci. U.S.A. 74, 41304134.CrossRefGoogle ScholarPubMed
Evans, P. R. & Hudson, P. J. (1979). Structure and control of phosphofructokinase from Bacillus Stearothermophilus. Nature, Lond. 279, 500504.CrossRefGoogle ScholarPubMed
Eventoff, W. & Rossmann, M. G. (1975). The evolution of dehydrogenases and kinases. In CRC Critical Reviews in Biochemistry, (ed. Fasman, G. D.), pp. 111140. Cleveland: CRC Press.Google Scholar
Ford, G. C., Eichele, G. & Jansonius, J. N. (1980). Three-dimensional structure of a pyridoxal-phosphate-dependent enzyme, mitochondrial aspartate aminotransferase. Proc. natn. Acad. Sci. U.S.A. 77, 25592563.CrossRefGoogle ScholarPubMed
Hill, E., Tsernoglou, D., Webb, L. & Banaszak, L. J. (1972). Polypeptide conformation of cytoplasmic malate dehydrogenase from an electron density map at 3·0 Å resolution. J. molec. Biol. 72, 577591.CrossRefGoogle Scholar
Hol, W. G. J., Van Duijnen, P. T. & Berendsen, H. J. C. (1978). The α-helix dipole and the properties of proteins. Nature, Lond. 273, 443446.CrossRefGoogle ScholarPubMed
Holmgren, A., Söderberg, B.-O., Eklund, H. & Brändén, C-I. (1975). Three-dimensional structure of Escherichia Coli Thioredoxin-S2 to 2·8 Å resolution. Proc. natn. Acad. Sci. U.S.A. 72, 23052309.CrossRefGoogle ScholarPubMed
Honzatko, R. B., Monaco, H. L. & Lipscomb, W. N. (1979). A 3·0 Å resolution study of nucleotide complexes with aspartate carbamoyl transferase. Proc. natn. Acad. Sci. U.S.A. 76, 51055109.CrossRefGoogle Scholar
Irwin, M. J., Nyborg, J., Reid, B. R. & Blow, D. (1976). The crystal structure of tyrosyl-transfer RNA synthetase at 2·7 Å resolution. J. molec. Biol. 105, 577586.CrossRefGoogle ScholarPubMed
Johnsson, L. N., Jenkins, J. A., Wilson, K. S., Stura, E. A. & Zanotti, G. (1980). Proposals for the catalytic mechanism of glycogen phosphorylaseb, prompted by crystallographic studies on glucose i-phosphate binding. J. molec. Biol. 140, 565580.CrossRefGoogle Scholar
Kraut, J., Robertus, J. D., Birktoft, J., Alden, R. A., Wilcox, P. E. & Powers, J. C. (1979). The aromatic substrate binding site in subtilisin BPN' and its resemblance to chymotrypsin. Cold Spring Harb. Symp. quant. Biol. 36, 117123.CrossRefGoogle Scholar
Ladenstein, R., Epp, O., Bartels, K., Jones, A., Huber, R. & Wendel, A. (1979). Structure analysis and molecular model of the selenoenzyme glutathione peroxidase at 2·8 Å resolution. J. molec. Biol. 134, 199218.CrossRefGoogle ScholarPubMed
Levin, M., Muirhead, H., Stammers, D. K. & Stuart, D. I. (1978). Structure of pyruvate kinase and similarities with other enzymes: possible implications for protein taxonomy and evolution. Nature, Lond. 271, 626630.CrossRefGoogle Scholar
Levitt, M. & Chothia, C. (1976). Structural patterns in globular proteins. Nature, Lond. 261, 552557.CrossRefGoogle ScholarPubMed
Lindqvist, Y. & Brändén, C-I (1980). Structure of glycolate oxidase from spinach at a resolution of 5·5 Å. J. molec. Biol. 143, 201211.CrossRefGoogle Scholar
Lipscomb, W. N., Reeke, G. N. JrHartsuck, J. A, Quiocho, F. A. & Bethge, P. H. (1970). The structure of carboxypeptidase A. VIII. Atomic interpretation at 0·2 nm resolution, a new study of the complex of glycyl-L-tyrosine with CPA, and mechanistic deductions. Phil. Trans. R. Soc. B 257, 177214.Google Scholar
Matthews, D. A., Alden, R. A., Bolin, J. T., Freer, S. T., Hamlin, R., Xuong, N., Kraut, J., Poe, M., Williams, M. & Hoogsteen, K. (1977). Dihydrofolate reductase: X-ray structure of the binary complex with methotrexate. Science. N.Y. 197 452455.CrossRefGoogle ScholarPubMed
Matthews, D. A., Alden, R. A., Bolin, J. T., Filman, D. J., Freer, S. T., Hamlin, R., Hol, W. G. J., Kisliuk, R. L., Pastore, E. J., Plantf, L. T., Xuong, N. & Kraut, J. (1978). Dihydrofolate reductase from Lactobacillus casei, X-ray structure of the enzyme-methotrexate NADPH complex. J. biol. Chem. 253, 69466954.CrossRefGoogle ScholarPubMed
Monaco, H. L., Crawford, J. L. & Lipscomb, W. N. (1978). Three-dimensional structures of aspartate carbamoyl transferase from Escherichia coli and its complex with cytidine triphosphate. Proc. natn. Acad. Sci. U.S.A. 75, 52765280.CrossRefGoogle ScholarPubMed
Nagano, K. (1977). Logical analysis of mechanism of protein folding. IV. Supersecondary structures. J. molec. Biol. 109, 235250.CrossRefGoogle Scholar
Ohlsson, I., Nordström, B. & Brändén, C-I. (1974). Structural and functional similarities within the coenzyme binding domains of dehydrogenases. J. molec. Biol. 89, 339354.CrossRefGoogle ScholarPubMed
Pal, E. F., Sachsenheimer, W., Shirmer, R. H. & Schulz, G. E. (1977). Substrate positions and induced-fit in crystalline adenylate kinase. J. molec. Biol. 114, 3745.Google Scholar
Ploegman, J. H., Drent, G., Kalk, K. H., Hol, W. G. J., Heinrikson, R. L., Keim, P., Weng, L. & Russell, J. (1978). The covalent and tertiary structure of bovine liver rhodanese. Nature, Lond. 273, 124129.CrossRefGoogle ScholarPubMed
Ptitsyn, O. B. & Finkelstein, A. V. (1981). Similarities of protein topologies: evolutionary divergence, functional convergence or principles of folding. Q. Rev. Biophys. (in the Press).Google Scholar
Quiocho, F. A., Gilliand, G. L. & Phillips, G. N. Jr (1977). The 2·8 Å resolution structure of the L-arabinose binding protein from Escherichia coli. J. biol. Chem. 252, 51425149.CrossRefGoogle ScholarPubMed
Rao, S. T. & Rossmann, M. G. (1973). Comparison of supersecondary structures in proteins. J. molec. Biol. 76, 241256.CrossRefGoogle ScholarPubMed
Richardson, J. S. (1976). Handedness of crossover connections in β-sheets. Proc. natn. Acad. Sci. U.S.A. 73, 26192623.CrossRefGoogle ScholarPubMed
Rossmann, M. G., Moras, D. & Olsen, K. (1974). Chemical and biological evolution of nucleotide binding proteins. Nature, Lond. 250, 194199.CrossRefGoogle Scholar
Rossmann, M. G.Liljas, A., Bränden, C.-I. & Banaszak, L. J. (1975). Evolutionary and structural relationships among dehydrogenases. In The Enzymes, 3rd ed. vol. XI, (ed. Boyer, P.), pp. 61102. New York: Academic Press.Google Scholar
Rossmann, M. G., Garavito, R. M. & Eventoff, W. (1977). Conformational adaptations among dehydrogenases. In Pyridine Nucleotide Dependent Dehydrogenases, (ed. Sund, H.), pp. 328. Berlin, New York: W. de Gruyter.CrossRefGoogle Scholar
Sachsenheimer, W. & Schulz, G. E. (1977). Two conformations of crystalline adenylate kinase. J. molec. Biol. 114, 2336.CrossRefGoogle ScholarPubMed
Schulz, G. E., Elzinga, M., Marx, F. & Schirmer, R. H. (1974.). Three-dimensional structure of adenyl kinase. Nature, Lond. 250, 120123.CrossRefGoogle ScholarPubMed
Schulz, G. E. (1980). Gene duplication in glutathione reductase. J. molec. Biol. 138, 335347.CrossRefGoogle ScholarPubMed
Schulz, G. E. & Schirmer, R. H. (1979). Principles of Protein Structure. New York, Heidelberg, Berlin: Springer Verlag.CrossRefGoogle Scholar
Schulz, G. E., Schirmer, R. H., Sachsenheimer, W. & Pai, E. F. (1978). The structure of the flavoenzyme glutathione reductase. Nature, Lond. 273, 120124.CrossRefGoogle ScholarPubMed
Shaw, P. J. & Muirhead, H. (1976). The active site of glucose phosphate isomerase. FEBS Lett. 65, 5055.CrossRefGoogle ScholarPubMed
Shaw, P. J. & Muirhead, H. (1977). Crystallographic structure analysis of glucose-6-phosphate isomerase at 3·5 Å resolution. J. molec. Biol. 109, 475485.CrossRefGoogle ScholarPubMed
Shoham, M. & Steitz, T. A. (1980). Crystallographic studies and model building of ATP at the active site of hexokinase. J. molec. Biol. 140, 114.CrossRefGoogle ScholarPubMed
Söderberg, B.-O., Sjöberg, B.-M., Sonnerstam, U. & Brändén, C-I. (1978). Three-dimensional structure of thioredoxin induced by bacteriophage T4. Proc. natn. Acad. Sci. U.S.A. 75, 58275830.CrossRefGoogle ScholarPubMed
Sprang, S. & Fletterick, R. J. (1979). The structure of glycogen phosphorylase a at 2·5 Aring; resolution. j. molec. Biol. 131, 523551.CrossRefGoogle Scholar
Steitz, T. A., Fletterick, R. J., Anderson, W. F. & Anderson, C. M. (1976). High resolution X-ray structure of yeast hexokinase, an allosteric protein exhibiting a non-symmetric arrangement of subunits. J. molec. Biol. 104, 197222.CrossRefGoogle ScholarPubMed
Sternberg, M. J. E. & Thornton, J. M. (1976). On the conformation of proteins: The handedness of the βstrand-αhelixβstrand unit. J. molec. Biol. 105, 367382.CrossRefGoogle ScholarPubMed
Watenpaugh, K. D., Sieker, L. C., Jensen, L. H, Legall, J. & Dubourdieu, M. (1972). Structure of the oxidized form of a flavodoxin at 2·5 Å resolution: Resolution of the phase ambiguity by anomalous scattering. Proc. natn. Acad. Sci. U.S.A. 69, 31853188.CrossRefGoogle ScholarPubMed
Wierenga, R. K., De Jong, R. J., Kalk, K. H., Hol, W. G. J. & Drenth, J. (1979). Crystal structure of p-hydroxybenzoate hydroxylase. J. molec. Biol. 131, 5573.CrossRefGoogle ScholarPubMed
Winn, S. I., Watson, H. C., Fothergill, L. A. & Harkins, R. N. (1977). The active site of yeast phosphoglycerate mutase. Biochem. Soc. Trans. 5, 657659.CrossRefGoogle ScholarPubMed
Wright, C. S., Alden, R. A. & Kraut, J. (1969). Structure of subtilisin BPN' at 2·5 Å resolution. Nature, Lond. 221, 235242.CrossRefGoogle Scholar