Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-23T13:16:13.859Z Has data issue: false hasContentIssue false

Reactions of electron-transfer proteins at electrodes

Published online by Cambridge University Press:  17 March 2009

Fraser A. Armstrong
Affiliation:
Inorganic Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QR
H. Allen O. Hill
Affiliation:
Inorganic Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QR
Nicholas J. Walton
Affiliation:
Inorganic Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QR

Extract

Studies of electron-transfer reactions of redox proteins have, in recent years, attracted widespread interest and attention. Progress has been evident from both physical and biological standpoints, with the increasing availability of three-dimensional structural data for many small electron-transfer proteins prompting a variety of systematic investigations (Isied, 1985). Most recently, attention has been directed towards questions concerning the elementary transfer of electrons between spatially remote redox sites, and the nature of protein–protein interactions which, for intermolecular processes, stabilize specific precursor complexes which may be optimally juxtaposed for electron-transfer. These and other issues, including the necessary reversibility of protein interfacial interactions and the dynamic properties of proteins as carriers of electrons in biological electron-transport systems, are now being addressed in the rapidly emerging field of direct (unmediated) protein electrochemistry. It is our intention in this article to discuss developments made in this area and highlight points which we believe to have the most bearing on our current understanding of diffusion-dominated, protein-mediated electron transport at electrode surfaces. First we shall outline some basic considerations which are best considered with reference to homogeneous systems.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adman, E. T. (1985). Structure and function of small blue copper proteins. In Metalloproteins (ed. Harrison, P. M.), Part I. London: Macmillan.Google Scholar
Adman, E. T., Sieker, L. C. & Jensen, L. H. (1973). The structure of a bacterial ferredoxin. J. Biol. Chem. 248, 39873996.CrossRefGoogle ScholarPubMed
Albery, W. J., Eddowes, M. J., Hill, H. A. O. & Hillman, A. R. (1981). Mechanism of the reduction and oxidation reaction of cytochrome c at a modified gold electrode. J. Amer. Chem. Soc. 103, 39043910.CrossRefGoogle Scholar
Allen, P. M., Hill, H. A. O. & Walton, N. J. (1984). Surface modifiers for the promotion of direct electrochemistry of cytochrome c. J. Electroanal. Chem. 178, 6986.CrossRefGoogle Scholar
Armstrong, F. A., Hill, H. A. O. & Walton, N. J. (1982 a). Direct electrochemical reduction of ferredoxin promoted by Mg2+. FEBS Lett. 145, 241244.CrossRefGoogle Scholar
Armstrong, F. A., Hill, H. A. O. & Walton, N. J. (1982 b). Direct electrochemical oxidation of Clostridium pasteurianum ferredoxin. Identification of facile electron-transfer processes relevant to cluster degredation. FEBS Lett. 150, 214218.CrossRefGoogle Scholar
Armstrong, F. A., Hill, H. A. O. & Oliver, B. N. (1984). Surface selectivity in the direct electrochemistry of redox proteins. Contrasting behaviour at edge and basal planes of graphite. J. Chem. Soc. Chem. Commun. 976977.CrossRefGoogle Scholar
Armstrong, F. A., Hill, H. A. O., Oliver, B. N. & Whitford, D. (1985 a). Direct electrochemistry of the photosynthetic blue copper protein plastocyanin. Electrostatic promotion of rapid charge transfer at an edge-oriented pyrolytic graphite electrode. J. Amer. Chem. Soc. 107, 14731476.CrossRefGoogle Scholar
Armstrong, F. A., Cox, P. A., Hill, H. A. O., Oliver, B. N. & Williams, A. A. (1985 b). Rapid modification of graphite electrodes by surface-bound chromium complexes: preparation of an electrode for direct (unmediated) electrochemistry of the ‘blue’ copper protein, plastocyanin. J. Chem. Soc. Chem. Commun. 12361237.CrossRefGoogle Scholar
Armstrong, F. A., Driscoll, P. C. & Hill, H. A. O. (1985 c). Catalysis of plastocyanin electron self-exchange by redox-inert multivalent cations. FEBS Lett. 190, 242248.Google Scholar
Armstrong, F. A., Hill, H. A. O., Lowe, V. J. & Oliver, B. N. (1986). Metal ions and complexes as modulators of protein-interfacial electron transport at graphite electrodes. Submitted for publication.Google Scholar
Arnold, D. J., Gerchario, K. A. & Anderson, C. W. (1984). Electrochemistry of cytochrome c at single carbon fibre electrodes. J. Electroanal. Chem. 172, 379382.Google Scholar
Bard, A. J. & Faulkner, L. R. (1980). Electrochemical Methods, Fundamentals and Applications. New York: Wiley. See chapters 5, 8 and 9.Google Scholar
Betso, S. R., Klapper, M. H. & Anderson, L. B. (1972). Electrochemical studies of heme proteins. Coulometric, polarographic and combined spectroelectrochemical methods for reduction of the heme prosthetic group in cytochrome c. J. Amer. Chem. Soc. 94, 81978204.CrossRefGoogle ScholarPubMed
Bianco, P., Haladjian, J. & Asso, L. (1983). Etude électrochimique à l'électrode d'or de l'interaction entre la ferredoxine d'épinard et le methylviologène. J. Chim. Phys. 80, 763767.Google Scholar
Bianco, P., Haladjian, J., Tobiana, G., Forget, P. & Bruschi, M. (1984). Voltammetric determination of the redox potential of bacterial ferredoxins: Clostridium thermocellum ferredoxin. Bioelectrochem. Bioenerg. 12, 509516.CrossRefGoogle Scholar
Bowden, E. F., Hawkridge, F. M. & Blount, H. N. (1984). Interfacial electrochemistry of cytochrome c at tin oxide, indium oxide, gold and platinum electrodes. J. Electroanal. Chem. 161, 355376.CrossRefGoogle Scholar
Bowden, E. F., Hawkridge, F. M., Chlebowski, J. F., Bancroft, E. E., Thorpe, C. & Blount, H. N. (1982). Cyclic voltammetry and derivative cyclic voltabsorptometry of purified horse heart cytochrome c at tin-doped indium oxide optically transparent electrodes. J. Amer. Chem. Soc. 104, 76417644.Google Scholar
Brash, J. L. & Lyman, D. J. (1971). Adsorption of proteins and lipids to nonbiological surfaces. In The Chemistry of Biosurfaces, vol. 1 (ed. Hair, M. L.), pp. 177232. New York: Marcel Dekker.Google Scholar
Brautigan, D. L., Ferguson-Miller, S. & Margoliash, E. (1978). Mitochondrial cytochrome c: preparation and activity of native and chemically modified cytochromes c. Methods Enzymol. 53, 128164.CrossRefGoogle ScholarPubMed
Brown, G. M. & Sutin, N. (1979). A comparison of the rates of electron-exchange of ammine complexes of ruthenium(II) and -(III) with the predictions of adiabetic, outer-sphere electron transfer models. J. Amer. Chem. Soc. 101, 883892.Google Scholar
Burkey, K. O. & Gross, E. L. (1982). Chemical modification of spinach plastocyanin: separation and characterisation of four different forms. Biochemistry 21, 58865890.CrossRefGoogle ScholarPubMed
Butler, J., Henderson, R. A., Armstrong, F. A. & Sykes, A. G. (1979). Formation, spectrum and reactivity of half-reduced 8-Fe Clostridium pasteurianum ferredoxin in pulse radiolysis studies. Mechanism of reduction and non-cooperativity of the 4-Fe clusters. Biochem. J. 183, 471474.CrossRefGoogle Scholar
Burnett, R. M., Darling, G. D., Kendall, D. S., Le Quesne, M. E., Mayhew, S. G., Smith, W. W. & Ludwig, M. L. (1974). The structure of the oxidized form of Clostrial flavodoxin at 1·9 Å resolution. J. Biol. Chem. 249, 43834392.CrossRefGoogle Scholar
Cammack, R., Dickson, D. P. E. & Johnson, C. E. (1977). Evidence from Mössbauer spectroscopy and magnetic resonance on the active centers of the iron-sulfur proteins. In Iron-sulfur Proteins, vol. 3 (ed. Jovenberg, W.), ch. 8. New York and London: Academic Press.Google Scholar
Cass, A. E. G., Davis, G., Francis, G. D., Hill, H. A. O., Aston, W. J., Higgins, I. J., Plotkin, E. V., Scott, L. D. L. & Turner, A. P. F. (1984). Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal. Chem. 56, 667671.CrossRefGoogle ScholarPubMed
Cass, A. E. G., Davis, G., Hill, H. A. O. & Nancarrow, D. J. (1985 a). The reaction of flavocytochrome b 2 with cytochrome c and ferricinium carboxylate. Comparative kinetics by cyclic voltammetry and chrono-amperometry. Biochim. Biophys. Acta 828, 5157.CrossRefGoogle Scholar
Cass, A. E. G., Davis, G., Green, M. J. & Hill, H. A. O. (1985 b). Ferricinium ion as an electron acceptor for oxido-reductases. J. Electroanal. Chem. 190, 117127.Google Scholar
Castner, J. F. & Hawkridge, F. M. (1983). Heterogeneous electron-transfer kinetic parameters of metalloproteins as studied by channel-flow hydrodynamic voltammetry. J. Electroanal. Chem. 143, 217232.CrossRefGoogle Scholar
Chan, T.-M., Ulrich, E. L. & Markley, J. L. (1983). Nuclear magnetic resonance studies of two-iron–two-sulfur ferredoxins. 4. Interactions with redox partners. Biochemistry 22, 60026007.Google Scholar
Chao, S., Robbins, J. L. & Wrighton, M. S. (1983). A new ferro-cenophane surface derivatizing reagent for the preparation of nearly reversible electrodes for horse heart ferri-/ferrocytochrome c: 2,3,4,5-tetramethyl-I-((dichlorosilyl)methyl)[2]-ferrocenophane. J. Amer. Chem. Soc. 105, 181188.CrossRefGoogle Scholar
Chapman, S. K., Watson, A. D. & Sykes, A. G. (1983). Kinetic studies on I: I electron transfer reactions involving blue copper proteins. Part 6. Competitive inhibition of the Co(phen) (phen = 1,10-phenanthroline) oxidation of parsley plastocyanin PCu(I) by redox-inactive complexes. J. Chem. Soc. Dalton Trans. 25432548.Google Scholar
Clark, L. C. & Lyons, C. (1962). Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 102, 2945.CrossRefGoogle ScholarPubMed
Coleman, J. O. D., Hill, H. A. O., Walton, N. J. & Whatley, F. R. (1983). Electrochemically-driven respiration in mitochondria and Paracoccus denitrificans. The coupling of the electrochemistry of horse heart cytochrome c with respiration in mitochondria and a model thereof, Paracoccus denitrificans. FEBS Lett. 154, 319322.CrossRefGoogle Scholar
Colman, P. M., Freeman, H. C., Guss, J. M., Murata, M., Norris, V. A., Ramshaw, J. A. M. & Venkatappa, M. P. (1978). X-ray crystal structure analysis of plastocyanin at 2·7 Å resolution. Nature 272, 319324.CrossRefGoogle Scholar
Cookson, D. J., Hayes, M. T. & Wright, P. E. (1980). NMR study of the interaction of plastocyanin with chromium (III) analogues of inorganic electron-transfer reagents. Biochem. Biophys. Acta 591, 162176.Google ScholarPubMed
Cotton, T. M., Kaddi, D. & Iorga, D. (1983). Surface-enhanced Raman scattering study of bipyridyl-modified Ag electrodes. J. Amer. Chem. Soc. 105, 74627464.CrossRefGoogle Scholar
Crawley, C. D. & Hawkridge, F. M. (1981). Spectroelectrochemical determination of the heterogeneous electron transfer kinetics of soluble spinach ferredoxin. Biochem. Biophys. Res. Commun. 99, 516522.CrossRefGoogle ScholarPubMed
Dhesi, R., Cotton, T. M. & Timkovich, R. (1983). Reaction of redox proteins at a 4,4′-bipyridyl-modified carbon paste electrode. J. Elec troanal. Chem. 154, 129139.CrossRefGoogle Scholar
Dickerson, R. E., Tarano, T., Eisenberg, D., Kallai, O. B., Samson, L., Cooper, A. & Margoliash, E. (1971). Ferricytochrome c. J. Biol. Chem. 246, 15111535.CrossRefGoogle ScholarPubMed
Di Gleria, K., Hill, H. A. O., McNeil, C. J. & Green, M. J. (1986). Homogeneous ferrocene-mediated amperometric immunoassay. Anal. Chem. (in the press).CrossRefGoogle Scholar
Dryhurst, G., Kadish, K. M., Scheller, F. & Renneberg, R. (1982). Biological Electrochemistry, vol. 1, ch. 7. New York and London: Academic Press.Google Scholar
Durliat, H. & Comtat, M. (1982). Investigation of electron transfer between platinum and large biological molecules by thin-layer spectroelectrochemistry. Anal. Chem. 54, 856861.CrossRefGoogle ScholarPubMed
Eaton, W. A. & Lovenberg, W. (1973). The iron-sulfur complex in rubredoxin. In Iron-sulfur Proteins, vol. 2 (ed. Lovenberg, W.), ch. 3. New York and London: Academic Press.Google Scholar
Eddowes, M. J. & Hill, H. A. O. (1979). Electrochemistry of horse heart gation of the electrochemistry of metalloproteins: cytochrome c. J. Chem. Soc. Chem. Commun. 771772.Google Scholar
Eddowes, M. I. & Hill, H. A. O. (1979). Electrochemistry of horse heart cytochrome c. J. Amer. Chem. Soc. 101, 44614464.Google Scholar
Eddowes, M. J., Hill, H. A. O. & Uosaki, K. (1979). Electrochemistry of cytochrome c. Comparison of the electron transfer at a surface-modified gold electrode with that to cytochrome oxidase. J. Amer. Chem. Soc. 101, 71137114.CrossRefGoogle Scholar
Eddowes, M. J., Hill, H. A. O. & Uosaki, K. (1980). The electrochemistry of cytochrome c. Investigation of the mechanism of the 4,4′-bipyridyl surface modified gold electrode. Bioelectrochem. Bioenerg. 7, 527537.Google Scholar
Elliott, D., Hamnett, A., Lettington, O. C., Hill, H. A. O. & Walton, N. J. (1986). The determination, by ellipsometry, of the mode of adsorptions on gold of some promoters of redox-protein direct electrochemistry. J. Electroanal. Chem. 202, 303314.Google Scholar
Fersht, A. (1985). Enzyme Structure and Mechanism, chapter 11. New York: Freeman and Company.Google Scholar
Freeman, H. C. (1981). Electron transfer in blue copper proteins. In Coordination Chemistry-21 (ed. Laurent, J. P.), pp. 2951. Oxford: Pergamon Press.CrossRefGoogle Scholar
Haladjian, J., Bianco, P. & Pilard, R. (1983). Modification of the gold electrode for the electrochemical study of cytochrome c. Electrochimica Acta 28, 18231828.CrossRefGoogle Scholar
Haladjian, J., Pilard, R., Bianco, P., Asso, L., Galy, J. P. & Vidal, R. (1985). Electrochemical study of electrode activators: 4,4′-azopyridine and its electron transfer properties to cytochrome c. Electrochimica Acta 30, 695699.Google Scholar
Handford, P. M., Hill, H. A. O., Lee, R. W.-K., Henderson, R. A. & Sykes, A. G. (1980). Investigation of the binding of inorganic complexes to blue copper proteins by 1H-nmr spectroscopy. I. The interaction between the [Cr(phen)3]3+ and [Cr(CN)6]3− ions and the copper(I) form of parsley plastocyanin. J. Inorg. Biochem. 13, 8388.CrossRefGoogle Scholar
Harmer, M. A. & Hill, H. A. O. (1985). The direct electrochemistry of redox proteins at metal oxide electrodes. J. Electroanal. Chem. 189, 229246.CrossRefGoogle Scholar
Hawkridge, F. M. & Kuwana, T. (1973). Indirect coulometric titration of biological electron transport components. Anal. Chem. 45, 10211027.Google Scholar
Higgins, I. J. & Hill, H. A. O. (1985). Bioelectrochemistry. In Essays in Biochemistry, vol. 21 (ed. Campbell, P. N. and Marshall, R. D.), pp. 119145. New York and London: Academic Press.Google Scholar
Hill, H. A. O., Page, D. J., Walton, N. J. & Whitford, D. (1985 a) Direct electrochemistry, at modified gold electrodes, of redox proteins having negatively-charged binding domains: spinach plastocyanin and a multi-substituted carboxydinitrophenyl derivative of horse heart cytochrome c. J. Electroanal. Chem. 187, 315324.Google Scholar
Hill, H. A. O., Walton, N. J., Whitford, D. & Coleman, J. O. D. (1985 b). The measurement of changes in pH associated with electro-chemically driven respiration in rat liver mitochondria. J. Inorg. Biochem. 23, 303309.Google Scholar
Hill, H. A. O., Oliver, B. N., Page, D. J. & Hopper, D. J. (1985 c). The enzyme-catalysed electrochemical conversion of p-cresol into p-hydroxybenzaldehyde. J. Chem. Soc. Chem. Commun. 14691471.Google Scholar
Hill, H. A. O., Page, D. J. & Walton, N. J. (1986 b). Surface substitution reactions at modified gold electrodes and their effect on the electrochemistry of horse heart cytochrome c. J. Electroanal. Chem. (submitted for publication).Google Scholar
Hill, H. A. O., Page, D. J. & Walton, N. J. (1986 b). Direct electrochemistry of bacterial cytochrome c 551 at surface-modified gold electrodes. J. Electroanal. Chem. (submitted for publication).Google Scholar
Hinnen, C., Parsons, R. & Niki, K. (1983). Electrochemical and spectroreflectance studies of the adsorbed horse heart cytochrome c and cytochrome c 3 from D. Vulgaris, Miyazaki strain, at gold electrode. J. Electroanal. Chem. 147, 329337.CrossRefGoogle Scholar
Ho, P. S., Sutoris, C., Liang, N., Margoliash, E. & Hoffman, B. M. (1985). Species specificity of long-range electron transfer within the complex between zinc-substituted cytochrome c peroxidase and cytochrome c. J. Amer. Chem. Soc. 107, 10701071.CrossRefGoogle Scholar
Hopfield, J. J. (1974). Electron transfer between biological molecules by thermally activated tunnelling. Proc. Natn. Acad. Sci. U.S.A. 71, 36403644.CrossRefGoogle Scholar
Hupp, J. T. & Weaver, M. J. (1983). The frequency factor for outer-sphere electrochemical reactions. J. Electroanal. Chem. 152, 114.Google Scholar
Isied, S. S. (1984). Long-range electron transfer in peptides and proteins. Progress in Inorganic Chemistry 32, 443517.Google Scholar
Isied, S. S., Kuehn, C. & Worosila, G. (1984). Ruthenium-modified cytochrome c: temperture dependence of the rate of intramolecular electron transfer. J. Amer. Chem. Soc. 106, 17221726.Google Scholar
Isied, S. S. & Vassilian, A. (1984). Electron transfer across polypeptides. 2. Amino acids and flexible dipeptide bridging ligands (and references given therein). J. Amer. Chem. Soc. 106, 17261732.Google Scholar
Kakutani, T., Toriyama, K., Ikeda, T. & Senda, M. (1980). Electrochemical behaviour of ferredoxins adsorbed on mercury electrode surface. Cyclic d.c. and a.c. voltammetric studies with hanging mercury drop electrode. Bull. Chem. Soc. Japan 52, 19371943.Google Scholar
Kamau, G. N., Willis, W. S. & Rusling, J. R. (1985). Electrochemical and electron spectroscopic studies of highly polished glassy carbon electrodes. Anal. Chem. 57, 545551.CrossRefGoogle ScholarPubMed
Katoh, S., Shiratori, I. & Takamiya, A. (1962). Purification and some properties of spinach plastocyanin. J. Biochem. (Tokyo) 51, 3240.CrossRefGoogle ScholarPubMed
Kent, T. A., Dreyer, J.-L., Kennedy, M. C., Huynh, H. H., Emptage, M. H., Beinert, H. & Münck, E. (1982). Mössbauer studies of beef heart aconitase: evidence for facile interconversions of iron-sulfur clusters. Proc. Natl. Acad. Sci., U.S.A. 79, 10961100.Google Scholar
Koppenol, W. H. & Margoliash, E. (1981). The asymmetric distribution of charges on the surface of horse cytochrome c. J. Biol. Chem. 257, 44264437.Google Scholar
Kostić, N. M., Margalit, R., Che, C.-M. & Gray, H. B. (1983). Kinetics of long-distance ruthenium-to-copper electron transfer in [penta-ammineruthenium histidine-83] azurin. J. Amer. Chem. Soc. 105, 77657767.Google Scholar
Landrum, H. L., Salmon, R. T. & Hawkridge, F. M. (1977). A surface-modified gold minigrid electrode which heterogeneously reduces spinach ferredoxin. J. Amer. Chem. Soc. 99, 31543158.CrossRefGoogle ScholarPubMed
Lappin, A. G. (1981). Properties of copper ‘blue’ proteins. In Metal ions in Biological Systems, vol. 13 (ed. Sigel, H.), pp. 1571. New York.Google Scholar
Lappin, A. G., Lewis, C. A. & Ingledew, W. J. (1985). Kinetics and mechanism of reduction of rusticyanin, a blue copper protein from Thiobacillus ferrooxidans, by inorganic cations. Inorg. Chem. 24, 14461450.CrossRefGoogle Scholar
Lyklema, J. (1984). Proteins at solid-liquid interfaces. A colloid-chemical review. Colloids and Surfaces 10, 3342.CrossRefGoogle Scholar
Margoliash, E. & Bosshard, H. R. (1983). Guided by electrostatics, a textbook protein comes of age. Trends Biochem. Sci. (Pers. ed.) 8, 316320.CrossRefGoogle Scholar
Matthew, J. B., Weber, P. C., Salemme, F. R. & Richards, F. M. (1983). Electrostatic orientation during electron transfer between flavodoxin and cytochrome c. Nature (Lond.) 301, 169171.Google Scholar
Mauk, A. G., Scott, R. A. & Gray, H. B. (1980). Distances of electron transfer to and from metalloprotein redox sites in reactions with inorganic complexes. J. Amer. Chem. Soc. 102, 43604363.Google Scholar
Mayhew, S. G., Foust, G. P. & Massey, V. (1969). Oxidation-reduction properties of flavodoxin from Peptostreptococcus elsdenii. J. Biol. Chem. 244, 803810.CrossRefGoogle ScholarPubMed
Millett, F., de Jong, C., Paulson, L. & Capaldi, R. A. (1983). Identification of specific carboxylate groups on cytochrome c oxidase that are involved in binding cytochrome c. Biochemistry 22, 546552.Google Scholar
Mortenson, L. E. & Nakos, G. (1973). Bacterial ferredoxins and/or iron–sulfur proteins as electron carriers. In Iron–Sulfur Proteins, vol. 1 (ed. Lovenberg, W.), ch. 2. New York and London Academic Press.Google Scholar
Nakano, T., Hase, T. & Matsubara, H. (1981). The complete amino acid sequence of parsley (Petroserinum sativum) ferredoxin. J. Biochem. (Tokyo) 90, 17251730.CrossRefGoogle Scholar
Nicholson, R. S. (1964). Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 37, 13511355.Google Scholar
Nicholson, R. S. & Shain, I. (1964). Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible and kinetic systems. Anal. Chem. 36, 706723.CrossRefGoogle Scholar
Nocera, D. G., Winkler, J. R., Yocum, K. M., Bordignon, E. & Gray, H. B. (1984). Kinetics of intramolecular electron transfer from RuII to FeIII in ruthenium-modified cytochrome c. J. Amer. Chem. Soc. 106, 51455150.Google Scholar
Norde, W. & Lyklema, J. (1978 a). The adsorption of human plasma albumin and bovine pancreas ribonuclease at negatively charged polystyrene surfaces. I. Adsorption isotherms. Effects of charge, ionic strength and temperature. J. Colloid. Interface Sci. 66, 257265.CrossRefGoogle Scholar
Norde, W. & Lyklema, J. (1978 b). The adsorption of human plasma albumin and bovine pancrease ribonuclease at negatively charged polystyrene surfaces. IV. The charge distribution in the adsorbed state. J. Colloid. Interface Sci. 66, 285294.Google Scholar
Norde, W. & Lyklema, J. (1979). Thermodynamics of protein adsorption. Theory with special reference to the adsorption of human plasma albumin and bovine pancrease ribonuclease at polystyrene surfaces. J. Colloid. Interface Sci. 71, 350366.CrossRefGoogle Scholar
Peterson-Kennedy, S. E., McGourty, J. L. & Hoffman, B. M. (1984). Temperature dependence of long-range electron transfer in [Zn, FeIII] hybrid hemoglobin. J. Amer. Chem. Soc. 106, 50105012.Google Scholar
Poulos, T. L. & Kraut, J. (1980). A hypothetical model of the cytochrome c peroxidase-cytochrome c electron-transfer complex. J. Biol. Chem. 255, 1032210330.Google Scholar
Poulos, T. L. & Mauk, A. G. (1983). Models for the complexes formed between cytochrome b 5 and the subunits of methemoglobin. J. Biol. Chem. 258, 73697373.Google Scholar
Rieder, R. & Bosshard, H. R. (1980). Comparison of the binding sites on cytochrome c for cytochrome c oxidase, cytochrome bc 1, and cytochrome c 1. J. Biol. Chem. 255, 47324739.Google Scholar
Salemme, F. R. (1976). A hypothetical structure for an intermolecular electron transfer complex of cytochromes c and b 5. J. Mol. Biol. 102, 563568.Google Scholar
Salemme, F. R. (1977). Structure and function of cytochrome c. Ann. Rev. Biochem. 46, 299329.CrossRefGoogle Scholar
Scheller, F., Prumke, H.-J. & Schmidt, H. E. (1976 a). Radiochemische und elektrochemische Untersuchung der adsorption von cytochrom c an der phasengrenze elektrolyt/quecksilber. J. Electroanal. Chem. 70, 219227.Google Scholar
Scheller, F., Prumke, H.-J., Schmidt, H. E. & Mohr, P. (1976 b). Interfacial behaviour and cathodic reduction of globular proteins. Bioelectrochem. Bioenerg. 3, 328337.CrossRefGoogle Scholar
Segal, M. G. & Sykes, A. G. (1978). Kinetic studies on 1: 1 electron-transfer reactions involving blue copper proteins, I. Evidence for an unreactive form of the reduced protein (pH < 5) and for protein–complex association in reactions of parsley (and spinach) plastocyanin. J. Amer. Chem. Soc. 100, 45854592.Google Scholar
Sinclair-Day, J. D., Sisley, M. J., Sykes, A. G., King, G. C. & Wright, P. E. (1985). Acid dissociation constants for plastocyanin in the Cu(I) state. J. Chem. Soc. Chem. Commun. 505507.Google Scholar
Smith, H. T., Ahmed, A. J. & Millett, F. (1981). Electrostatic interaction of cytochrome c with cytochrome c 1 and cytochrome oxidase. J. Biol. Chem. 256, 49844990.CrossRefGoogle ScholarPubMed
Stellwagen, E. (1978). Haem exposure as the determinate of oxidation-reduction potential of haem proteins. Nature 275, 7374.Google Scholar
Stombaugh, N. A., Sundquist, J. E., Burris, R. H. & Orme-Johnson, W. H. (1976). Oxidation-reduction properties of several low potential iron–sulfur proteins and of methylviologen. Biochemistry 15, 26332641.Google Scholar
Sutin, N. (1982). Nuclear, electronic and frequency factors in electron-transfer reactions. Acc. Chem. Res. 15, 275282.Google Scholar
Swanson, R., Trus, B. L., Mandel, N., Mandel, G., Kallai, O. B. & Dickerson, R. E. (1977). Tuna cytochrome c at 2·0 Å resolution. J. Biol. Chem. 252, 759775 (see also, following paper).Google Scholar
Sweeney, W. V. & McIntosh, B. A. (1979). Determination of cooperative interaction between clusters in Clostridium pasteurianum 2[4Fe–4S] ferredoxin. J. Biol. Chem. 254, 44994501.Google Scholar
Takabe, T., Ishikawa, H., Niwa, S. & Itoh, S. (1983). Electron transfer between plastocyanin and P700 in highly-purified photosystem I reaction center complex. Effects of pH, cations and subunit peptide composition. J. Biochem. (Tokyo) 94, 19011911.Google Scholar
Tam, S.-C. & Williams, R. J. P. (1984). Electrostatic interactions between organic ions. J. Chem. Soc. Faraday Trans. I 80, 22552267.Google Scholar
Tanford, C. (1980). The Hydrophobie Effect, 2nd edn.Wiley-Interscience.Google Scholar
Taniguchi, I., Murakami, T., Toyosawa, K., Yamaguchi, H. & Yasukouchi, K. (1982). Cyclic voltammetric behaviour of horse heart cytochrome c at a platinum electrode in the presence of 4,4′-bipyridine. J. Electroanal. Chem. 131, 397401.Google Scholar
Taniguchi, I., Toyosawa, K., Yamaguchi, H. & Yasukouchi, K. (1982 a). Reversible electrochemical reduction and oxidation of cytochrome c at a bis(4-pyridyl)disulphide-modified gold electrode. J. Chem. Soc. Chem. Commun. 10321033.Google Scholar
Taniguchi, I., Toyosawa, K., Yamaguchi, H. & Yasukouchi, K. (1982 b). Voltammetric response of horse heart cytochrome c at a gold electrode in the presence of sulfur bridged bipyridines. J. Electroanal. Chem. 140, 187193.Google Scholar
Taniguchi, I., Masahiro, I., Yamaguchi, H. & Yasukouchi, K. (1984 a). Surface enhanced Raman scattering study of horse heart cytochrome c at a silver electrode in the presence of bis(4-pyridyl)disulphide and purine. J. Electroanal. Chem. 175, 341348.Google Scholar
Taniguchi, I., Iseki, M., Toyosawa, K., Yamaguchi, H. & Yasukouchi, K. (1984 b). Purines as new promoters for the voltammetric response of horse heart cytochrome c at a gold electrode. J. Electroanal. Chem. 164, 385391.Google Scholar
Taniguchi, I., Iseki, M., Yamaguchi, H. & Yasukouchi, K. (1985). Surface enhanced Raman scattering from bis(4-pyridyl)-disulphide-and 4,4′-bipyridine-modified gold electrodes. J. Electroanal. Chem. 186, 299307.Google Scholar
Thomson, A. J., Robinson, A. E., Johnson, M. K., Cammack, R., Rao, K. K. & Hall, D. O. (1981). Low-temperature magnetic circular dichroism evidence for the conversion of four-iron-sulphur clusters in a ferredoxin from Clostridium apasteurianum into three-iron-sulphur clusters. Biochim. Biophys. Acta 637, 423432.Google Scholar
Thorneley, R. N. F. & Lowe, D. J. (1983). Nitrogenase of Klebsiella pneumoniae. Kinetics of the dissociation of oxidized iron protein from molybdenum-iron protein: identification of the rate-limiting step for substrate reduction. Biochem. J. 215, 393403.Google Scholar
Tollin, G., Cheddar, G., Watkins, J. A., Keyer, T. E. & Cusanovich, M. A. (1984). Electron transfer between flavodoxin semiquinone and c-type cytochromes: correlations between electrostatically corrected rate constants, redox potentials and surface topologies. Biochemistry 23, 63456349.CrossRefGoogle ScholarPubMed
Tsukihara, T., Fukuyama, K., Nakamura, M., Katsube, Y., Tanaka, N., Kakudo, M., Wada, K., Hase, T. & Matsubara, H. (1981). X-ray analysis of a [2Fe–2S] ferredoxin from Spirulina platensis. Main chainfold and location of side chains at 2·5 Å resolution. J. Biochem. (Tokyo) 90, 17631773.Google Scholar
van Dijk, C., van Leeuwen, J. W., Veeger, C., Schreurs, J. P. G. M. & Barendrecht, E. (1982). Electrochemical behaviour of low-potential electron-transferring proteins at the mercury electrode. Bioelectro chem. Bioenerg. 9, 743759.Google Scholar
Van Dulm, P., Norde, W. & Lyklema, J. (1981). Ion participation in protein adsorption at solid surfaces. J. Colloid Interface Sci. 82, 7782.Google Scholar
Watenpaugh, K. D., Sieker, L. C., Jensen, L. H., Legall, J. & Dubourdieu, M. (1972). Structure of the oxidised form of flavodoxin at 2·5 Å resolution: resolution of the phase ambiguity by anomalous scattering. Proc. Natl. Acad. Sci. U.S.A. 69, 31853188.Google Scholar
Watenpaugh, K. D., Sieker, L. C. & Jensen, L. H. (1979). The structure of rubredoxin at 1·2 Å resolution. J. Mol. Biol. 131, 509522.CrossRefGoogle ScholarPubMed
Yeh, P. & Kuwana, T. (1977). Reversible electrode reaction of cytochrome c. Chem. Lett. 11451148.Google Scholar
Yocum, C. F., Siedow, J. N. & San Pietro, A. (1973). Iron–sulfur proteins in photosynthesis. In Iron–Sulfur Proteins, vol. 1 (ed. Lovenberg, W.), ch. 4. New York and London: Academic Press.Google Scholar