Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T18:57:17.781Z Has data issue: false hasContentIssue false

The reaction of the psoralens with deoxyribonucleic acid

Published online by Cambridge University Press:  17 March 2009

John E. Hearst
Affiliation:
Department of Chemistry, University of California, Berkeley, CA 94720
Stephen T. Isaacs
Affiliation:
Department of Chemistry, University of California, Berkeley, CA 94720
David Kanne
Affiliation:
Department of Chemistry, University of California, Berkeley, CA 94720
Henry Rapoport
Affiliation:
Department of Chemistry, University of California, Berkeley, CA 94720
Kenneth Straub
Affiliation:
Department of Chemistry, University of California, Berkeley, CA 94720

Extract

Psoralen photochemistry is specific for nucleic acids and is better understood at the molecular level than are all other methods of chemical modification of nucleic acids. These compounds are used both for in vivo structure analysis and for photochemotherapy since they easily penetrate both cells and virus particles. Apparently, natural selection has selected for membrane and virus penetrability during the evolution of these natural products. Most cells are unaffected by relatively high concentrations of psoralens in the absence of ultraviolet light, and the metabolites of the psoralens have thus far not created a problem. Finally, psoralens form both monoadduct and cross-links in nucleic acid helices, the yield of each being easily controlled by the conditions used during the photochemistry.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aberth, W., Straub, K. M. & Burlingame, A. L. (1982) Secondary ion mass spectrometry with a cesium ion primary beam and liquid target matrix for analysis of bioorganic compounds. Analyt. Chem. 54, 20292034.CrossRefGoogle Scholar
Averbeck, D., Moustacchi, E. & Bisagni, E. (1978) Biological effects and repair of damage photoinduced by a derivative of psoralen substituted at the 3,4 reaction site. Photoreactivity of this compound and lethal effect in yeast. Biochim biophysica Acta 518, 464481.CrossRefGoogle ScholarPubMed
Barber, M., Bordoli, R. S., Sedgwick, R. D. & Tyler, A. L. (1981) Fast atom bombardment of solids: A new ion source for mass spectrometry. J. chem. Soc., chem. Commun. pp. 325327.Google Scholar
Beckey, H. D. (1977) Principals of Field lonization and Field Desorption Mass Spectrometry. Oxford: Pergamon.Google Scholar
Bell, R. A. & Saunders, J. K. (1969) Correlation of the intramolecular nuclear Overhauser effect with internuclear distance. Can. J. Chem. 48, 11141122.CrossRefGoogle Scholar
Bender, D. R., Rapoport, H. & Hearst, J. E. (1979) Psoralen synthesis. Improvements on furano ring formation. Application to the synthesis of 4,5′,8-trimethylpsoralen. J. org. Chem. 44, 2176.CrossRefGoogle Scholar
Chanet, R., Gassier, C., Magana-Schwenke, N. & Moustacchi, E. (1983) Fate of photoinduced 8-methoxypsoralen monoadducts in yeast. Evidence for bypass of these lesions in the absence of excision-repair. Mut. Res. DNA Repair Reports. (In the Press).CrossRefGoogle Scholar
Chatterjee, P. K. & Cantor, C. R. (1978) Photochemical production of psoralen-DNA monoadducts capable of subsequent photocross-linking. Nucl. Acids Res. 5, 3619.CrossRefGoogle Scholar
Cole, R. S. (1971) Psoralen monoadducts and interstrand crosslinks in DNA. Biochim. biophys. Acta 254, 3039.CrossRefGoogle ScholarPubMed
Dall'Acqua, F., Marciani, S. & Rodighiero, G. (1970) Interstrand cross-linkages occurring in the photoreaction between psoralen and DNA. FEES Lett. 9, 121.CrossRefGoogle ScholarPubMed
Dall'Acqua, F., Marciani, S., Ciavatta, L. & Rodighiero, G. (1971) Formation of interstrand cross-linkings in the photoreactions between furocoumarins and DNA. Z. Naturf. 26 b, 561569.CrossRefGoogle ScholarPubMed
Dall'Acqua, F., Marciani, S., Vedaldi, D. & Rodighiero, G. (1974) Studies on the photoreactions (365 nm) between DNA and some methylpsoralens. Biochim. biophys. Acta 353, 267273.CrossRefGoogle ScholarPubMed
Fleming, I. & Williams, D. H. (1967) The NMR spectra of four-membered carbocyclic ring systems. Tetrahedron 23, 27472765.CrossRefGoogle Scholar
Gamper, H., Piette, J. G. & Hearst, J. E. (1984) Efficient formation of a crosslinkable HMT monoadduct at the Kpn I recognition site. Photochem. Photobiol. (In the Press).CrossRefGoogle Scholar
Hanson, C. V., Riggs, J. L. & Lennette, E. H. (1978) Photochemical inactivation of DNA and RNA viruses by psoralen derivatives. J. gen. Virol. 40 (2), 345358.CrossRefGoogle ScholarPubMed
Hearst, J. E. & Thiry, L. (1977) The photoinactivation of an RNA animal virus, vesicular stomatitis virus, with the aid of newly synthesized psoralen derivatives. Nucl. Acids Res. 4, 1339.CrossRefGoogle ScholarPubMed
Hignite, C. (1980) Nucleic acids. In Biochemical Applications of Mass Spectrometry (ed. Waller, G. R. and Dermer, O. C.) pp. 527540. New York: Wiley.Google Scholar
Hyde, J. E. & Hearst, J. E. (1978) Binding of psoralen derivatives to DNA and chromatin: Influence of the ionic environment on dark binding and photoreactivity. Biochemistry 17, 1251.CrossRefGoogle ScholarPubMed
Isaacs, S. T., Shen, C.-K. J., Rapoport, H. & Hearst, J. E. (1977) Synthesis and characterization of new psoralen derivatives with superior photoreactivity with DNA and RNA. Biochemistry 16, 1058.CrossRefGoogle ScholarPubMed
Isaacs, S. T., Chun, C., Hyde, J. E., Rapoport, H. & Hearst, J. E. (1982 a) A photochemical characterization of reactions of psoralen derivatives with DNA. In Trends in Photobiology (ed. Helene, C., Charlier, M., Montenay-Garestier, Th. and Laustriat, G.), pp. 279294. New York: Plenum.CrossRefGoogle Scholar
Isaacs, S. T., Rapoport, H. & Hearst, J. E. (1982 b) Synthesis of deuterium and tritium labeled psoralens. J. Labelled Compounds & Radiopharmaceuticals 19, 345356.CrossRefGoogle Scholar
Isaacs, S. T., Wiesehahn, G. & Hallick, L. M. (1983) In vitro characterization of the reaction of four psoralen derivatives with DNA. J. natn. Cancer Inst. (In the Press).CrossRefGoogle Scholar
Johnston, B. H., Johnson, M. A., Moore, C. B. & Hearst, J. E. (1977) Psoralen-DNA photoreaction: controlled production of mono- and di-adducts with nanosecond ultraviolet laser pulses. Science, N. Y. 197, 906.CrossRefGoogle Scholar
Johnston, B. H., Kung, A. H., Moore, C. B. & Hearst, J. E. (1981 a) Kinetics of formation of DNA crosslinks by 4′(aminomethyl)-4,5′,8-trimethylpsoralen. Biochemistry 20, 735738.CrossRefGoogle Scholar
Johnston, B. H. & Hearst, J. E. (1981 b). Low level psoralen-deoxyribonucleic acid cross-links induced by single laser pulses. Biochemistry 20, 739745.CrossRefGoogle ScholarPubMed
Johnston, B. H. & Hearst, J. E. (1981 c). Characterization of the photo-reaction between DNA and aminomethyl-trimethylpsoralen using absorption and fluorescence spectroscopy. Photochem. Photobiol. 33, 785792.CrossRefGoogle Scholar
Kanne, D., Straub, K., Rapoport, H. & Hearst, J. E. (1982 b) The psoralen-DNA photoreaction. Characterization of the monoaddition products from 8-methoxypsoralen and 4,5′,8-trimethylpsoralen. Biochemistry 21, 861871.CrossRefGoogle Scholar
Kanne, D., Straub, K., Hearst, J. E. & Rapoport, H. (1982 b) Isolation and characterization of pyrimidine psoralen diadducts from DNA. Kinetics of diadduct formation from monoadducts. J. Am. chem. Soc. 104, 67546764.CrossRefGoogle Scholar
Kanne, D., Rapoport, H. & Hearst, J. E. (1984) The 8-methoxypsoralen-nucleic acid photoreaction. Effect of methyl substitution on pyrone vs. furan photoaddition. J. Med. Chem. (In the Press).CrossRefGoogle Scholar
Kolis, S. J., Williams, T. H., Postma, E. J., Sasso, G. J., Confalone, P. N. & Schwartz, M. A. (1979). The metabolism of 14C-methoxsalen by the dog. Drug Metab. & Disposit. 7, 220–5.Google Scholar
Liebman, A. A. & Delaney, C. W. (1981) Labelled psoralens. Synthesis of 4′-aminomethyltrioxsalen-3–1. J. Labelled Compounds & Radio-Pharmaceuticals 18 (8), 11671172.CrossRefGoogle Scholar
Peckler, S., Graves, B., Kanne, D., Rapoport, H., Kim, S.-H. & Hearst, J. E. (1982) Structure of a psoralen-thymine monoadduct formed in photoreaction with DNA. J. molec. Biol. 162, 157.CrossRefGoogle ScholarPubMed
Piette, J. G. & Hearst, J. E. (1983) Termination sites of the in vitro nick-translation on DNA that had photoreacted with psoralen. Proc. natn. Acad. Sci. U.S.A. 80, 5540.CrossRefGoogle ScholarPubMed
Rodighiero, G., Chandra, P. & Walker, A. (1970 a). Structural specificity for the photoinactivation of nucleic acids by furocoumarins. FEBS Lett. 10(1), 2932.CrossRefGoogle ScholarPubMed
Rodighiero, G., Musajo, J., Dall'acqua, F., Marciani, S., Caporale, G. & Ciavatta, L. (1970 b) Mechanism of skin photosensitization by furocoumarins. Photoreactivity of various furocoumarins with native DNA and with ribosomal RNA. Biochim. Biophys. Acta 217, 4049.CrossRefGoogle Scholar
Song, P.-S., Harter, M. L., Moore, T. A. & Herndon, W. C. (1971) Luminence spectra and photocycloaddition of the excited coumarins to DNA bases. Photochem. Photobiol. 14, 521.CrossRefGoogle Scholar
Straub, K., Kanne, D., Hearst, J. E. & Rapoport, H. (1981) Isolation and characterization of pyrimidine-psoralen photoadducts from DNA. J. Am. chem. Soc. 103, 23472355.CrossRefGoogle Scholar
Tessman, J., Isaacs, S. T. & Hearst, J. E. (In preparation.)Google Scholar
Thompson, J. F. & Hearst, J. E. (1983) Structure of E. coli 16S RNA elucidated by psoralen crosslinking. Cell 32, 1355.CrossRefGoogle ScholarPubMed
Wolff, H. (1982) Absorption and metabolism of 8-MOP in rats and mice. Presented at the Conference on Photobiologic, Toxicologie and Pharmacologie Aspects of Psoralens, Research Triangle Park, North Carolina, March 1, 1982.Google Scholar
Zolan, M. E., Cortopassi, G. A., Smith, C. A. & Hanawalt, P. C. (1982). Deficient repair of chemical adducts in aDNA of monkey cells. Cell 28, 613619.CrossRefGoogle Scholar