Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-23T13:25:08.288Z Has data issue: false hasContentIssue false

The production and absorption of heat associated with electrical activity in nerve and electric organ

Published online by Cambridge University Press:  17 March 2009

J. M. Ritchie
Affiliation:
Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
R. D. Keynes
Affiliation:
Physiological Laboratory, Cambridge CB2 3EG, UK

Summary

All living cells require a supply of energy from appropriate metabolic pathways in order in fulfill their physiological functions. A special function common to peripheral nerve fibres and the electroplates of the electric organ is the generation of electrical potentials and a consequent flow of current. A large fraction of their metabolism is therefore devoted basically to maintenance of the unequal distribution of sodium and potassium ions across the cell membranes on which their electrical excitability depends, and involves a consumption of ATP by the membrane-bound Na, K—ATPase system known as the sodium pump.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbott, B. C., Hill, A. V. & Howarth, J. V. (1958). The positive and negative heat production associated with a nerve impulse. Proc. R. Soc. Lond. B148, 149187.Google Scholar
Abbott, B. C., Howarth, J. V. & Ritchie, J. M. (1965). The initial heat production associated with the nerve impulse in crustacean and mammalian non-myelinated nerve fibres. J. Physiol. 178, 368383.CrossRefGoogle ScholarPubMed
Aubert, X., Chance, B. & Keynes, R. D. (1964). Optical studies of biochemical events in the electric organ of Electrophorus. Proc. R. Soc. Lond. B160, 211245.Google Scholar
Aubert, X., Fessard, A. & Keynes, R. D. (1961). The thermal events during and after the discharge of the electric organs of Torpedo and Electrophorus. In Bioelectrogenesis (ed. Chagas, C., and Paes de Carvalho, A.). Amsterdam: Elsevier.Google Scholar
Aubert, X. & Keynes, R. D. (1968). The temperature changes during and after the discharge of the electric organ in Electrophorus electricus. Proc. R. Soc. Lond. B169, 241263.Google Scholar
Bernstein, J. & Tschermak, A. (1906). Untersuchungen zur Thermodynamik der bioelektrischen Strome. Zweiter Teil. Uber die Natur der Kette des elektrischen Organs bei Torpedo. Pflügers Arch. ges. Physiol. 112, 439521.CrossRefGoogle Scholar
Caldwell, P. C. & Keynes, R. D. (1963). Phosphagen breakdown and lactic acid formation on stimulation of the electric organ of Electrophorus. J. Physiol. 169, 3738P.Google Scholar
Chance, B., Clark, B. J., Nioka, S., Subramanian, H., Maris, J. M., Argov, Z. & Bode, H. (1985). Phosphorus nuclear magnestic resonance spectroscopy in vivo. Circulation 72, Suppl. IV. 103107.Google Scholar
Chandler, W. K., Hodgkin, A. L. & Meves, H. (1965). The effect of changing the internai solution on sodium inactivation and related phenomena in giant axons. J. Physiol. 180, 821836.CrossRefGoogle Scholar
Cheng, S.-C. & Keynes, R. D. (1967). Phosphate metabolism in the electric organ. Biochim Biophys Acta 143, 249256.Google Scholar
Cohen, L. B., Hille, B., Keynes, R. D., Landowne, D. & Rojas, E. (1971). Analysis of the potential-dependent changes in optical retardation in the squid giant axon. J. Physiol. 218, 205237.Google Scholar
Den Hertog, A., Greengard, P. & Ritchie, J. M. (1969). On the metabolic basis of nervous activity. J. Physiol. 204, 511521.Google Scholar
Fröhlich, H. (1958). Theory of Dielectrics. London: Oxford University Press.Google Scholar
Gurney, R. W. (1962). Ionic Processes in Solution. New York: Dover.Google Scholar
Hill, A. V. (1965). Trails and Trials in Physiology, pp. 304330. London: Arnold.Google Scholar
Hodgkin, A. L. & Huxley, A. F. (1952). A quantitative description of membrane current and ils application to conduction and excitation in nerve. J. Physiol. 117, 500544.Google Scholar
Howarth, J. V., Keynes, R. D. & Ritchie, J. M. (1968). The origin of the initial heat associated with a single impulse in mammalian non-myelinated nerve fibres. J. Physiol. 194, 745793.CrossRefGoogle ScholarPubMed
Howarth, J. V., Keynes, R. D., Ritchie, J. M. & Von Muralt, A. (1975). The heat production associated with the passage of a single impulse in pike olfactory nerve fibres. J. Physiol. 249, 349368.CrossRefGoogle ScholarPubMed
Howarth, J. V. & Ritchie, J. M. (1979). The recovery heat production in non-myelinated garfish olfactory nerve fibres. J. Physiol. 292, 167175.Google Scholar
Howarth, J. V., Ritchie, J. M. & Stagg, D. (1979). The initial heat production in garfish olfactory nerve fibres. Proc. R. Soc. Lond. B205, 347367.Google Scholar
Keynes, R. D. (1968). The temperature changes during and after the discharge of the electric organ in Malapterurus electricus. Proc. R. Soc. Lond. B169, 265274.Google Scholar
Keynes, R. D. (1986). Modelling the sodium channel. In Ion Channels in Neural Membranes (eds., Ritchie, J. M., Keynes, R. D. and Bolis, L.). New York: Alan Liss.Google Scholar
Keynes, R. D. & Martins-Ferreira, H. (1953). Membrane potentials in the electroplates of the electric eel. J. Physiol. 119, 315351.CrossRefGoogle ScholarPubMed
Keynes, R. D. & Ritchie, J. M. (1965). The movements of labelled ions in mammalian non-myelinated nerve fibres. J. Physiol. 179, 333367.Google Scholar
Landowne, D. & Ritchie, J. M. (1970). The binding of tritiated ouabain to mammalian non-myelinated nerve fibres. J. Physiol. 207, 529557.CrossRefGoogle ScholarPubMed
Landowne, D. & Ritchie, J. M. (1971). Optical studies on the kinetics of the sodium pump in mammalian non-myelinated fibres. J. Physiol. 212, 483502.CrossRefGoogle Scholar
Lichtshtein, D., Kaback, H. R. & Blume, A. J. (1979). Use of a lipophilic cation for determination of membrane potential in neuroblastoma-glioma hybrid cell suspensions Proc. natn. Acad. Sci. USA 76, 650654.Google Scholar
Nakamura, Y., Nakajima, S. & Grundfest, H. (1965). Analysis of spike electrogenesis and depolarizing K inactivation in electroplaques of Electrophorus electricus. J. gen. Physiol. 49, 321349.CrossRefGoogle ScholarPubMed
Ritchie, J. M. & Straub, R. W. (1975). The movement of potassium ions during electrical activity, and the kinetics of the recovery process, in the non-myelinated fibres of the garfish olfactory nerve. J. Physiol. 249, 327348.Google Scholar
Ritchie, J. M. & Straub, R. W. (1979). Phosphate efflux and oxygen consumption in small non-myelinated nerve fibres at rest and during activity. J. Physiol. 287, 315327.CrossRefGoogle ScholarPubMed
Ritchie, J. M. & Straub, R. W. (1980). Oxygen consumption and phosphate efflux in mammalian non-myelinated nerve fibres. J. Physiol. 304, 109121.CrossRefGoogle ScholarPubMed
Tasaki, I. & Iwasa, K. (1981). Temperature changes associated with nerve excitation: Detection by using polyvinylidene fluoride film. Biochem, Biophys. Res. Commun. 101, 172176.Google ScholarPubMed
Taylor, R. E. & Chandler, W. K. (1962). Effect of temperature on squid giant axon membrane capacity. Biophys. Soc. Abstracts TD1.Google Scholar