Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T13:16:38.320Z Has data issue: false hasContentIssue false

The power of movement in plants: the role of osmotic machines

Published online by Cambridge University Press:  17 March 2009

Bruria S. Hill
Affiliation:
Physiological Laboratory, Downing Street, Cambridge, U.K.
Geoffrey P. Findlay
Affiliation:
School of Biological Sciences, The Flinders University of South Australia, Bedford Park, South Australia 5042

Extract

The apparent and often spectacular movements of animals and insects, movements of the whole organism in relation to its surroundings arising from internally generated forces, have always been, by their very ubiquity, uppermost in our perception of motion in the living world. Movement in plants, generally of one organ in relation to the whole plant, whilst sometimes spectacular, have often in the past been seen as rather esoteric events, amusing perhaps, but of little importance in the general biological scheme of things. However, this is not so; plant movements are quite widespread in occurrence and all are most probably manifestations of a single physiological process, the change in volume of special motor cells. One particular movement, the opening and closing of stomata, which provides a basic control of photosynthesis, is of fundamental importance to the existence of the whole biosphere.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abe, T. & Oda, K. (1976). Resting and action potentials of excitable cells in the pulvinus of Mimosa pudica. Pl. Cell Physiol., Tokyo 17, 13431346.Google Scholar
Allaway, W. G. & Milthorpe, F. L. (1976). Structure and functioning of stomata. In Water Deficits and Plant Growth, vol. IV (ed. Kozlowski, T. T.), pp. 57102. New York: Academic Press.Google Scholar
Allen, R. D. (1969). Mechanism of the seismonastic reaction in Mimosa pudica. Pl. Physiol. 44, 11011107.CrossRefGoogle ScholarPubMed
Ashida, J. (1934). Studies on the leaf movement of Aldrovanda vesiculosa I. Process and mechanism of movement. Mem. Coll. Sci. Univ. Kyoto Univ. B 9, 141244.Google Scholar
Aylor, D. E., Parlange, J-Y. & Krikorian, A. D. (1973). Stomatal mechanics. Am. J. Bot. 60, 163171.CrossRefGoogle Scholar
Barry, P. H. (1970). Volume flows and pressure changes during an action potential in cells of Chara australis. I. Experimental results. J. Membrane Biol. 3, 313334.CrossRefGoogle Scholar
Benolken, R. M. & Jacobson, S. L. (1970). Response properties of a sensory hair excised from Venus' fly-trap. J. gen. Physiol. 56, 6482.CrossRefGoogle Scholar
Bielby, M. J. & Coster, H. G. L. (1979 a). The action potential in Chara corallina. II. Two activation-inactivation transients in voltage clamps of the plasmalemma. Aust. J. Plant Physiol. 6, 323336.Google Scholar
Bielby, M. J. & Coster, H. G. L. (1979 b). The action potential in Chara corallina III. The Hodgkin-Huxley parameters for the plasmalemma. Aust. J. Plant Physiol. 6, 337354.Google Scholar
Bose, J. C. (1926). The Nervous Mechanism of Plants. London: Longman.CrossRefGoogle Scholar
Brown, W. H. (1916). The mechanism of movement and the duration of the effect of stimulation on the leaves of Dionaea. Am. J. Bot. 3, 6890.CrossRefGoogle Scholar
Brown, W. H. & Sharp, L. M. (1910). The closing response of Dionaea. Bot. Gaz. 49, 290302.CrossRefGoogle Scholar
Bünning, E. (1934). Elektrische Potentialänderungen an seismonastisch gereitzen staubfäden. Planta 22, 251268.CrossRefGoogle Scholar
Bünning, E. (1959). Die Seismonastischen Reaktionen. In Encyclopedia of Plant Physiology, vol. 17, no. 1 (ed. Ruhland, W.), pp. 184238. Berlin: Springer.Google Scholar
Burdon, Sanderson J. (1873). ‘Note on the electrical phenomena which accompany irritation of the leaf of Dionaea muscipula’. Proc. R. Soc. Lond. 21, 495496.Google Scholar
Burdon, Sanderson J. (1882). On the electromotive properties of the leaf of Dionaea in the excited and unexcited states. Phil Trans. R. Soc. Lond. B 173, 155.Google Scholar
Burdon, Sanderson J. & Page, F. J. M. (1876). On the mechanical effects and on the electrical disturbance consequent on excitation of the leaf of Dionaea muscipula. Proc. R. Soc. Lond. 25, 411434.Google Scholar
Burns, E. P. (1900). Beitrage zur Kenntnis der Stylidiaceen. Flora 87, 313354.Google Scholar
Cork, R. J. & Nelmes, R. J. (1981). Stomatal ultrastructure. The fine structure of the guard cell walls. (In preparation.)Google Scholar
Dainty, J. (1976). Water relations in plant cells. In Encyclopedia of Plant Physiology, N.S. (ed. Luttge, V. and Pitman, M. G.), vol. 2 (A), pp. 1235. Berlin, Heidelberg, New York: Springer.Google Scholar
Darwin, C. (1880). The Power of Movement in Plants. Assisted by Darwin, F.. London: John Murray.Google Scholar
Darwin, C. (1888). Insectivorous Plants, 2nd ed. rev. Darwin, F.. London: John Murray.CrossRefGoogle Scholar
Datta, M. (1957). Vacuoles and movement in the pulvinus of Mimosa pudica. Nature, Lond. 179, 253254.CrossRefGoogle Scholar
Dutt, A.-K. (1957). Vacuoles of the pulvinus and the mechanism of movement. Nature, Lond. 179, 254.CrossRefGoogle Scholar
Findlay, G. P. (1978). Movement of the column of Stylidium crassifolium as a function of temperature. Aust. J. Plant Physiol. 5, 477484.Google Scholar
Findlay, G. P. & Findlay, N. (1975). Anatomy and movement of the column of Stylidium. Aust. J. Plant Physiol. 2, 597621.Google Scholar
Findlay, G. P. & Findlay, N. (1981). Respiration dependent movement of the column of Stylidium. Aust. J. Plant Physiol. 8, 112.Google Scholar
Findlay, G. P. & Palaghy, C. K. (1978). Potassium chloride in the motor tissue of Stylidium. Aust. J. Plant Physiol. 5, 219229.Google Scholar
Fischer, R. A. (1968). Stomatal opening: Role of potassium uptake by guard cells. Science, N.Y. 160, 784785.CrossRefGoogle ScholarPubMed
Fitting, H. (1930). Untersuchungen über endogene chemonastie bei Mimosa pudica. Jb. Wiss. Bot. 72, 700775.Google Scholar
Fujino, M. (1967). Role of a denosine triphosphate and adenosine diphosphate in stomatal movement. Sci. Bull. Fac. Educ. Nagasaki Univ. 18, 147.Google Scholar
Gad, J. (1880). Über die Bewegungserscheinugen an der Blüthe von Stylidium adnatum. R. Br. Bot. Ztg. 38, 216224.Google Scholar
Gutknecht, J. (1968). Salt transport in Valonia: inhibition of potassium uptake by small hydrostatic pressures. Science, N. Y. 160, 6870.CrossRefGoogle ScholarPubMed
Hiron, R. W. P. & Wright, S. T. C. (1973). The role of endogenous abscisic acid in the response of plants to stress. J. exp. Bot. 24, 769781.CrossRefGoogle Scholar
Hope, A. B. & Findlay, G. P. (1964). The action potential in Chara. Pl. Cell Physiol., Tokyo 5, 377379Google Scholar
Hooker, H. D. Jr (1916). Physiological observations on Drosera rotundifolia. Bull. Torrey bot. Club 43, 127.CrossRefGoogle Scholar
Hooker, H. D. Jr (1917). Mechanics of movement in Drosera rotundifolia Bull. Torrey bot. Club 44, 389403.CrossRefGoogle Scholar
Houwink, A. L. (1935). The conduction of excitation in Mimosa pudica. Recl. Trav. bot. néerl. 32, 5191.Google Scholar
Humble, G. D., Raschke, K. (1971). Stomatal opening quantitatively related to potassium transport. Evidence from electron probe analysis. Pl. Physiol. 48, 447453.CrossRefGoogle ScholarPubMed
Jacobson, S. L. (1965). Receptor response in Venus' fly-trap. J. gen. Physiol. 49, 117129.CrossRefGoogle Scholar
Keynes, R. D. & Martins-Ferreira, H. (1953). Membrane potentials in the electroplaques of the electric eel. J. Physiol., Lond. 119, 315317.CrossRefGoogle Scholar
Lloyd, F. E. (1942). The Carnivorous Plants. Waltham, Mass., U.S.A.: Chronica Botanica.Google Scholar
Macrobbie, E. A. C. (1971). Pholem translocation. Biol. Rev. 46, 429481.CrossRefGoogle Scholar
Macrobbie, E. A. C. (1980). Osmotic measurement on stomatal cells of Commelina communis L. J. Membrane Biol. 53, 189198.CrossRefGoogle Scholar
Macrobbie, E. A. C. (1981 a). Ionic relations of stomatal guard cells. In Stomatal Physiology (ed. Mansfield, T. A. and Jarvis, P. E.) (in the Press). Cambridge University Press.Google Scholar
Macrobbie, E. A. C. (1981 b). Ion fluxes in ‘isolated’ guard cells of Commelina communis L. J. exp. Bot. 32 (in the Press).Google Scholar
Macrobbie, (1981 c). Effect of ABA on ion fluxes in ‘isolated’ guard cells of Commelina communis L. J. exp. Bot. (in the Press.)CrossRefGoogle Scholar
Macrobbie, E. A. C. & Lettau, J. (1980 a). Ion content and aperture in ‘isolated’ guard cells of Commelina communis L. J. Membrane Biol. 53, 199205.CrossRefGoogle Scholar
Macrobbie, E. A. C. & Lettau, J. (1980 b). Potassium content and aperture in ‘intact’ stomatal and epidermal cells of Commelina communis L. J. Membrane Biol. 56, 249256.CrossRefGoogle Scholar
Mohl, H., Von, (1856). Welche Ursachen bewirken Erweiterrung und Veregung der Spaltöffnungen? Bot. Z. 14, 697704, 713–321.Google Scholar
Oda, K. & Abe, I. (1972). Action potential and rapid movement in the main pulvinus of Mimosa pudica. Bot. Mag. Tokyo 85, 135142.CrossRefGoogle Scholar
Oda, K. & Linstead, P. J. (1975). Changes in length during action potentials in Chara. J. exp. Bot. 26, 228239.Google Scholar
Pfeffer, W. (1877). Über flieschfressende flanzen und über die ernahrung durch aufnahme organische Stoff überhaupt. Landw. Jbr 6.Google Scholar
Pfeffer, W. (1884). Zur Kenntnis der knotaktreize. Unters. Bot. Inst. Tübingen 1.Google Scholar
Philip, J. R. (1958). Osmosis and diffusion in tissue: half times and internal gradients. Pl. Physiol. 33, 275278.CrossRefGoogle ScholarPubMed
Raschke, K. (1975). Stomatal action. A. Rev. Pl. Physiol. 26, 309340.CrossRefGoogle Scholar
Raschke, K. (1976). How stomata resolve the dilemma of opposing priorities. Phil. Trans. R. Soc. B 273, 551560.Google Scholar
Raschke, K. (1979). Movement of stomata. In Plant Movements, Encyclopedia of Plant Physiology, vol. 7 (ed. Haupt, H. and Feinleib, M. E.), pp. 383384. Berlin, Heidelberg, New York: Springer.Google Scholar
Raschke, K. & Humble, G. D. (1973). No uptake of anions required by opening stomata of Vicia faba: guard cells release hydrogen ions. Planta 115, 4757.CrossRefGoogle ScholarPubMed
Racusen, R. H. & Galston, A. W. (1977). Electrical evidence for rhythmic changes in the co-transport of sucrose and hydrogen ions in Samanea pulvini. Planta 135, 5762.CrossRefGoogle Scholar
Racusen, R. H. & Satter, R. L. (1975). Rhythmic and phytochromeregulated changes in transmembrane potential in Samanea pulvini. Nature, Lond. 255, 408410.CrossRefGoogle ScholarPubMed
Ragetli, H. W. J., Weintraub, M. & Lo, E. R. (1972). Characteristics of Drosera tentacles. I. Anatomical and cytological detail. Can. J. Bot. 50, 159168.CrossRefGoogle Scholar
Ricca, U. (1916). Soluzione d'un problema di Fisiologia Nuovo. G. Bot. Ital. 23, 51170.Google Scholar
Ricca, U. (1926). Transmission of stimuli in plants. Nature, Lond. 117, 654655.CrossRefGoogle Scholar
Robinson, G. R., Rust, T. S. O. & Scott, B. I. H. (1979). Analytical approach to the study of circadian leaf oscillations in clover. I. Recording and spectral analyses of leaf oscillations. Aust.J. Pl. Physiol. 6, 655672.Google Scholar
Robinson, G. R. & Scott, B. I. H. (1979). Analytical approach to the study of circadian leaf oscillations in clover. II Responses to continuous light and to sinusoidal light oscillations. Aust. J. Pl. Physiol. 6, 673691.Google Scholar
Samejima, M. & Sibaoka, T. (1980). Changes in the extracellular ion concentration in the main pulvinus of Mimosa pudica during rapid movement and recovery. Pl. Cell Physiol. Tokyo 21, 467479.Google Scholar
Satter, R. L. (1979). Leaf movements and tendril curling. In Encyclopedia of Plant Physiology, N.S. Vol. VII. Physiology of Movements (ed. Haupt, H. and Feinlieb, M. E.), pp. 442484. Berlin, Heidelberg, New York: Springer.Google Scholar
Satter, R. L., Applewhite, P. B., Galston, A. W. (1974). Rhythmic potassium flux in Albizzia: effect of aminophylline, cations and inhibitors of respiration and protein synthesis. Pl. Physiol. 54, 280285.CrossRefGoogle ScholarPubMed
Satter, R. L. & Galston, A. W. (1971). Potassium flux: a common feature of Albizzia leaflet movement controlled by phytochrome or endogenous rhythm. Science, N.Y. 174, 518520.CrossRefGoogle ScholarPubMed
Satter, R. L., Geballe, G. T., Applewhite, P. B. & Galston, A. W. (1974). Potassium flux and leaf movement in Samanea saman. I. Rhythmic movement. J. gen. Physiol. 64, 413430.CrossRefGoogle Scholar
Satter, R. L., Hatch, A. M. & Gill, M. K. (1979). A circadian rhythm in oxygen uptake by Samanea pulvini. Pl. Physiol. 64, 379381.CrossRefGoogle ScholarPubMed
Satter, R. L., Marinoff, P. & Galston, A. W. (1970). Phytochrome controlled nyctinasty in Albizzia julibrissin. II. Potassium flux as a basis for leaflet movement. Am. J. Bot. 57, 916926.CrossRefGoogle Scholar
Satter, R. L., Sabins, D. D. & Galston, A. W. (1970). Phytochrome controlled nyctinasty in Albizzia julibrissin. I. Anatomy and fine structure of the pulvinule. Am. J. Bot. 57, 374381.CrossRefGoogle Scholar
Satter, R. L., Schrempf, M., Chaudhri, J. & Galston, A. W. (1977). Phytochrome and circadian clocks in Samanea: rhythmic redistribution of potassium and chloride within the pulvinus during long dark periods. Pl. Physiol. 59, 231235.CrossRefGoogle ScholarPubMed
Satter, R. L. & Galston, A. W. (1981). Mechanisms of control of leaf movement. Am. Rev. Pl. Physiol. (in the Press).CrossRefGoogle Scholar
Scott, B. I. H. & Gulline, H. F. (1972). Natural and forced circadian oscillations in the leaf of Trifolium repens. Aust. J. biol. Sci. 25, 6176.CrossRefGoogle Scholar
Scott, B. I. H., Gulline, H. F. & Robinson, G. R. (1977). Circadian electrochcmical charges in the pulvinules of Trifolium repens L. Aust. J. P1. Physiol. 4, 193206.Google Scholar
Schrempf, M., Satter, R. L. & Galston, A. W. (1976). Potassium-linked chloride fluxes during rhythmic leaf movement of Albizzia julibrissin. Pl. Physiol. 58, 190192.CrossRefGoogle ScholarPubMed
Schwendener, S. (1882). Über Bau und Mechanik der Spalftöffnungen. Monatsberichte der Königlich Preussischen Akademie der Wissenschaiften zu Berlin. Aus dem Jahre 1881, pp. 833967.Google Scholar
Sibaoka, T., (1950). Action potential and conductance of excitation in the leaf of Mimosa pudica. Sci. ep. Tohoku Univ. (Biol.) 18, 362369.Google Scholar
Sibaoka, T. (1962). Excitable cells in Mimosa. Science, N.Y. 137, 226.CrossRefGoogle Scholar
Sibaoka, T. (1966). Action potentials in plant organs. Symp. Soc. exp. Biol. 20, 4974.Google ScholarPubMed
Sibaoka, T. (1969). Physiology of rapid movement in higher plants. A. Rev. Pl. Physiol. 210, 165184.CrossRefGoogle Scholar
Simon, E., Satter, R. L., Galston, A. W. (1976). Circadian rhythmicity in excised Samanea pulvini. I. Sucrose-white light interactions. Pl. Physiol. 58, 417420.CrossRefGoogle ScholarPubMed
Sinyukhin, A. M. & Britikov, E. A. (1967). Action potentials in the reproductive system of plants. Nature, Lond. 215, 12781280.CrossRefGoogle Scholar
Slayman, C. L. (1974). Proton pumping and generalized energetics of transport: a review. In Membrane Transport in Plants (ed. Zimmerman, U. and Dainty, J.), pp. 107119. Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
Snow, R. (1924). Conduction of excitation in stem and leaf of Mimosa pudica. Proc. R. Soc. Lond. B pp. 349375.Google Scholar
Soltys, A. & Umrath, K. (1936). Über die Erregungsubstanz der Mimosoideen. Biochem. Z. 284, 247255.Google Scholar
Soltys, A., Umrath, K. & Umrath, C. (1938). Über die Erregungsubstanz, Wuchsstoff und Wachstum. Protoplasma 31, 454480.CrossRefGoogle Scholar
Squire, G. R., Mansfield, T. A. (1972). A simple method of isolating stomata on detached epidermis by low pH treatment: Observations of the importance of the subsidiary cells. New Phytol. 71, 10331043.CrossRefGoogle Scholar
Stålfelt, M. G. (1929). Die Abhängigkeit der Spaltöffnungsreaktionen von der Wasserbilanz. Planta 8, 287340.CrossRefGoogle Scholar
Stuhlman, O. Jr (1948). A physical analysis of the opening and closing movements of the lobes of Venus' fly-trap. Bull. Torrey bot. Club 7, 2244.CrossRefGoogle Scholar
Sydenham, P. H. & Findlay, G. P. (1973). The rapid movement of the bladder of Utricularia sp. Aust. J. biol. Sci. 26, 11151126.CrossRefGoogle Scholar
Sydenham, P. H. & Findlay, G. P. (1975). Transport of solutes and water by resetting bladders of Utricularia. Aust. J. Plant Physiol. 2, 335351.Google Scholar
Toriyama, H. (1955). The migration of potassium in primary pulvinus of Mimosa pudica. Cytologia 20, 367377.CrossRefGoogle Scholar
Toriyama, H. (1962). The migration of potassium in the petiole of Mimosa pudica. Cytologia 27, 331342.CrossRefGoogle Scholar
Toriyama, H. & Sato, S. (1968 a). Electron microscope observation of the motor cell of Mimosa pudica. I. A comparison of the motor cell before and after stimulation. Proc. Japan Acad. 44, 702706.CrossRefGoogle Scholar
Toriyama, H. & Sato, S. (1968 b). Electron microscope observation of the motor cell of Mimosa pudica. II. On the contents of the central vacuole of the motor cell. Proc. Japan Acad. 44, 949953.CrossRefGoogle Scholar
Varanda, W. & Finkelstein, A. (1980). Ion and nonelectrolyte permeability properties of channels formed in planar lipid bilayer membranes of the cytolytic toxin from the sea anemone, Stoichactis helianthus. J. Membrane Biol. 55, 203211.CrossRefGoogle Scholar
Watanabe, S. (1970). Electron microscope studies of Mimosa pulvinus cells before and after movement. Artes Liberale Iwate Univ. 7, 4951.Google Scholar
Weintraub, M. (1952). Leaf movements in Mimosa pudica L. New Phytol. 50, 357382.CrossRefGoogle Scholar
Williams, S. E. (1976). Comparative sensory physiology of the Droseraceae. The evolution of a plant sensory system. Proc. Am. phil. Soc. 120, 187204.Google Scholar
Williams, S. E. & Pickard, B. G. (1972 a). Properties of action potentials in Drosera tentacles. Planta 103, 222240.CrossRefGoogle ScholarPubMed
Williams, S. E. & Pickard, B. G. (1972 b). Receptor potentials and action potentials in Drosera tentacles. Planta 103, 193221.CrossRefGoogle ScholarPubMed
Williams, S. E. & Pickard, B. G. (1974). Connections and barriers between cells of Drosera tentacles in relation to their electrophysiology. Planta 116, 116.CrossRefGoogle ScholarPubMed
Williams, S. E. & Spanswick, R. M. (1976). Propagation of the neuroid action potential of the carnivorous plant Drosera. J. comp. Physiol. 108, 211223.CrossRefGoogle Scholar
Ziegenspeck, H. (1938). Die Micellierung der Turgeszensmechanismen. I. Die Spaltöffnungen (mit phylogenetischen Ausblicken). Bot. Arch. 39, 268309.Google Scholar
Zimmerman, U., Steudle, E. & Lelke, P. I. (1976). Turgor regulation in Valonia utricularis. P1. Physiol. 58, 608613.CrossRefGoogle Scholar