Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-23T13:12:52.626Z Has data issue: false hasContentIssue false

Physics and chemistry of spin labels

Published online by Cambridge University Press:  17 March 2009

Harden M. McConnell
Affiliation:
Stauffer Laboratory for Physical Chemistry, Stanford, California 94305
Betty Gaffney McFarland
Affiliation:
Stauffer Laboratory for Physical Chemistry, Stanford, California 94305

Extract

Biological systems provide the physical chemist with an abundance of interesting, challenging and significant problems. One example is the problem of the molecular basis of co-operative or allosteric interactions between distant ligand or substrate binding sites in hemoglobin and in enzymes. This problem has been discussed recently in This Journal by Eigen (1968) and by Wyman (1968). Another particularly challenging problem is the molecular organization of biological membranes. Such problems tend to be particularly resistant to solution by the straight-forward application of most spectroscopic techniques, in large part because of the enormous chemical and spectroscopic complexity of biological macromolecules. This spectroscopic complexity has stimulated the use of various ‘probes’ that can be introduced into selected sites in complex systems to provide spectroscopic signals that are comparatively free from interference. The use of heavy metal atoms (‘isomorphous replacement’) in X-ray studies of protein crystals (Green, Ingram & Perutz, 1954), and fluorescent dyes in the study of proteins in solutions (Weber, 1953; Steiner & Edelhoch, 1962) are early examples. Spin labels represent a new member of the family of spectroscopic structural probes. A spin label is a synthetic paramagnetic organic free radical, usually having a molecular structure and/or chemical reactivity that results in its attachment or incorporation at some particular target site in a biological macromolecule, or assemblage of macromolecules (Ohnishi & McConnell, 1965; Stone et al. 1965). This type of probe is being used in our laboratory to study allosteric interactions in proteins, and molecular dynamics and organization in membranes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abragam, A. (1961). The Principles of Nuclear Magnetism. Oxford: Oxford University Press.Google Scholar
Barratt, M. D., Green, D. K. & Chapman, D. (1968). Spin-labeled lipid–protein complexes. Biochim. biophys. Acta 152, 20.CrossRefGoogle Scholar
Benesch, R. & Benesch, R. E. (1969). Intracellular organic phosphates as regulators of oxygen release by hemoglobin. Nature, Lond. 221, 618.CrossRefGoogle Scholar
Bennett, J. E., Sieper, H. & Tavs, P. (1967). 2, 2, 6, 6-Tetramethylpiperidyl-i-thiyl, a stable new radical. Tetrahedron 23, 1697.CrossRefGoogle Scholar
Berliner, L. J. (1967). Spin label studies of α-chymotrypsin. Thesis, Stanford University.Google Scholar
Berliner, L. J. & McConnell, H. M. (1966). A spin-labeled substrate for α-chymotrypsin. Proc. natn. Acad. Sci. U.S.A. 55, 708.CrossRefGoogle ScholarPubMed
Bloembergen, N. (1957). Proton relaxation times in paramagnetic solutions. J. chem. Phys. 27, 572.CrossRefGoogle Scholar
Boeyens, J. C. A. & McConnell, H. M. (1966). Spin-labeled hemoglobin. Proc. natn. Acad. Sci. U.S.A. 56, 22.CrossRefGoogle ScholarPubMed
Briere, R., Dupeyre, R. M., Lemaire, H., Morat, C., Rassat, A. & Rey, P. (1965 a). Nitroxydes XVII: biradicaux stables du type nitroxyde. Bull. Soc. chim. Fr. 32, 3290.Google Scholar
Briere, R., Lemaire, H. & Rassat, A. (1965 b). Nitroxydes XV: Synthèse et éude de radicaux libres stable pipéridiniques et pyrrolidinique. Bull. Soc. chim. Fr. 32, 3273.Google Scholar
Buchachenko, A. L. (1963). Stable Radicals. Moscow: Academy of Sciences Press. (Translated by Consultants Bureau, New York, 1965.)Google Scholar
Calvin, M., Wang, H. H., Entine, G., Gill, D., Ferranti, P., Harpold, M. A. & Klein, M. P. (1969). Biradical spin-labeling for nerve membranes. Proc. natn. Acad. Sci. U.S.A. 63, 1.CrossRefGoogle ScholarPubMed
Carrington, A. & McLachlan, A. D. (1967). Introduction to Magnetic Resonance. New York: Harper and Row.Google Scholar
Cohn, M. & Leigh, J. S. (1962). Magnetic resonance investigations of ternary complexes of enzyme-metal-substrate. Nature, Lond. 193, 1037.CrossRefGoogle ScholarPubMed
Cooke, R. & Morales, M. F. (1969). Spin-label studies of glycerinated muscle fibers. Biochemistry. N.Y. 8, 3188.CrossRefGoogle ScholarPubMed
Corker, G. A., Klein, M. P. & Calvin, M. (1966). Chemical trapping of a primary quantum conversion product in photosynthesis. Proc. natn. Acad. Sci. U.S.A. 56, 1365.CrossRefGoogle ScholarPubMed
Eigen, M. (1968). New looks and outlooks on physical enzymology. Quarterly Reviews of Biophysics 1, 1.CrossRefGoogle ScholarPubMed
Eisinger, J., Shulman, R. G. & Szymanski, B. M. (1961). Transition metal binding in DNA solutions. J. chem. Phys. 36, 1721.CrossRefGoogle Scholar
Forrester, A. R., Hay, J. M. & Thomson, R. H. (1968). Organic Chemistry of Stable Free Radicals. New York: Academic Press.Google Scholar
Freed, J. H. & Fraenkel, G. K. (1963). Intramolecular hydrogen bonding in electron spin resonance spectra. J. chetn. Phys. 39, 326.CrossRefGoogle Scholar
Green, D. W., Ingram, V. M. & Perutz, M. F. (1954). The structure of hemoglobin, IV. Sign determination by the isomorphous replacement method. Proc. Roy. Soc. Lond. A 225, 287.Google Scholar
Griffith, O. H., Cornell, D. W. & McConnell, H. M. (1965). Nitrogen hyperfine tensor and g-tensor of nitroxide radicals. J. chem. Phys. 43, 2909.CrossRefGoogle Scholar
Griffith, O. H., Keana, J. F. W., Noall, D. L. & Ivey, J. L. (1967). Nitroxide mixed carboxylic carbonic acid anhydrides. Biochim. biophys. Acta 148, 583.CrossRefGoogle ScholarPubMed
Griffith, O. H. & Waggoner, A. S. (1969). Nitroxide free radicals: spin labels for probing biomolecular structure. Acct. Chem. Res. 2, 17.CrossRefGoogle Scholar
Grigoryan, G. L., Kalmanson, A. E., Rozantsev, E. G. & Suskina, V. S. (1967). Electron spin resonance investigation of conformation changes in serum albumin with the help of iminoxyl paramagnetic label. Nature, Lond. 216, 927.CrossRefGoogle Scholar
Hamilton, C. L. & McConnell, H. M. (1968). Spin labels. In Structural Chemistry and Molecular Biology. Ed. Rich, A. and Davidson, N., p. 115. San Francisco: W. H. Freeman and Co.Google Scholar
Hoffman, A. K. & Henderson, A. T. (1961). A new stable free radical: di-t-butylnitroxide. J. Am. chem. Soc. 83, 4671.CrossRefGoogle Scholar
Hoffman, B. M., Schofield, P. & Rich, A. (1969). Spin-labeled transfer RNA. Proc. natn. Acad. Sci. U.S.A. 62, 1195.CrossRefGoogle ScholarPubMed
Hsia, J. C. & Piette, L. H. (1969). Spin-labeling as a general method in studying antibody active site. Archs. Biochem. Biophys. 129, 296.CrossRefGoogle ScholarPubMed
Hubbell, W. L. & McConnell, H. M. (1968). Spin label studies of the excitable membranes of nerve and muscle. Proc. natn. Acad. Sci. U.S.A. 61, 12.CrossRefGoogle ScholarPubMed
Hubbell, W. L. & McConnell, H. M. (1969 a). Unpublished studies on the paramagnetic resonance of the N-oxyl-4′, 4-dimethyloxazolidine derivative of 5α-cholestan-3-one in single crystals of cholesteryl chloride. See Hubbell W. L. Thesis, Stanford University, 1969.Google Scholar
Hubbell, W. L. & McConnell, H. M. (1969 b). Motion of steroid spin labels in membranes. Proc. natn. Acad. Sci. U.S.A. 63, 16.CrossRefGoogle ScholarPubMed
Hubbell, W. L. & McConnell, H. M. (1969 c). Orientation and motion of amphiphilic spin labels in membranes. Proc. natn. Acad. Sci. U.S.A. (in the Press).Google ScholarPubMed
Hudson, A. & Luckhurst, G. R. (1969). The electron resonance line shapes of radicals in solution. Chem. Rev. 69, 191.CrossRefGoogle Scholar
Hyde, J., Chien, J. C. W. & Freed, J. (1968). Electron–electron double resonance of free radicals in solution j. chem. Phys. 48, 4211.CrossRefGoogle Scholar
Itzkowitz, M. S. (1967). Monte Carlo simulation of the effects of molecular motion on the EPR spectrum of nitroxide free radicals. J. chem. Phys. 46, 3048.CrossRefGoogle Scholar
Keana, J. F. W., Keana, J. B. & Beetham, D. (1967). A new versatile ketone spin label. J. Am. chem. Soc. 89, 3055.CrossRefGoogle Scholar
Keith, A. D., Waggoner, A. S. & Griffith, O. H. (1968). Spin label mitochondrial lipids in neurospora crassa. Proc. natn. Acad. Sci. U.S.A. 61, 819.CrossRefGoogle Scholar
Kivelson, D. (1960). Theory of ESR linewidths of free radicals. J. chem. Phys. 33, 1094.CrossRefGoogle Scholar
Kosman, D. J., Hsia, J. C. & Piette, L. H. (1969). ESR probing of macro-molecular function and operation of structural units within the active site of α-chymotrypsin. Archs. Biochem. Biophys. 133, 29.CrossRefGoogle Scholar
Kruger, G. J. & Boeyens, J. C. A. (1968). The crystal and molecular structure of the potassium salt of 2, 2, 5, 5-tetramethyl-3-carboxypyrroline-1-oxyl. Proc. natn. Acad. Sci. U.S.A. 61, 422.CrossRefGoogle ScholarPubMed
Lajzerowicz-Bonneteau, J. (1968). Structure du radical nitroxyde tetramethyl-2, 2, 6, 6-piperidinol-4-oxyle-1. Acta crystallogr. B 24, 196.CrossRefGoogle Scholar
Lebedev, O. L. & Kazarnovskii, S. N. (1960). Catalytic oxidation of aliphatic amines with hydrogen peroxide. Zh. obshch. Khim. 30, 1631.Google Scholar
Lichtenstein, G. I., Bobodzhanov, P. H., Rozantsev, E. G. & Suskina, V. I. (1968). The EPR investigation of allosteric effects in spin-labeled bovine hemoglobin. Molekular Biology (Moscow) 2, 44.Google Scholar
Luz, Z. & Meiboom, S. (1964). Proton relaxation in dilute solutions of cobalt (II) and nickel (II) ions in methanol and the rate of methanol exchange of the solvation sphere. J. chem. Phys. 40, 2686.CrossRefGoogle Scholar
Makarov, S. P., Yakubovich, A. Ya., Dubov, S. S. & Medvedev, A. N. (1965). Synthesis of hexafluorodimethylhydroxylamine and hexafluorodimethylnitrogen oxide. Dokl. Chem. 160, 1319.Google Scholar
McConnell, H. M. (1956). Effect of anisotropic hyperfine interactions on paramagnetic relaxation in liquids. J. chem. Phys. 25, 709.CrossRefGoogle Scholar
McConnell, H. M. (1958). Reaction rates by nuclear magnetic resonance. jf. chem. Phys. 28, 430.CrossRefGoogle Scholar
McConnell, H. M. (1967). In Magnetic Resonance in Biological Systems. p. 313. Ed. Ehrenberg, A., Malmstrom, B. G. and Vanngard, T.. Oxford: Pergamon Press.CrossRefGoogle Scholar
McConnell, H. M. (1970). Molecular Motion in Biological Membranes. In The Neurosciences; Second Study Program (Schmitt, F.O., editor-in-chief), The Rockefeller University Press, in Press.Google Scholar
McConnell, H. M. & Boeyens, J. C. A. (1967). Spin label determination of enzyme symmetry. J. phys. Chem. 71, 12.CrossRefGoogle ScholarPubMed
McConnell, H. M., Deal, W. & Ogata, R. T. (1969). Spin-labeled hemoglobin derivatives in solution, polycrystalline suspensions and single crystals. Biochemistry, N. Y. 8, 2580.CrossRefGoogle ScholarPubMed
McConnell, H. M. & Hamilton, C. L. (1968). Spin-labeled hemoglobin derivatives in solution and in single crystals. Proc. natn. Acad. Sci. U.S.A. 60, 776.CrossRefGoogle ScholarPubMed
McConnell, H. M. & Hubbell, W. L. (1971). Spin labels. To be published in A. Rev. Biochem.Google Scholar
McConnell, H. M., Ogawa, S. & Horwitz, A. (1968). Spin-labeled hemoglobin and the haem–haem interaction. Nature, Land. 220, 787.CrossRefGoogle Scholar
Mildvan, A. S. & Cohn, M. (1970). Aspects of enzyme mechanism studies by nuclear spin relaxation induced by paramagnetic probes. Adv. Enzymol. (in the Press).Google Scholar
Mildvan, A. S. & Weiner, H. (1969 a). Interaction of a spin-labeled analog of nicotinamide adenine dinucleotide with alcohol dehydrogenase. II. Proton relaxation rate and electron paramagnetic resonance studies of binary and ternary complexes. Biochemistry, N.Y. 8, 552.CrossRefGoogle ScholarPubMed
Mildvan, H. S. & Weiner, H. (1969 b). Interaction of a spin-labeled analog of nicotinamide-adenine dinucleotide with alcohol dehydrogenase. III. Proton relaxation rate and EPR studies of binary and ternary complexes. J. biol. Chem. 244, 2465.CrossRefGoogle Scholar
Ogawa, S. & McConnell, H. M. (1967). Spin-label study of hemoglobin conformations in solution. Proc. natn. Acad. Sci. U.S.A. 58, 19.CrossRefGoogle ScholarPubMed
Ogawa, S., McConnell, H. M. & Horwitz, A. (1968). Overlapping conformational changes in spin-labeled hemoglobin. Proc. natn. Acad. Sci. U.S.A. 61, 401.CrossRefGoogle ScholarPubMed
Ohnishi, S. (1968). The spin-label technique. Seibutsu Butsuri 8, 118.CrossRefGoogle Scholar
Ohnishi, S., Boeyens, J. C. A. & McConnell, H. M. (1966). Spin-labeled hemoglobin crystals. Proc. natn. Acad. Sci. U.S.A. 56, 809.CrossRefGoogle ScholarPubMed
Ohnishi, S. & McConnell, H. M. (1965). Interaction of the radical ion of chlorpromazine with deoxyribonucleic acid. J. Am. chem. Soc. 87, 2293.CrossRefGoogle ScholarPubMed
Perutz, M. F. & Mathews, F. J. (1966). An x-ray study of azide methemoglobin. J. molec. Biol. 21, 199.CrossRefGoogle Scholar
Rassat, A. & Rey, P. (1967). Preparation d'aminoacides radicalaires et de leurs sels complexes. Bull. Soc. chim. Fr. p. 815.Google Scholar
Roberts, G. C. K., Hannah, J. & Jardetsky, O. (1969). Non-covalent binding of a spin-labeled inhibitor to ribonuclease. Science, N. Y. 165, 504.CrossRefGoogle Scholar
Rozantsev, E. G. (1966). Selective reduction of the carbonyl group in a free radical without participation of the unpaired electron. Izv. Akad. Nauk SSSR, Ser. Khim. p. 770.Google Scholar
Rozantsev, E. G. & Krinitskaya, L. A. (1965). Free iminoxyl radicals in the hydrogenated pyrrole series. Tetrahedron 21, 491.CrossRefGoogle Scholar
Rozantsev, E. G. & Neiman, M. B. (1964). Organic radical reactions involving no free valence. Tetrahedron 20, 131.CrossRefGoogle Scholar
Schoffa, G. (1964). Elektronenspinresonenz in der Biologie, p. 35. Karlsruhe: Verlag G. Braun.Google Scholar
Slichter, C. P. (1963). Principles of Magnetic Resonance. New York: Harper and Row.Google Scholar
Smith, I. C. P. (1968). A study of the conformational properties of bovine pancreatic ribonuclease A by electron paramagnetic resonance. Biochemistry, N.Y. 7, 745.CrossRefGoogle ScholarPubMed
Solomon, I. (1955). Relaxation processes in a system of two spins. Physiol. Rev. 99, 559.CrossRefGoogle Scholar
Steiner, R. F. & Edelhoch, H. (1962). Fluorescent protein conjugates. Chem. Rev. 62, 457.CrossRefGoogle Scholar
Stone, T. J., Buckman, T., Nordio, R. L. & McConnell, H. M. (1965). Spin-labeled biomolecules. Proc. natn. Acad. Sci. U.S.A. 54, 1010.CrossRefGoogle ScholarPubMed
Swift, T. J. & Connick, R. E. (1962). NMR-relaxation mechanisms of O17 in aqueous solutions of paramagnetic cations and the lifetime of water molecules in the first coordination sphere. J. chem. Phys. 37, 307.CrossRefGoogle Scholar
Tonomura, Y., Watanabe, S. & Morales, N. (1969). Conformational changes in molecular control of muscle contraction. Biochemistry, N. Y. 8, 2171.CrossRefGoogle ScholarPubMed
Weaver, E. C. & Chon, H. P. (1966). Spin label studies in chlamydomonas. Science, N.Y. 153, 301.CrossRefGoogle ScholarPubMed
Weber, G. (1953). Polarization of the fluorescence of labeled protein moiecules. Discuss. Faraday Soc. 13, 33.CrossRefGoogle Scholar
Weiner, H. (1969). Interaction of a spin-labeled analog of nicotinomideadenine dinucleotide with alcohol dehydrogenase. I. Synthesis, kinetics and electron paramagnetic resonance studies. Biochemistry, N. Y. 8, 526.CrossRefGoogle Scholar
Wyman, J. (1968). Regulation in macromolecules as illustrated by hemoglobin. Quarterly Reviews of Biophysics 1, 35.CrossRefGoogle Scholar