Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-23T13:22:12.663Z Has data issue: false hasContentIssue false

The peripheral auditory apparatus

Published online by Cambridge University Press:  17 March 2009

B. M. Johnstone
Affiliation:
Department of Physiology, University of Western AustraliaPerth, 6009Western Australia
P. M. Sellick
Affiliation:
Department of Physiology, University of Western AustraliaPerth, 6009Western Australia

Extract

This review of the peripheral auditory apparatus represents an attempt to analyse critically recent developments in the field. The coverage is not exhaustive, the emphasis is on functional aspects and no attempt is made to review the anatomy of the ear. Particular emphasis is placed on three broad sections: the physiology of the middle ear, basilar membrane mechanics and the electrophysiology of the cochlea. It is in these areas that recent technical advances have led to experiments which throw doubt on traditionally held concepts. Such an advance is the application of the Mössbauer technique to the problem of middle- and inner-ear mechanics. Because of its novelty, this technique is discussed in detail. Other new methods such as laser holography are just starting to be used, as are the ion selective microelectrodes for measuring dynamic changes in endolymph concentration. After many years of slow progress there is a sudden spark of enthusiasm for peripheral auditory research, and the coming decade promises to be most exciting indeed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, E. D. (1931). The microphonic action of the cochlea: An interpretation of Wever and Bray's experiments. J. Physiol., Lond. 71, 28–9.Google Scholar
Bast, T. H. (1928). The utriculo-endolymphatic valve. Anat. Rec. 40, 61–5.CrossRefGoogle Scholar
von Békésy, G. (1942). The vibration of the cochlear partition in anatomical preparation and in models of the inner ear. Akust Zh. 7, 173–86.Google Scholar
von Békésy, G. (1949). The vibration of the cochlear partition in anatomical preparation and in models of the inner ear. J. acoust. Soc. Am. 21, 233245.CrossRefGoogle Scholar
von Békésy, G. (1951 a). Microphonics produced by touching the cochlear partition with a vibrating electrode. J. acoust. Soc. Am. 23, 2935.CrossRefGoogle Scholar
von Békésy, G. (1951 b). The coarse pattern of the electrical resistance in the cochlea of the guinea pig. (Electro-anatomy of the cochlea.) J. acoust. Soc. Am. 23, 1828.CrossRefGoogle Scholar
von Békésy, G. (1952). DC resting potentials inside the cochlear partition J. acoust. Soc. Am. 24, 72–6.CrossRefGoogle Scholar
von Békésy, G. (1960). Experiments in Hearing. New York: McGrawHill.Google Scholar
von Békésy, G. (1966). Pressure and shearing forces as stimuli of labrinthine epithelium. Archs Otolar. 84, 122130.CrossRefGoogle Scholar
Bosher, S. K. & Warren, R. S. (1968). Observations on the electrochemistry of the cochlear endolymph of the rat. Proc. R. Soc. B 171, 227–47.Google ScholarPubMed
Bosher, S. K. & Warren, R. L. (1971). A study of the electrochemistry and osmotic relationships of the cochlear fluids in the neonatal rat at the time of development of the endocochlear potential. J. Physiol., Lond. 212, 739–61.CrossRefGoogle ScholarPubMed
Butler, R. A. (1965). Same experimental observations on the d.c. resting potentials in the guinea pig cochlea. J. acoust. Soc. Am. 37, 429–33.CrossRefGoogle Scholar
Butler, R. A. & Honrubia, V. (1963). Responses of cochlear potentials to changes in hydrostatic pressure. J. acoust. Soc. Am. 35, P1188–92.CrossRefGoogle Scholar
Chou, J. T. Y. & Rodgers, K. (1962). Respiration of tissues lining the mammalian membranous labyrinth. J. Lar. Otol. 76, 341.CrossRefGoogle ScholarPubMed
Christiansen, J. A. (1964). On hyaluronate molecules in the labyrinth as mechano-electrical transducers and as molecular motors acting as resonators. Ada otolar. 57, 3349.Google Scholar
Citron, L., Exley, D. & Hallpike, C. S. (1956). Formation circulation and chemical properties of the labyrinthine fluids. Br. med. Bull. 12, 101–4.CrossRefGoogle ScholarPubMed
Coates, A. C. (1965). Temperature effects on the peripheral auditory apparatus. Science, N.Y. 150, 1481–3.CrossRefGoogle Scholar
Dallos, P. (1968). On the negative potential within the organ of Corti. J. acoust. Soc. Am. 44, 818–19.CrossRefGoogle ScholarPubMed
Dallos, P. (1969). Comments on the differential electrode technique. J. acoust. Soc. Am. 45, 9991007.CrossRefGoogle Scholar
Dallos, P. (1970). Combination tones in cochlear microphonic potentials. In Frequency Analysis and Periodicity Detection in Hearing (ed. Plomp, R. &Smoorenburg, G. F.), pp. 218–29.Google Scholar
Dallos, P., Schoeny, Z. G. & Cheatham, M. A. (1970). Cochlear summating potentials: composition. Science, N.Y. 170, 641–4.CrossRefGoogle ScholarPubMed
Davies, D. G. (1968). Biochemistry of the inner ear fluids – experimental and clinical observations. J. Lar. Otol. 82, 301–12.CrossRefGoogle ScholarPubMed
Davis, H. (1957). Biophysics and physiology of the inner ear. Physiol. Rev. 37, 149.CrossRefGoogle ScholarPubMed
Davis, H. (1960). Mechanism of excitation of auditory nerve impulses. In Neural Mechanisms of the Auditory and Vestibular Systems (ed. Rasmussen, G. L. & Windle, W. F.), pp. 21–39 (Springfield, Ill.: C. Thomas), pp. 2139.Google Scholar
Davis, H., Deatherage, D. H., Eldredge, D. H. & Smith, C. A. (1958 a). Summating potentials of the cochlea. Am. J. Physiol. 196, 251–61.CrossRefGoogle Scholar
Davis, H., Deatherage, B. G., Rosenblut, B., Fernandez, C., Kimura, R. & Smith, C. A. (1958 b). Modification of cochlear potentials produced by streptomycin poisoning and by extensive venous obstruction. Laryngoscope, St Louis 68, 596627.CrossRefGoogle ScholarPubMed
Deutsch, E. F. (1964). Cumulative effects of oxygen lack on the electrical phenomena of the cochlea. Ann. Otol. Rhinol. Lar. 73, 348–57.CrossRefGoogle ScholarPubMed
Dohlman, G. F. (1965). The mechanism of secretion and absorption of endolymph in the vestibular apparatus. Acta otolar. 59, 275–88.CrossRefGoogle Scholar
Dohlman, G. F. & Radomski, M. W. (1968). The ion selective function of the epithelium of the membranous canal walls. Acta otolar. 66, 409–16.CrossRefGoogle ScholarPubMed
Echandia, E. L. R. & Burgos, M. H. (1965). The fine structure of the stria vascularis of the guinea pig ‘inner ear’. Z. Zellforsch. Mikrosk. Anat. 67, 600–19.CrossRefGoogle Scholar
Engebretson, A. M. & Eldredge, D. H. (1968). Model for the nonlinear characteristics of cochlear potentials. J. acoust. Soc. Am. 44, 548–54.CrossRefGoogle ScholarPubMed
Engstriom, H. (1960) The Cortilymph, the third lymph of the inner ear. Acta morph. neerl. scand. 3, 195204.Google Scholar
Fernandez, C. (1955). The effect of oxygen lack on cochlear potentials. Ann. Otol. Rhinol. Lar. 64, 1193–203.CrossRefGoogle ScholarPubMed
Fex, J. (1959). Augmentation of cochlear microphonics by stimulation of efferent fibres to the cochlea. Acta otolar. 50, 540–1.CrossRefGoogle ScholarPubMed
Flanagan, J. L. (1962). Computational model for basilar membrane displacement. J. acoust. Soc. Am. 41, 935–40.Google Scholar
Fletcher, H. (1951). On the dynamics of the cochlea. J. acoust. Soc. Am. 23, 637–45.CrossRefGoogle Scholar
Galambos, R. (1956). Suppression of the auditory nerve activity by stimulation of efferent fibres to the cochlea. J. Neurophysiol. 19, 424–37.CrossRefGoogle Scholar
Gilad, P., Shtrikman, S. & Hillman, P. (1967). Application of the Mössbauer method to ear vibrations. J. acoust. Soc. am. 41, 1232–36.CrossRefGoogle ScholarPubMed
Goldstein, R. (1954). Analysis of summating potential in cochlear responses of guinea pigs. Am. J. Physiol. 178, 331–7.CrossRefGoogle ScholarPubMed
Goldstein, J. L. (1970). Aural combination tones. In Frequency Analysis and Periodicity Detection in Hearing. (ed. Plomp, & Smoorenburg, ), pp. 230–47.Google Scholar
Grinnell, A. D. (1969). Comparative physiology of hearing. A. Rev. Physiol. 31, 545–80.CrossRefGoogle ScholarPubMed
Guinan, J. J. & Peake, W. T. (1967). Middle ear characteristics of anaesthetized cats. J. acoust. Soc. Am. 41 (5), 1237–61.CrossRefGoogle Scholar
Harris, G. G. (1968). Brownian motion and the threshold of hearing. Int. Audiol. 7, 111–20.CrossRefGoogle Scholar
Heise, G. A. (1963). Auditory thresholds in the pigeon. Am. J. Psyschol. 66, 119.Google Scholar
Hepp-Reymond, M.-C. & Palin, J. (1968). Patterns in the cochlear potentials of the tokay gekko (Gekko gekko). Acta otolar. 65, 270–92.CrossRefGoogle Scholar
Honrubia, V., Johnstone, B. M. & Butler, R. A. (1965). Maintenance of cochlea potentials during asphyxia. Acta otolar. 60, 105–12.CrossRefGoogle ScholarPubMed
Honrubia, V. & Ward, P. H. (1969 a). Mechanism of production of cochlear microphonics. J. acoust. Soc. Am. 47, 498503.CrossRefGoogle Scholar
Honrubia, V. & Ward, P. H. (1969 b). Dependence of the cochlea micro-phonics and the summating potential on the endocochlear potential. J. acoust. Soc. Am. 46, 388–93.CrossRefGoogle Scholar
Honrubia, V. & Ward, P. H. (1969 c). Properties of the summating potential of the guinea pig cochlea. J. acoust. Soc. Am. 45, 1443–50.CrossRefGoogle Scholar
Huxley, A. (1969). Is resonance possible in the cochlea after all? Nature, Lond. 221, 935–40.CrossRefGoogle Scholar
Iurato, S. (1964). Atti Soc. ital. Anat. 72, 60–.Google Scholar
Ishii, Y., Matsuura, S. & Furukawa, T. (1971). An input–output relation at the synapse between hair cells and eighth nerve fibres in goldfish. Jap. J. Physiol. 21, 91–8.CrossRefGoogle ScholarPubMed
Johnstone, B. M. (1965). The relation between endolymph and the endocochlear potential during anoxia. Acta otolar. 60, 113–20.CrossRefGoogle ScholarPubMed
Johnstone, B. M. & Boyle, A. J. F. (1967). Basilar membrane vibration examined with the Mössbauer technique. Science, N.Y. 158, 389–90.CrossRefGoogle ScholarPubMed
Johnstone, J. R. & Johnstone, B. M. (1966 b). Origin of summating potential. J. acoust. Soc. Am. 40, 1405–13.CrossRefGoogle ScholarPubMed
Johnstone, B. M., Johnstone, J. R. & Pugsley, I. D. (1966 a). Membrane resistance in endolymphatic walls of the first turn of the guinea pig cochlea. J. acoust. Soc. Am. 40, 13981404.CrossRefGoogle Scholar
Johnstone, C. G., Schmidt, R. S. & Johnstone, B. M. (1963). Sodium and potassium in vertebrate cochlear endolymph as determined by flame micro-spectrophotometry. Comp. Biocheni. Physiol. 9, 335–41.CrossRefGoogle Scholar
Johnstone, B. M. & Taylor, K. J. (1969). Use of probe microphones to measure sound pressures in the ear.. J. acoust. Soc. Am. 46, (6), 1404–5.CrossRefGoogle ScholarPubMed
Johnstone, B. M. & Taylor, K. (1970). Mechanical aspects of cochlear function. Frequency Analysis and Periodicity Detection in Hearing (ed. Plomp, & Smoorenburg, ), pp. 8193.Google Scholar
Johnstone, B. M. & Taylor, K. J. (1971). Physiology of the middle ear transmission system. Otolaryngol. Soc. Aust. 3 (2), 225–8.Google ScholarPubMed
Johnstone, B. M., Taylor, K. J. & Boyle, A. J. (1970). Mechanics of the guinea pig cochlea. J. acoust. Soc. Am. 47 (2), 504–9.CrossRefGoogle Scholar
Johnstone, & Turnbull, (1971). (In Press.)Google Scholar
Keidel, W. D. (1970). Biophysics, mechanics and electrophysiology of the human cochlea. In Frequency Analysis and Periodicity Detection in Hearing (ed. Plomp, & Smoorenburg, ), pp. 6080.Google Scholar
Keynes, R. D. (1969). From frog skin to sheep rumen: a survey of transport of salts and water across multicellular structures. Q. Rev. Biophys. 2, 177281.CrossRefGoogle ScholarPubMed
Kiang, N. Y.-S., Watanabe, T., Thomas, E. C. & Clarke, L. F. (1965). Discharge Patterns of Single Fibres in the Cats' Auditory Nerve. (Research Monograph no. 35. Cambridge, Mass: M. I. T. Press).Google Scholar
Kimura, R. S. & Schuknecht, H. F. (1970). The ultrastructure of the human stria vascularis. Part I. Acta otolar. 69, 415–27.CrossRefGoogle Scholar
Kohllöffel, L. U. E. (1970). Cochlear microphonics distribution and spatial filtering. In Frequency Analysis and Periodicity Detection in Hearing. (ed. Plomp, & Smoorenburg, ), pp. 107–17.Google Scholar
Konishi, T., Butler, R. A. & Fernandez, C. (1961). Effect of anoxia on cochlea potentials. J. acoust. Soc. Am. 33, 349–56.CrossRefGoogle Scholar
Konishi, T. & Kelsey, E. (1968). Effect of cyanide on cochlear potentials. Acta otolar. 65, 381–90.CrossRefGoogle ScholarPubMed
Konishi, T., Kelsey, E. & Singleton, G. T. (1966). Effects of chemical alteration in the endolymph on the cochlear potentials. Acta otolar. 62, 393404.CrossRefGoogle ScholarPubMed
Konishi, T., Kelsey, E. & Singleton, G. T. (1967). Negative potential in scala media during eartly stage of anoxia. Acta otolar. 64, 107–18.CrossRefGoogle Scholar
Konishi, T. & Mendelsohn, M. (1970). Effect of Ouabain on cochlear potentials and endolymph composition in guinea pigs. Acta. otolar. 69, 192–9.CrossRefGoogle ScholarPubMed
Konishi, T. & Slepian, J. (1971). Summating potential with electrical stimulation of crossed olivocochlear bundles. Science, N. Y. 30, 483–4.CrossRefGoogle Scholar
Konishi, T., Teas, D. C. & Wernick, J. S. (1970). Effects of electrical current applied to cochlear partition on discharges in individual auditory nerve fibres. I. Prolonged direct-current polarization. J. acoust. Soc. Am. 47, 1519–26.CrossRefGoogle ScholarPubMed
Konishi, T. & Yasuno, T. (1963). Summating potential of the cochlea in the guinea pig. J. acoust. Soc. Am. 35, 1448–52.CrossRefGoogle Scholar
Kuijpers, , (1969 a). Thesis, p. 86 (personal communication).Google Scholar
Kuijpers, W. & Bonting, S. L. (1970 a). The cochlear potentials. II. The nature of the cochlear resting potential. Pflügers Arch. ges Physiol. 320, 359–72.CrossRefGoogle ScholarPubMed
Kuijpers, W. & Bonting, S. L. (1970 b). Studies on (Na+–K+)–activated ATPase. XXIV. Localization and properties of ATPase in the inner ear of the guinea pig. Biochim. biophys. Acta 173, 477–85.CrossRefGoogle Scholar
Kuijpers, W. & Bonting, S. L. (1970 b). The cochlear potentials. I. The effect of ouabain on cochlear potentials of the guinea pig. Pflügers Arch. ges Physiol. 320, 348–58.CrossRefGoogle ScholarPubMed
Kuijpers, W., van der Vleuten, A. C. & Bonting, S. L. (1967). Cochlea function and sodium and potassium activated adenosine triphosphatase. Science, N.Y. 157, 949–50.CrossRefGoogle ScholarPubMed
Kupperman, R. (1966). The dynamic DC potential in the cochlea of the guinea pig (summating potential). Acta otolar. 62, 465–80.CrossRefGoogle ScholarPubMed
Kupperman, R. (1970). On and off responses as measured in the guinea pig cochlea. J. acoust. Soc. Am. 47, 518–24.CrossRefGoogle Scholar
Kurokawa, S. (1965). Experimental study on electrical resistance of basilar membrane in guinea pig. J. otorhino-lar. Soc. Japan 68, 1177–95.Google Scholar
Lawrence, M. (1967). Electrical polarization of the tectorial membrane. Ann. Otol. Rhinol. Lar. 76, 287312.CrossRefGoogle Scholar
Loftus-Hills, J. J. & Johnstone, B. M. (1970). Auditory function, communication and the brain evoked response in anuran amphibians. J. acoust. Soc. Am. 47, 1131–8.CrossRefGoogle ScholarPubMed
Mach, E. & Kessel, J. (1874). Beiträge zur Topographie and Mechanik de Mittlerohres. Sber., Akad. Wiss. Wien. (Math.-Naturw. Cl.) 69, 221–42.Google Scholar
Masterton, B., Hefefner, H. & Ravizza, R. (1969). The evolution of human hearing. J. acoust., Soc. Am. 45, 966–85.CrossRefGoogle ScholarPubMed
Mendelsohn, M. & Konishi, T. (1969). The effect of local anoxia on the cation content of the endolymph. Ann. Otol. Rhinol. Lar. 78, 6575.CrossRefGoogle ScholarPubMed
Misrahy, G. A., de Jonge, B. R., Shinabarger, E. W. & Arnold, J. E. (1958 a). Effects of localized hypoxia on the electrophysiological activity of cochlea of the guinea pig. J. acoust. Soc. Am. 30, 705–9.CrossRefGoogle Scholar
Misragy, G. A., Hildreth, K. M., Shinabarger, E. W. & Gannon, W. J. (1958 b). Electrical properties of wall of endolymphatic space of the cochlea (guinea pig). Am. J. Physiol. 194, 396402.CrossRefGoogle Scholar
Møller, A. R. (1963). Transfer function of the middle ear. J. acoust. Soc. Am. 35 (10), 1526–34.CrossRefGoogle Scholar
Morizono, T. & Johnstone, B. M. (1968). Vascular perfusion technique applied to the guinea pig cochlea. J. Oto-laryngol. Soc. Aust. 2, 3443.Google Scholar
Mundie, J. R. (1963). The impedance of the ear – a variable quantity. U.S. Army Medical Research Laboratory. Middle-ear Function Seminar. Report no. 57663.Google Scholar
Mygind, S. H. (1966). Functional mechanism of the labyrinthine epithelium. Archs Otolar. 83 (1), 39.CrossRefGoogle ScholarPubMed
Naftalin, L. (1963). The transmission of acoustic energy from air to receptor organ in the cochlea (I). Life Sci. 2, 101–6.CrossRefGoogle Scholar
Naftalin, L. (1964). The transmission of acoustic energy from air to the receptor organ in the cochlea (2). J. Lar. Otol. 78, 239–44.CrossRefGoogle Scholar
Naftalin, L., Harrison, M. & Stephens, A. (1964). The character of the tectorial membrane. J. Lar. Otol. 78, 1061.CrossRefGoogle ScholarPubMed
Naftalin, L. (1966). The distribution of acoustic energy within the cochlea. Life Sci. 5, 1345–68.CrossRefGoogle ScholarPubMed
Naftalin, L. (1968). Acoustic transmission and transduction in the peripheral hearing apparatus. Prog. in Biophysics and Molecular Biology, vol. 18, eds. Butler, J. A. V. and Noble, D.. Pergamon: Oxford.Google Scholar
Nakai, Y. & Hilding, D. (1968). Vestibular endolymph-producing epithelium. Acta otolar. 66, 1–2, 120–8.CrossRefGoogle ScholarPubMed
Nakashima, T., Sullivan, M. J., Snow, J. B. & Suga, F. (1970). Sodium and potassium changes in inner ear fluids. Archs Otolar. 92, 16.CrossRefGoogle ScholarPubMed
Nakashima, T., Meiring, N. L. & Snow, J. B. (1971). Cations in the endolymph with noise induced deafness. Archs Otolar. 94, 109–13.CrossRefGoogle ScholarPubMed
Neider, P. (1971). The addressed exponental delay line – a cochlear model. J. theor. Biol. (In the Press.)Google Scholar
Panayiotopoulos, C. P. & Stopp, P. E. (1970). The characteristics of the cochlear after-potential studied in the guinea pig by perfusion and stimulation. J. Physiol. Lond., 210, 495505.CrossRefGoogle ScholarPubMed
Ratliff, F., Knight, B. W. & Graham, N. (1969). On tuning and amplification by lateral inhibition. Proc. natn Acad. Sci. U.S.A. 62, 733–40.CrossRefGoogle ScholarPubMed
Rauch, S. (1966). Membrane problems of the inner ear and their significance. J. Lar. Otol. 80, 1144–55.CrossRefGoogle ScholarPubMed
Rauch, S. (1968). Biochemical aspects of the pathogenesis of Meniere's disease. Otolaryngology Clinics of North America, pp. 369–74.Google Scholar
Rauch, S., Kostlin, A., Schnieder, E. A. & Schindler, K. (1963). Arguments for the permeability of Reissner's membrane. Laryngoscope, St. Louis 73, 135–47.CrossRefGoogle Scholar
Rhode, W. S. (1971). Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. J. acoust. Soc. Am. 49, 1218–31.CrossRefGoogle ScholarPubMed
Rodgers, K. & Chou, J. T. Y. (1966 a). Concentrations of inorganic ions in guinea-pig inner ear fluids. J. Lar. Otol. 80, 778–90.CrossRefGoogle ScholarPubMed
Rodgers, K. & Chou, J. T.-Y. (1966 b). Concentrations of inorganic ions in guinea pig inner ear fluids. J. Lar. Otol. 80, 885–93.CrossRefGoogle ScholarPubMed
Rose, J. E. (1970). Discharges of single fibres in the mammalian auditory nerve. In Frequency Analysis and Periodicity Detection in Hearing (ed. Plomp, & Smoorenburg, ), pp. 176–92.Google Scholar
Ross, H. F. & Whitfield, I. C. (1964). Concerning the origin of the summating potential in the cochlea. J. Physiol., Lond. 176, 910P.Google Scholar
Rubinstein, M., Feldman, B. & Fischler, R. H. (1966). Measurement of stapedial-footplate displacements during transmission of sound through the middle ear. J. acoust. Soc. Am. 40 (6), 1420–6.CrossRefGoogle ScholarPubMed
Saunders, J. C. & Johnstone, B. M. (1972). A comparative analysis of middle ear function in non-mammalian vertebrates. Acta Otolar. (In the Press).CrossRefGoogle Scholar
Schmidt, R. S. (1963). Independence of the endovestibular potential in homeotherms. J. gen. Physiol. 47, 371–8.CrossRefGoogle ScholarPubMed
Schwartzkopf, J. (1963). Morphological and physiological properties of the auditory system in birds. Proc. XIII Int.-Ornithol. Congr. pp. 10591068.Google Scholar
Sellick, P. M. & Johnstone, B. M. (1971). (In the Press.)Google Scholar
Silverstein, H. (1966). Biochemical studies of the inner ear fluids in the cat. Ann. Otol. Rhinol. Lar. 75, 4863.CrossRefGoogle ScholarPubMed
Silverstein, H. (1970). Comparison of inner ear fluids in the antemortem and post mortem state of the cat. Ann. Otol. Rhinol. Lar. 79, 178–87.CrossRefGoogle Scholar
Smith, C. A. (1970). The extrasensory cells of the vestibule. In Biochemical Mechanisms in Hearing and Deafness, ed. Paparella, M. M., Thomas, Charles C..Google Scholar
Smith, C. A., Davis, H., Deatherage, B. H. & Gessert, C. F. (1958). DC potentials of the membranous labyrinth. Am. J. Physiol. 193, 203–6.CrossRefGoogle ScholarPubMed
Smith, C. A., Lowry, O. H. & Wu, M. L. (1954). The electrolytes of the labyrinthine fluids. Laryngoscope, St Louis 64, 141–53.CrossRefGoogle ScholarPubMed
Stopp, P. E. (1967). After-potential in the cochlear response. Nature, Lond. 215, 1400.CrossRefGoogle Scholar
Stopp, P. E. (1969). The transient electrical responses of the cochlea. J. Physiol., Lond. 205, 353–65.CrossRefGoogle ScholarPubMed
Strother, W. F. (1959). The electrical response of the auditory mechanism in the bullfrog (Rama catesbeiana). J. comp. physiol. Psychol. 52, 157–62.CrossRefGoogle Scholar
Strother, W. F. (1962). Hearing in frogs. J. aud. Res. 2, 279–86.Google Scholar
Suga, F., Nakashima, T. & Snow, J. B. (1970). Sodium and potassium ions in endolymph. Archs Otolar. 91, 3743.CrossRefGoogle ScholarPubMed
Tanaka, Y. & Brown, P. G. (1970). Action of the metabolic inhibiters and energy rich phosphate compounds on cochlear potentials. Ann. Otol. Rhinol. Lar. 79 (2), 338–51.CrossRefGoogle Scholar
Tasaki, I. (1954). Nerve impulses in individual auditory nerve fibres of guinea pig. J. Neurophysiol 167, 97122.CrossRefGoogle Scholar
Tasaki, I. (1957). Hearing. A. Rev. Physiol. 19, 417–38.CrossRefGoogle ScholarPubMed
Tasaki, I., Davis, H. & Eldredge, D. H. (1954). Exploration of cochlear potentials in guinea pig with a microelectrode. J. acoust. Soc. Am. 26, 765–73.CrossRefGoogle Scholar
Tasaki, I., Davis, H. & Legouix, J. P. (1952). The space-time pattern of the cochlear microphonics as recorded by differential electrodes. J. acoust. Soc. Am. 24, 502–19.CrossRefGoogle Scholar
Tasaki, I. & Fernandez, C. (1952). Modifications of cochlea microphonics and action potentials by KC1 solution and by direct currents. J. Neurophysiol. 15, 497512.CrossRefGoogle ScholarPubMed
Tasaki, I. & Spyropoulos, C. S. (1959). Stria vascularis as source of endocochlear potential. J. Neurophysiol. 22, 149–55.CrossRefGoogle ScholarPubMed
Teas, D. C., Konishi, T. & Wernick, J. S. (1970). Effects of electrical current applied to cochlea partition on discharge in individual auditory nerve fibres. II. Interaction of electrical polarization and acoustic stimulation. J. acoust. Soc. Am. 47, 1527–37.CrossRefGoogle ScholarPubMed
Thomas, R. C. (1969). Membrane current and intracellular sodium changes in snail neurone during extrusion of injected sodium. J. Physiol. Lond. 201, 495513.CrossRefGoogle ScholarPubMed
Tiedemann, H. (1970). A new approach to theory of hearing. Acta. Otolar Supp. 277, 150.Google ScholarPubMed
Tonndorf, J. (1960). Shearing motion in scala media of cochlear models. J. acoust. Soc. Am. 32, 238–44.CrossRefGoogle Scholar
Tonndorf, J. & Khanna, S. M. (1968). Submicroscopic displacement amplitudes of the tympanic membrane (cat) measured by a laser interferometer. J. acoust. Soc. Am. 44 (6), 1546–54.CrossRefGoogle ScholarPubMed
Tonndorf, J. & Khanna, S. M. (1970). The role of the tympanic membrane in middle ear transmission. Anna. Otol. Rhinol. Lar. 79 (4), 743–53.CrossRefGoogle ScholarPubMed
Tumarkin, A. (1964). Criticisms of Dr. Naftalin's theories. J. Lar. Otol. 78, 874–6.CrossRefGoogle ScholarPubMed
Wever, E. G. (1965). Structure and function of the lizard ear. J. Aud. Res. 5, 351–71.Google Scholar
Wever, E. G. & Lawrence, M. (1954). Physiological Acoustics, Princeton, N.J., Princeton University Press.CrossRefGoogle Scholar
Wever, E. G. & Wermer, Y. L. (1970). The function of the middle ear in lizards. Crotaphytus collaris (Iguanidae). J. exp. Zool. 175 (3), 327–42.CrossRefGoogle ScholarPubMed
Whitfield, I. C. (1967). The Auditory Pathway. Monographs of the Physiological Society. Edward Arnold: London.Google Scholar
Whitfield, I. C. & Ross, H. F. (1965). Cochlear-microphonic and sum- mating potentials and the outputs of individual hair cell generators. J. acoust. Soc. Am. 38, 126–31.CrossRefGoogle Scholar
Wilson, J. P. (1970). In Frequency Analysis and Periodicity Detection in Hearing (ed. Plomp, R. and Smoorenburg, G. F.), p. 90.Google Scholar
Zwislocki, J. (1963). Analysis of the middle ear function. III. Guinea pig ear. J. acoust. Soc. Am. 35 (7), 1034–40.CrossRefGoogle Scholar