Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T19:26:51.847Z Has data issue: false hasContentIssue false

Molecular interactions and structure as analysed by fluorescence relaxation spectroscopy

Published online by Cambridge University Press:  17 March 2009

Rudolf Rigler
Affiliation:
Institute for Cell Research, Medical Nobel Institute, Karolinska Institutet, Stockholm, Sweden
Måns Ehrenberg
Affiliation:
Institute for Cell Research, Medical Nobel Institute, Karolinska Institutet, Stockholm, Sweden

Extract

Spectroscopic probes have become powerful tools in analysing the correlation between structure and function of biological macromolecules. Though these spectral methods cannot give as circumstantial information about the anatomy of a biological structure as, for example, X-ray diffraction they can provide information on physical properties at defined loci in a macromolecule which are not accessible by other techniques. Most important, spectroscopic studies have provided means to study the dynamics of structural changes and interactions in time domains spanning from nanoseconds and less up to infinite time.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Azzi, A., Chance, B., Radda, G. K. & Lee, C. P. (1969). A fluorescence probe of energy-dependent structure changes in fragmented membranes. Proc. natn. Acad. Sd. U.S.A. 62, 612.CrossRefGoogle ScholarPubMed
Bard, Y. & Lapidus, L. (1968). Kinetic analysis by digital parameter estimation. Catal. Rev. 2, 67.CrossRefGoogle Scholar
Barrio, J. R., Secrist, J. A. & Leonard, N. J. (1972). Fluorescent adenosin and cytidine derivatives. Biochem. bipohys. Res. Commun. 46, 597.CrossRefGoogle ScholarPubMed
Beardsley, K. & Cantor, CH. R. (1970). Studies of transfer RNA tertiary structure by singlet—singlet energy transfer. Proc. natn. Acad. Sci. U.S.A. 65, 39.CrossRefGoogle ScholarPubMed
Becker, R. S. (1969). Theory and Interpretation of Fluorescence and Phosphorescence. New York: J. Wiley and Sons.Google Scholar
Belford, G. G., Belford, R. L. & Weber, G. (1972). Dynamics of fluorescence polarisation in macromolecules. Proc. natn. Acad. Sci. U.S.A. 69, 1392.CrossRefGoogle Scholar
Bender, R. (1971). Single photon phase method for radiative life times and polarization anisotropy decay. 1st Eur. Biophys. Congr. Proceedings, vol. VI, p. 437.Google Scholar
Benesi, H. A. & Hildebrand, (1949). A spectrophotometric investigation of the interactions of iodine with aromatic hydrocarbons. J. Am. chem. Soc. 71, 2703.CrossRefGoogle Scholar
Birkett, D. J., Dwek, R. A., Radda, G. K., Richards, R. E. & Salmon, A. G. (1971). Probes for the conformational transitions of phosphorylase b. Eur. J. Biochem. 20, 494.CrossRefGoogle ScholarPubMed
Birks, J. B. & Munro, J. H. (1967). The fluorescence life time of aromatic molecules. Prog. React. Kinet. 4, 239.Google Scholar
Brand, L. & Gohlke, J. R. (1971). Nanosecond time-resolved fluorescence spectra of a protein-dye complex. J. biol. Chem. 246, 2317.CrossRefGoogle ScholarPubMed
Brand, L., Gohlke, J. R., Loken, M. R. & Hayes, J. (1972). Applications of nanosecond time-resolved fluorescence spectroscopy in molecular biology. In Proceedings of Batelle-Conference on Quantitative Fluorescence techniques as Applied in biology, Seattle, 1972. (In the Press.)Google Scholar
Brand, L. & Witholt, B. (1967). Investigation of conformational changes. Fluorescence measurements. In Methods in Enzymology, vol. XI (ed. Hirs, C. H. W.), p. 776. New York: Academic Press.Google Scholar
Brocklehurst, J. R., Freedman, R. B., Hancock, D. J. & Radda, G. K. (1970). Membrane studies with polarity-dependent and excimer-forming fluorescent probes. Biochem. J. 116, 721.CrossRefGoogle ScholarPubMed
Brocklehurst., J. R. & Radda, R. K. (1971). Fluorescent probes for glutamatedehydrogenase. In Probes of Structure and Function of Macromolecules and Membranes, vol. II (ed. Chance, B., Yonetani, T. and Mildvan, A. S.), p. 59. New York: Academic Press.Google Scholar
Bruton, C. J. & Hartley, B. S. (1970). Chemical studies on methionyl tRNA synthetase from Escherichia coli. J. molec. Biol. 52, 165.CrossRefGoogle ScholarPubMed
Chakrabarti, S. K. & Ware, W. R. (1971). Nanosecond time-resolved emission spectroscopy of I -anilino-8-naphthalene sulfonate. J. chem. Phys. 55, 5494.CrossRefGoogle Scholar
Chan, L. M. & Van Winkle, Q. (1969). Interaction of acriflavin with DNA and RNA. J. molec. Biol. 40, 491.CrossRefGoogle ScholarPubMed
Chuang, T. J. & Eisenthal, K. B. (1972). Theory of fluorescence de polarization by anisotropic rotational diffusion. J. chem. Phys. 57, 5094.CrossRefGoogle Scholar
Churchich, J. E. (1966). Tryptophan residues in native and reoxidized muramidase: luminescence properties. Biochim. biophys. Acta 120,406.CrossRefGoogle ScholarPubMed
Conrad, R. H. & Brand, L. (1968). Intramolecular transfer of excitation from tryptophan to I-dimethylaminonaphthalene-5-sulfonamide in a series of model compounds. Biochemistry, N.Y. 7, 777.CrossRefGoogle Scholar
Czerlinsku, G. (1962). Versatile temperature jump apparatus for following chemical relaxations. Rev. Scient. Instrum. 33, 1184.CrossRefGoogle Scholar
Czerlinski, G. (1966). Chemical Relaxation. New York: Marcel Dekker Inc.Google Scholar
Czerlinski, G., Gibson, Q. & Staerk, H. (1964). Abstract WB2. Eighth Annual Meeting of the Biophysical Society, Chicago.Google Scholar
Czerlinski, G. & Hommes, F. (1964). Two forms of the reduced pyridine nucleotides as revealed by chemical relaxation. Biochim. biophys. Acta 79, 46.Google ScholarPubMed
Czerlinski, G. & Schreck, G. (1964). Flourescence detection of the chemical relaxation of the reaction of lactate dehydrogenase with reduced nicotinamide adenin dinucleotide. J. biol. Chem. 239, 913.CrossRefGoogle Scholar
Daniel, E. & Weber, G. (1966). Co-operative effects in binding by bovine serum albumin. I. The binding of I-anilino-8-naphthalene-sulfonate. Fluorometric titrations. Biochemistry, N.Y. 5, 1893.CrossRefGoogle Scholar
DeLuca, M., Brand, L., Cebula, T. A., Seliger, H. H. & Makula, A. F. (1971). Nanosecond time-resolved proton transfer studies with dehydroluciferin and its complex with luciferase. J. biol. Chem. 246, 6702.CrossRefGoogle ScholarPubMed
Deranleau, D. A. & Neurath, H. (1966). The combination of chymotrypsin and chymotrypsinogen with fluorescent substrates and inhibitors of chymotrypsin. Biochemistry, N.Y. 5, 1413.CrossRefGoogle ScholarPubMed
Dourlent, M. & Hélène, C. (1971). A quantitative analysis of proflavine. binding to polyadenylic acid, polyuridylic acid and transfer RNA. Eur. J. Biochem. 23, 86.CrossRefGoogle ScholarPubMed
Dyson, R. D. & Isenberg, I. (1971). Analysis of exponential curves by a method of moments, with special attention to sedimentation equilibrium and fluorescence decay. Biochemistry, N.Y. 10, 3233.CrossRefGoogle ScholarPubMed
Edwardes, D. (1893). Steady motion of a viscous liquid in which an ellipsoid is constrained to rotate about a principle axis. Q. Jl pure appl. Math. 26, 70.Google Scholar
Ehrenberg, M., Cronvall, E. & Rigler, R. (1971). Fluorescence of proteins interacting with nucleic acids. Correction for light absorption. FEBS Lett. 18, 199.CrossRefGoogle ScholarPubMed
Ehrenberg, M. & Rigler, R. (1972). Polarized fluorescence and rotational Brownian motion. Chem. Phys. Lett. 14, 539.CrossRefGoogle Scholar
Eigen, M. (1954 a). Über die Kinetik sehr schnell verlaufender lonenreaktionen in wässriger Lösung. Z. phys. Chem. N.F. I, 176.CrossRefGoogle Scholar
Eigen, M. (1954 b). Methods for investigation of ionic reactions in aqueous solutions with half times as short as 10-9sec. Discuss. Faraday Soc. 17,194.CrossRefGoogle Scholar
Eigen, M. (1967). Kinetics of reaction control and information transfer in enzymes and nucleic acids. In Fast Reactions and Primary Processes in Chemical Kinetics. Nobel Symposium no. 5 (ed. Claesson, S.), p. 333. Stockholm: Almquist and Wiksell.Google Scholar
Eigen, M. (1968). New looks and outlooks on physical enzymology. Q. Rev. Biophys. I, 3.CrossRefGoogle Scholar
Eigen, M. & DeMaeyer, L. (1963). Relaxation methods. In Technique of Organic Chemistry, vol. 8 (ed. Friess, S. L., Lewis, E. S. and Weissberger, A.), part II, p. 895. New York: J. Wiley and Sons.Google Scholar
Eigen, M. & Pörschke, D. (1970). Co-operative non-enzymic base recognition. I. Thermodynamics of the helix-coil transition of oligoriboadenylic acids at acidic pH. J. molec. Biol. 53, 123.CrossRefGoogle ScholarPubMed
Einstein, A. (1906). Zur Theorie der Brownschen Bewegung. Annln Phys. 19, 371.CrossRefGoogle Scholar
Einstein, A. (1956). Investigations on the Theory of the Brownian Movement, New York: Dover Publications.Google Scholar
Eisinger, J., Feuer, B. & Lamola, A. A. (1969). Intramolecular singlet excitation transfer. Application to polypeptides. Biochemistry, N.Y. 8, 3908.CrossRefGoogle ScholarPubMed
Eisinger, J., Feuer, B. & Yamane, T. (1969). Luminescence and binding studies on tRNAphe. Proc. natn. Acad. Sci. U.S.A. 65, 638.CrossRefGoogle Scholar
von Ellenrieder, G., Kirschner, K. & Schuster, I. (1972). The binding of oxidized and reduced nicotinamide-adenine-dinucleotide to yeast glyceraldehyde -3-phosphate-dehydrogenase. Eur. J. Biochem. 26, 220.CrossRefGoogle ScholarPubMed
Ellerton, N. F. & Isenberg, I. (1969). Fluorescence polarization study of DNA-proflavine complexes. Biopolymers, 8, 767.CrossRefGoogle ScholarPubMed
Favro, L. D. (1960). Theory of the rotational Brownian motion of a free rigid body. Phys. Rev. 119, 63.CrossRefGoogle Scholar
Föster, TH. (1951). Fluoreszenz organischer Verbindungen. Göttingen: Vandenhoeck und Ruprecht.Google Scholar
Freedman, R. B., Hancock, D. J. & Radda, G. K. (1917). The design of fluorescent probes for membranes. In Probes of Structure and Function of Macromolecules and Membranes, vol. I. (ed Chance, B., Lee, C. P. and Blasie), J. K., p. 325. New York: Academic Press.Google Scholar
Gardner, D. G., Gardner, J. C., Laush, G. & Meinke, W. (1959). Method for the analysis of multicomponent exponential decay curves. J. chem. Phys. 31, 978.CrossRefGoogle Scholar
Gottlieb, Y. & Wahl, P. (1963). Etude théorique de la polarisation de fluorescence des macromolecules portant un groupe emetteur mobile autour d'un axe de rotation. J. Chim. phys. 60, 849.CrossRefGoogle Scholar
Haugland, R. P., Yguerabide, J. & Stryer, L. (1969). Dependence of the kinetics of singlet–singlet energy transfer on spectral overlap. Proc. natn. Acad. Sci. U.S.A. 63, 23.CrossRefGoogle ScholarPubMed
Hélène, CL. (1971). Fluorescence studies of the binding of valyl-tRNA synthetase and tryptamin to valine specific tRNA. A possible role for tryptophan residues in the binding of aminoacyl-tRNA synthetase to tRNAs. FEBS Lett. 17, 73.CrossRefGoogle Scholar
Hélène, CL., Brun, F. & Yaniv., M. (1969). Fluorescence studies of interactions between valyl-tRNA-synthetase and valine specific tRNAs from Escherichia coli. Biochem. biophys. Res. Commun. 37, 393.CrossRefGoogle ScholarPubMed
Hoffman, G. W. (1971). A nanosecond temperature-jump apparatus. Rev. Scient. Instrum. 42, 1643.CrossRefGoogle Scholar
Hoffman, H., Yeager, E. & Stuehr, J. (1968). Laser temperature-jump apparatus for relaxation studies in electrolytic solutions. Rev. Scient. Instrum. 39, 649.CrossRefGoogle Scholar
Holler, E., Bennett, E. L. & Calvin, M. (1971). 2-p-toluidinylnaphthalene-6-sulfonate, a fluorescent reporter group for L-isoleucyl-tRNAsynthetase. Biochem. Biophys. Res. Commun. 45, 409.CrossRefGoogle Scholar
Huntress, W. T. (1968). Effects of anisotropic molecular rotational diffusion on nuclear magnetic relaxation in liquids. J. chem. Phys. 48, 3524.CrossRefGoogle Scholar
Janin, J. & Cohen, G. N. (1969). The threonine-sensitive homoserine dehydrogenase and aspartokinase activities of Escherichia coli K 12. A study of the allosteric equilibrium. Eur. J. Biochem. II, 520.CrossRefGoogle Scholar
Janin, J. & Iwatsubo, M. (1969). The threonine-sensitive homoserine dehydrogenase and aspartokinase activities of Escherichia coli K 12. Relaxation of the allosteric equilibrium. Eur. J. Biochem. II, 530.CrossRefGoogle Scholar
Kasai, M., Changeux, J. P. & Monnerie, L. (1969). In vitro interaction of I-anilino-8-naphthalene sulfonate with excitable membranes isolated from the electric organ of Electrophorus electricus. Biochem. biophys. Res. Commun. 36, 420.CrossRefGoogle Scholar
Kenner, R. A. & Aboderin, A. A. (1971). A new fluorescent probe for protein arid nucleoprotein conformation. Binding of 7-(p-methoxy- benzylamino)-4-nitrobenzoxadiazole to bovine trypsinogen and bacterial ribosomes. Biochemistry, N.Y. 10, 4433.CrossRefGoogle Scholar
Kirschner, K., Eigen, M., Bittmann, R. & Voigt, B. (1966). The binding of NAD to yeast D-glyceraldehyde-3-phosphate dehydrogenase: Temperature jump relaxation studies on the mechanism of an allosteric enzyme. Proc. natn. Acad. Sci. U.S.A. 56, 1661.CrossRefGoogle Scholar
Kirschner, K., Gallego, E., Schuster, I. & Goodall, D. (1971). Cooperative binding of nicotinamide-adenine dinucleotide to yeast glyceraldehyde-3 -phosphate dehydrogenase. I. Equilibrium and temperature jump studies at pH 8·5and 40 °C. J. molec. Biol. 58, 29.CrossRefGoogle Scholar
Knibbe, H. (1969). Charge-transfer complex formation in the excited state. Thesis, Vreije universiteit te Amsterdam.Google Scholar
Koshland, D. E. Jr, Némethy, G. & Filmer, D. (1966). Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry, N.Y. 5, 365.CrossRefGoogle ScholarPubMed
Kustin, K. (1969). Fast reactions. Section I. Chemical relaxation. In Methods in Enzymology, vol. XVI, p. 3. New York: Academic Press.Google Scholar
Lehrer, S. (1967). The selective quenching of tryptophan fluorescence in proteins by iodide ion: Lysozyme in the presence and absence of substrate. Biochem. biophys. Res. Commun. 29, 767.CrossRefGoogle ScholarPubMed
Lehrer, S. (1971). Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry, N.Y. 10, 3254.CrossRefGoogle ScholarPubMed
LePecq, J. B. & Paoletti, C. (1967). A fluorescent complex between ethidium bromide and nucleic acids. Physical–chemical characterization. J. molec. Biol. 27, 87.CrossRefGoogle ScholarPubMed
Lerman, L. (1961). Structural considerations in the interactions of DNA and acridines. J. molec. Biol. 3, 18.CrossRefGoogle ScholarPubMed
Li, H. J. & Crothrs, D. M. (1969). Relaxation studies of the proflavine–DNA complex: The kinetics of an intercalation reaction. J. molec. Biol. 39, 461.CrossRefGoogle ScholarPubMed
Loken, M. R., Hayes, J. W., Gohlke, J. R. & Brand, L. (1972). Nanosecond time resolved proton transfer studies of a naphthol sulfonate–serum albumin complex. Abstracts: Fedn Proc. 31, 470.Google Scholar
Löber, G. & Achtert, G. (1969). On the complex formation of acridine dyes with DNA. Dependence of the binding on the dye-structure. Biopolymers, 8, 595.CrossRefGoogle ScholarPubMed
McClure, W. O. & Edelman, G. M. (1966). Fluorescent probes for conformational states of proteins. I. Mechanism of fluorescence of 2-p- toluidinyl-naphthalene-6-sulfonate, a hydrophobic probe. Biochemistry, N.Y. 5, 1908.CrossRefGoogle Scholar
McClure, W. O. & Edelman, G. M. (1967 a). Fluorescent probes for conformational states of proteins. II. The binding of 2-p-toluidinylnaphtha- lene-6-sulfonate to a α-Chymotrypsin. Biochemistry, N.Y. 6, 559.CrossRefGoogle ScholarPubMed
McClure, W. O. & Edelman, G. M. (1967 b). Fluorescent probes for conformational states of proteins. III. The activation of chymotrypsinogen. Biochemistry, N.Y. 6, 567.CrossRefGoogle Scholar
Memming, R. (1961). Theorie der Fluoreszenzpolarisation für nicht kugelsymmetrische Moleküle. Z. phys. Chem. N.F. 28, 168.CrossRefGoogle Scholar
Monod, J., Wyman, J. & Changeux, J. P. (1965). On the nature of allosteric transitions: A plausible model. J. molec. Biol. 12, 88.CrossRefGoogle ScholarPubMed
Noyes, R. M. & Weller, A. (1963). Photostationary methods. In Technique of Organic Chemistry, vol. 8 (ed. Friess, S. L., Lewis, E. S. and Weissberger, A.), part II, p. 845. New York: J. Wiley & Sons.Google Scholar
Pachmann, U. & Rigler, R. (1972). Quantum yield of acridines interacting with DNA of defined base sequence. A basis for the explanation of acridine bands in chromosomes. Expi Cell Res. 72, 602.CrossRefGoogle ScholarPubMed
Parker, C. A. (1968). Photoluminescence of Solutions. Amsterdam: Elsevier Publishing Company.Google Scholar
Pecht, I., Teichberg, V. I. & Sharon, N. (1970). Fluorescence studies of the binding dynamics of saccharides to lysozymes. FEBS Lett. 10, 241.CrossRefGoogle ScholarPubMed
Perrin, F. (1929). La fluorescence de solutions. Annis Phys., Paris, 12, 169.CrossRefGoogle Scholar
Perrin, F. (1934) Mouvement Brownien d'un ellipsoide. I. Dispersion diélectrique pour des molécules ellipsoidales. J. Phys. Radium, Paris, 5, 497.CrossRefGoogle Scholar
Perrin, F. (1936). Mouvement Brownien d'un ellipsoid. II. Rotation libre et depolarisation des fluorescences. Translation et diffusion de molécules ellipsoidales. J. Phys. Radium, Paris, 7, 16CrossRefGoogle Scholar
Pörschke, D. & Eigen, M. (1971). Co-operative non-enzymic base recognition. III. Kinetics of the helix-coil transition of the oligoribouridylic– ologoriboadenylic acid system and of oligoriboadenylic acid alone at acidic pH. J. molec. Biol. 62, 361.CrossRefGoogle Scholar
Purkey, R. M. & Galley, W. C. (1970). Phosphorescence studies of environmental heterogeneity for tryptophyl residues in proteins. Biochemistry, N.Y. 9, 3569.CrossRefGoogle ScholarPubMed
Rabl, R. C. (1967). Cited by Eigen (1967).Google Scholar
Rabl, R. C. (1972). Unpublished data.Google Scholar
Riesner, D. (1972). Personal communication.Google Scholar
Rigler, R. (1966). Microfluorimetric characterization of intracellular nucleic acids and nucleoproteins by acridine orange. Acta physiol. scand. 67, suppl. 267, 1.Google Scholar
Rigler, R. (1969). Fluorescent probes for analysis of nucleic acid structures and their interactions with proteins. Expl Cell Res. 58, 460.Google Scholar
Rigler, R., Cronvall, E., Ehrenberg, M., Pachman, U., Hirsch, R. & Zachau, H. G. (1971). Interactions between aminoacyl-tRNA-synthetases, tRNAs and fluorescent dyes.CrossRefGoogle Scholar
Rigler, R., Cronvall, E., Hirsch, R., Pachmann, U. & Zachau, H. G. (1970). Interactions of seryl-tRNA synthetase with serine and phenylalanin specific tRNA. FEBS Lett. 11, 320.CrossRefGoogle ScholarPubMed
Rigler, R., Jost, A. & DeMaeyer, L. (1970). Chemical kinetics at the micro level. A laser micro temperature-jump apparatus for relaxation studies in micro samples. Expi Cell Res. 62, 197.CrossRefGoogle Scholar
Rigler, R., Rabl, R. C. & Jovin, T. (1972). A temperature-jump apparatus for fluorescence mearurements. (To be published.)Google Scholar
Rose, M. E. (1957). Elementary Theory of Angular Momentum. New York: J. Wiley & Sons.CrossRefGoogle Scholar
Scatchard, G. (1949). The attractions of proteins for small molecules and ions. Ann. N.Y. Acad. Sci. 51, 660.CrossRefGoogle Scholar
Schechter, A. N. (1970). Measurement of fast biochemical reactions. Science, N.Y. 170, 273.CrossRefGoogle ScholarPubMed
Schwarz, G. (1968). Kinetic analysis by relaxation methods. Rev, mod. Physics 40, 206.CrossRefGoogle Scholar
Schwarz, G. (1970). Cooperative binding to linear biopolymers. I. Fundamental static and dynamic properties. Eur. J. Biochem. 12, 442.CrossRefGoogle ScholarPubMed
Schwarz, G. & Balthasar, W. (1970 b). Co-operative binding to linear biopolymers. 3. Thermodynamic and kinetic analysis of the acridine orange-poly(L-glutamic acid) system. Eur. J. Biochem. 12, 461.CrossRefGoogle Scholar
Schwarz, G., Klose, S. & Balthasar, W. (1970a). Co-operative binding to linear biopolymers. 2. Thermodynamic analysis of the proflavine-poly (L-glutamic acid) system. Eur. J. Biochem. 12, 454.CrossRefGoogle Scholar
Secrist, J. A., Barrio, J. R. & Leonard, N. J. (1972). A fluorescent modification of adenosin triphosphate with activity in enzyme systems: 1, N 6- ethenoadenosine triphosphate. Science, N.Y. 175, 646.CrossRefGoogle Scholar
Spencer, R. D. & Weber, G. (1969). Measurements of subnanosecond fluorescence life times with a cross-correlation phase fluorometer. Ann. N. Y. Acad. Sci. 158, 361.CrossRefGoogle Scholar
Stryer, L. (1965). The interaction of a naphthalene dye with apomyoglobin and aphohemoglobin. A fluorescent probe of non-polar binding sites. J. inolec. Biol. 13, 482.CrossRefGoogle Scholar
Stryer, L. (1968). Fluorescence spectroscopy of proteins. Science, N.Y. 162, 526.CrossRefGoogle ScholarPubMed
Stryer, L. & Haugland, R. P. (1967). Energy transfer: A spectroscopic ruler. Proc. natn. Acad. Sci. U.S.A. 58, 719.CrossRefGoogle ScholarPubMed
Tao, T., Nelson, J. H. & Cantor, Ch. R. (1970). Conformational studies on transfer ribonucleic acid. Fluorescence lifetime and nanosecond depolarization measurements on bound ethidium bromide. Biochemistry, N.Y. 9, 3514.CrossRefGoogle Scholar
Tasaki, I.Carnay, L. & Watanabe, A. (1969). Transient changes in extrinsic fluorescence of nerve produced by electric stimulation. Proc. natn. Acad. Sci. U.S.A. 64, 1362.CrossRefGoogle ScholarPubMed
Tasaki, I., Watanabe, A., Sandlin, R. & Carnay, L. (1968). Changes in fluorescence, turbidity and birefringence associated with nerve excitation. Proc. natn. Acad. Sci. U.S.A. 61, 883.CrossRefGoogle ScholarPubMed
Theorell, H. (1971). Some recent research on alcohol dehydrogenases. In Probes of Structure and Function of Macromolecules and Membranes, vol. 11 (ed. Chance, B., Yonetani, T. and Mildvan, A. S.), p. 25. New York: Academic Press.Google Scholar
Tubbs, R. K., Ditmars, W. E. & Van, Winkle Qu. (1964). Heterogeneity of the interaction of DNA with acriflavine. J. molec. Biol. 9. 545.CrossRefGoogle ScholarPubMed
Turner, D. C. & Brand, L. (1968). Quantitative estimation of protein binding site polarity. Fluorescence of N-arylaminonaphthalenesulfonates. Biochemistry, N.Y. 7, 3381.CrossRefGoogle ScholarPubMed
Turner, D. H., Flynn, G. W., Sutin, N. & Beitz, J. V. (1972). Laser Raman temperature-jump study of the kinetics of the triiodide equilibrium. Relaxation times in the 10−7–10−8 second range. J. Am. chem. Soc. 94, 1554.CrossRefGoogle Scholar
Van Winter, CL. (1954). The asymmetric rotator in quantum mechanics. Physica's Grav. 20, 274.Google Scholar
Vaughan, W. M. & Weber, G. (1970). Oxygen quenching of pyrenebutyric acid fluorescence in water. A dynamic probe of the microenvironment. Biochemistry, N.Y. 9, 464.CrossRefGoogle Scholar
Velick, S. F., Parker, C. W. & Eisen, H. N. (1960). Excitation energy transfer and the quantitative study of the antibody hapten reaction. Proc. natn. Acad. Sci. U.S.A. 46, 1470.CrossRefGoogle ScholarPubMed
Wahl, P., Kasai, M. & Changeux, J. P. (1971). A study on the motions of proteins in excitable membrane fragments by nanosecond fluorescence polarization spectroscopy. Eur. J. Biochem. 18, 332.CrossRefGoogle Scholar
Wahl, P., Paoletti, J. & LePecq, J. B. (1970). Decay of fluorescenceemission anisotropy of the ethidium bromide–DNA complex. Evidence for an internal motion in DNA. Proc. natn. Acad. Sci. U.S.A. 65, 417.CrossRefGoogle Scholar
Wahl, P. & Timasheff, S. N. (1969). Polarized fluorescence decay curves for β-lactoglobulin A in various states of association. Biochemistry, N.Y. 8, 2945.CrossRefGoogle ScholarPubMed
Ward, D. C. & Reich, E. (1969). Fluorescence studies of nucleotides and polynucleotides. J. biol. Chem. 244, 1228.CrossRefGoogle ScholarPubMed
Weber, G. (1952 a). Polarization of the fluorescence of macromolecules. I. Theory and experimental method. Biochem. J. 51, 145.CrossRefGoogle ScholarPubMed
Weber, G. (1952 b). Polarization of the fluorescence of macromolecules. II. Fluorescent conjugates of oval albumin and bovine serum albumin. Biochem. J. 51, 155.CrossRefGoogle Scholar
Weber, G. & Daniel, E. (1966). Co-operative effects in binding by bovine serum albumin. II. The binding of 1-anilino-8-naphthalene-sulfonate. Polarization of the ligand fluorescence and quenching of the protein fluorescence. Biochemistry, N.Y. 5, 1900.CrossRefGoogle Scholar
Weber, G. & Laurence, D. J. R. (1954). Fluorescent indicators of adsorption in aqueous solution and on the solid phase. Biochem. J. 56, 31 P.Google ScholarPubMed
Weber, G. & Spencer, R. D. (1972). Photon counting fluorometry and the ultimate sensitivity of fluorescence techniques. In Proceedings of Batelle-Conference on Quantitative Fluorescence Techniques as applied in Cell Biology, Seattle 1972 (in the Press).Google Scholar
Weber, G. & Young, L. B. (1964). Fragmentation of bovine serum albumin by pepsin. J. biol. Chem. 239, 1415.CrossRefGoogle ScholarPubMed
Weill, G. & Calvin, M. (1963). Optical properties of chromophore-macromolecule complexes: Absorption and fluorescence of acridine dyes bound to polyphosphates and DNA. Biopolymers 1, 401.CrossRefGoogle Scholar
Weisblum, B. & de, Haseth P. L. (1972). Quinacrine, a chromosome stain specific for deoxyadenylate-deoxythymidylate-rich regions in DNA. Proc. natn. Acad. Sd. U.S.A. 69, 629.CrossRefGoogle ScholarPubMed
Whitehead, E. (1970). The regulation of enzyme activity and allosteric transition. Prog. Biophys. Mol. Biol. 21, 321.CrossRefGoogle ScholarPubMed
Winkler, M. (1969). A fluorescence quenching technique for the investigation of the configurations of binding sites for small molecules. Biochemistry, N.Y. 8, 2586.CrossRefGoogle ScholarPubMed
Winkler, R. (1969). Kinetik und Mechanismus der Alkali- und Erdalkalimetallkomplexbildung in Methanol. Thesis, Göttingen.Google Scholar
Wintermeyer, W. & Zachau, H. G. (1971). Replacement of the Y base, dihydro-uracil, and 7-methylguanine in tRNA by artificial odd bases. FEBS Lett. 18, 214.CrossRefGoogle Scholar
Yguerabide, J. (1972). Nanosecond fluorescence spectroscopy of macromolecules. In Methods in Enzymology, vol. xxvi, part C, (ed. Hirs, C. H. W. &Timasheff, S. N.), p. 498. New York: Academic Press.Google Scholar
Yguerabide, J., Epstein, H. F. & Stryer, L. (1970). Segmental flexibility in an antibody molecule. J. molec. Biol. 51, 573.CrossRefGoogle Scholar
Zanker, V., Held, M. & Rammensee, H. (1959). Neuere Ergebnisse der Absorptions-, Fluoreszenz- und Fluoreszenz-Polarisationsgrad-Messung am Acridinorange-Kation, em weiterer Beitrag zum MetachromasieProblem dieses Vitalfarbstoffs. Z. Naturf. 14 b, 789.CrossRefGoogle Scholar
Zwanzig, R. (1965). Time-correlation functions and transport coefficients in statistical mechanics. A. Rev. phys. Chem. 16, 67.CrossRefGoogle Scholar