Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-23T13:23:56.897Z Has data issue: false hasContentIssue false

Microscopic behaviour of DNA during electrophoresis: electrophoretic orientation

Published online by Cambridge University Press:  17 March 2009

Bengt Nordén
Affiliation:
Department of Physical Chemistry, Chalmers University of Technology, 5–412 96 Gothenburg, Sweden
Christer Elvingson
Affiliation:
Department of Physical Chemistry, Chalmers University of Technology, 5–412 96 Gothenburg, Sweden
Mats Jonsson
Affiliation:
Department of Physical Chemistry, Chalmers University of Technology, 5–412 96 Gothenburg, Sweden
Björn Åkerman
Affiliation:
Department of Physical Chemistry, Chalmers University of Technology, 5–412 96 Gothenburg, Sweden

Extract

The study of the behaviour of DNA when subjected to electric fields poses several intriguing problems of fundamental physico-chemical importance. Electric field (Kerr effect) orientation of DNA in free solution as well as migration of DNA in gel electrophoresis are two well-established, but so far rather separate, research fields. Whereas the first one has been generally concerned with basic structural and dynamical properties of DNA (Charney, 1988), the second is closely related to techniques of molecular biology (for a review on DNA electrophoresis, see stellwagen 1987).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adolf, D. (1987). Dynamics of an entangled chain in an external field. Macromolecules 20, 116121.CrossRefGoogle Scholar
Åkerman, B. (1989). Electrophoretic orientation of DNA. Ph.D. thesis, Chalmers University of Technology, Göteborg, Sweden.Google Scholar
Åkerman, B. & Jonsson, M. (1990). Reorientational dynamics and mobility of DNA during pulsed-field agarose gel electrophoresis. J. Phys. Chem. 94, 38283838.CrossRefGoogle Scholar
Åkerman, B., Jonsson, M., Moore, D. & Schellman, J. (1990). Conformational dynamics of DNA during gel electrophoresis studied by linear dichroism spectroscopy. In Current Communications in Molecular Biology Vol. 1. Electrophoresis of Large DNA molecules (ed. Birren, B. and Lai, E.). Cold Spring Harbor Press, PP. 2341.Google Scholar
Åkerman, B., Jonsson, M. & Nordén, B. (1985). Electrophoretic orientation of DNA detected by linear dichroism spectroscopy. J. chem. Soc. chem. Commun. pp. 422423.CrossRefGoogle Scholar
Åkerman, B., Jonsson, M. & Nordén, B. (1989). Orientational dynamics of T2 DNA during agarose gel electrophoresis: influence of gel concentration and electric field strength. Biopolymers 28, 15411571.CrossRefGoogle ScholarPubMed
Anand, R. (1986). Pulsed field gel electrophoresis: a technique for fractionating large DNA molecules. Trends Genet 2, 278283.CrossRefGoogle Scholar
Antosiewicz, J. & Pörschke, D. (1989). An unusual electrooptical effect observed for DNA fragments and its apparent relation to a permanent electric moment associated with bent DNA. Biophys. Chem. 33, 1930.CrossRefGoogle ScholarPubMed
Arndt-Jovin, D. & Jovin, T. (1989). Fluorescence labeling and microscopy of DNA. Meth. Cell Biol. 30, 417448.CrossRefGoogle ScholarPubMed
Arnotts, S. & Hukins, D. W. (1972). Optimized parameters for A-DNA and B-DNA. Biochem. biophys. Res. Commun. 47, 15041510, and references therein.CrossRefGoogle Scholar
Attwood, T. K., Nelmes, B. J. & Sellen, D. B. (1988). Electron microscopy of beaded agarose gels. Biopolymers 27, 201212.CrossRefGoogle Scholar
Baase, W. A., Moore, D. P. & Schellman, J. A. (1988). Orientational relaxation of DNA in agarose gels. Biophys. J. 53, 408a.Google Scholar
Bancroft, I. & Wolk, C. P. (1988). Pulsed homogeneous orthogonal field gel electrophoresis (PHOGE). Nucl. Acids Res. 16, 74057418.CrossRefGoogle ScholarPubMed
Berman, H. M. & Young, P. R. (1981). The interaction of intercalating drugs with nucleic acids. A. Rev. Biophys. Bioeng. 10, 87114.CrossRefGoogle ScholarPubMed
Bernard, D. A. & Noolandi, J. (1983). Scaling picture for polymer melt rheology: a critique of the Curtiss-Bird model. Macromolecules 16, 13581366.CrossRefGoogle Scholar
Bird, R. B. & Saab, H. H., Curtiss, C. F. (1982). A kinetic theory for polymer melts. IV. Rheological properties for shear flows. jf. chem. Phys. 77, 47474757.CrossRefGoogle Scholar
Birren, B. W., Lai, E., Clark, S. M., Hood, L. & Simon, M. I. (1988). Optimized conditions for pulsed field gel electrophoretic separations of DNA. Nucl. Acids Res. 16, 75637582.CrossRefGoogle ScholarPubMed
Birren, B. W., Simon, M. I. & Lai, E. (1990). The basis of high resolution separation of small DNAs by asymmetric-voltage field inversion electrophoresis and its application to DNA sequencing gels. Nucl. Acids Res. 18, 14811487.CrossRefGoogle ScholarPubMed
Boots, S. (1989). Gel electrophoresis of DNA. Analyt. Chem. 61, 551553.CrossRefGoogle ScholarPubMed
Borejdo, J. (1989). Orientation of DNA in agarose gels. Biophys. J. 55, 11831190.CrossRefGoogle ScholarPubMed
Borejdo, J. & De Fea, K. (1988). The orientation of DNA fragments in the agarose gels. Analyt. Biochem. 174, 393398.CrossRefGoogle ScholarPubMed
Bostock, C. I. (1988). Parameters of field inversion gel electrophoresis for the analysis of pox virus genomes. Nucl. Acids Res. 16, 42394252.CrossRefGoogle ScholarPubMed
Boue, F., Nierlich, M. & Osaki, K. (1983). Dynamics of molten polymers on the submolecular scale. Faraday Symp. Chem. Soc. 18, 83102.Google Scholar
Brenner, H. (1967). Coupling between the translational and rotational Brownian motions of rigid particles of arbitrary shape. J. Coll. Interf. Sci. 23, 407436.CrossRefGoogle Scholar
Brenner, H. & Condiff, D. W. (1972). Transport mechanics in systems of orientable particles. J. Coll. Interf. Sci. 41, 228274.CrossRefGoogle Scholar
Brenner, H. & Condiff, D. W. (1974). Transport mechanics in systems of orientable particles. J. Coll. Interf. Sci. 47, 199264.CrossRefGoogle Scholar
Brenner, S. L., Gelman, R. A. & Nossal, R. (1978). Laser light scattering from soft gels. Macromolecules 11, 202207.CrossRefGoogle Scholar
Callis, P. & Davidson, N. (1969). Hydrodynamic relaxation times of DNA from decay of flow dichroism measurements. Bipolymers 8, 379390.CrossRefGoogle Scholar
Cantor, C. R., Smith, C. L. & Matthew, M. K. (1988). Pulsed field gel electrophoresis of very large DNA molecules. A. Rev. Biophys. Chem. 17, 287304.CrossRefGoogle ScholarPubMed
Carle, G. & Olson, M. (1984) Separation of chromosomal DNA molecules from yeast by orthogonal-field-alternation gel electrophoresis. Nucl. Acids Res. 12, 56475665.CrossRefGoogle ScholarPubMed
Carle, G. F., Frank, M. & Olson, M. V. (1986). Electrophoretic separations of large DNA molecules by periodic inversion of the electric field. Science, Wash. 232, 6568.CrossRefGoogle ScholarPubMed
Casassa, E. F. & Tagami, Y. (1969). An equilibrium theory for exclusion chromatography of branched and linear polymer chains. Macromolecules 2, 1426.CrossRefGoogle Scholar
Charney, E. (1988). Electric linear dichroism and birefringence of biological polyelectrolytes. Q. Rev. Biophys. 21, 160.CrossRefGoogle ScholarPubMed
Chrambach, A. & Rodbard, D. (1971). Polyacrylamide gel electrophoresis. Science, Wash. 172, 440451.CrossRefGoogle ScholarPubMed
Chu, B., Wang, Z., Xu, R. & Lalande, M. (1990). Study of large DNA fragments in agarose gels by transient electric birefringence. Bipolymers 29, 737750.CrossRefGoogle ScholarPubMed
Chu, B., Xu, R. & Wang, Z. (1988). Low-field transient electric birefringence of DNA in agarose gels. Biopolymers 27, 20052009.CrossRefGoogle ScholarPubMed
Chu, G., Vollrath, D. & Davis, R. W. (1986). Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science, Wash. 234, 15821585.CrossRefGoogle ScholarPubMed
Clark, S. M., Lai, E., Birren, B. W. & Hood, L. (1988). A novel instrument for separating large DNA molecules with pulsed homogeneous electric fields. Science, Wash. 241, 12031205.CrossRefGoogle ScholarPubMed
Crater, G. D., Gregg, M. R. & Holzwarth, G. (1989). Mobility surfaces for field-inversion gel electrophoresis of linear DNA. Electrophoresis 10, 310315.CrossRefGoogle ScholarPubMed
Croce, C. M. (1987). Role of chromosome translocations in human neoplasia. Cell 49, 155156.CrossRefGoogle ScholarPubMed
Crothers, D. M. (1987). Gel electrophoresis of protein–DNA complexes. Nature, Lond. 325, 464465.CrossRefGoogle Scholar
Curtiss, C. F. & Bird, R. B. (1981). A kinetic theory for polymer melts. I. The equation for the single-link orientational distribution function. J. chem. Phys. 74, 20162033.CrossRefGoogle Scholar
Dawkins, H. J. S. (1989). Large separation using field alternation agar gel electrophoresis. J. Chromatogr. 492, 616639.CrossRefGoogle ScholarPubMed
Defontaines, A. D. & Viovy, J. L. (1991). Theoretical model of trapping electrophoresis. Proc. First Int. Conf. Electrophoresis, Supercomputing and the Human Genome (ed. Cantor, C. R. and Lim, H. A.), pp. 286313. New Jersey: World Scientific.Google Scholar
De Gennes, P. G. (1971). Reptation of a polymer chain in the presence of fixed obstacles. J. chem. Phys. 55, 575579.CrossRefGoogle Scholar
De Gennes, P. G. (1979). Scaling Concepts of Polymer Physics. Cornell University Press.Google Scholar
Deutsch, J. M. (1982). Dynamic Monte Carlo simulation of an entangled manypolymer system. Am. Phys. Soc. pp. 926929.Google Scholar
Deutsch, J. M. (1987). Dynamics of pulsed-field electrophoresis. Phys. Rev. Lett. 59, 12551258.CrossRefGoogle ScholarPubMed
Deutsch, J. M. (1988). Theoretical studies of DNA during gel electrophoresis. Science, Wash. 240, 922924.CrossRefGoogle ScholarPubMed
Deutsch, J. M. (1989). Explanation of anomalous mobility and birefringence measurements found in pulsed field electrophoresis. J. chem. Phys. 90, 74367441.CrossRefGoogle Scholar
Deutsch, J. M. (1991). Direct simulation of DNA electrophoresis. Proc. First Int. Conf. Electrophoresis, Supercomputing and the Human Genome (ed. Cantor, C. R. and Lim, H. A., pp. 3546. New Jersey: World Scientific.Google Scholar
Deutsch, J. M. & Madden, T. L. (1989). Theoretical studies of DNA during gel electrophoresis. J. chem. Phys. 90, 24762485.CrossRefGoogle Scholar
Diwan, A. & Schuster, T. M. (1989). On the theory of gel electrophoresis of DNA: extension and evaluation of the Lumpkin–Dejardin–Zimm model. Analyt. Biochem. 183, 122133.CrossRefGoogle ScholarPubMed
Djabourov, M., Clark, A. H., Rowlands, D. W. & Ross-Murphy, S. B. (1989). Small-angle X-ray scattering characterization of agarose sols and gels. Macromolecules 22, 180188.CrossRefGoogle Scholar
Doi, M. & Edwards, S. F. (1978 a). Dynamics of concentrated polymer systems. 1. Brownian motion in the equilibrium state. Faraday Trans. 74, 17891818.CrossRefGoogle Scholar
Doi, M. & Edwards, S. F. (1978 b). Dynamics of concentrated polymer systems. 2. Molecular motion under flow. Faraday Trans. 74, 18021817.CrossRefGoogle Scholar
Doi, M. & Edwards, S. F. (1978 c). Dynamics of concentrated polymer systems. 3. The constitutive equation. Faraday Trans. 74, 18181829.CrossRefGoogle Scholar
Doi, M. & Edwards, S. F. (1986). The Theory of Polymer Dynamics. International Series of Monographs on Physics (ed. Edwards, S. F., Ehrenreich, H., Smith, C. H. L. and Rees, M.) New York: Oxford University Press.Google Scholar
Doi, M., Kobayashi, T., Makino, Y., Ogawa, M., Slater, G. W. & Noolandi, J. (1988). Band inversion in gel electrophoresis of DNA. Phys. Rev. Lett. 61, 18931896.CrossRefGoogle ScholarPubMed
Duke, T. A. J. (1989). Tube model of field-inversion electrophoresis. Phys. Rev. Lett. 62, 28772880.CrossRefGoogle ScholarPubMed
Duke, T. A. J. (1991). Monte Carlo modelling of gel electrophoresis. Proc. First Int. Conf. Electrophoresis, Supercomputing and the Human Genome (ed. Cantor, C. R. and Lim, H. A.), pp. 7585. New Jersey: World Scientific.Google Scholar
Edmondson, S. P. & Gray, D. M. (1984). Analysis of the electrophoretic properties of double-stranded DNA and RNA in agarose gels at a finite voltage gradient. Biopolymers 23, 27252742.CrossRefGoogle Scholar
Edmondson, S. P. & Johnson, W. C. Jr (1985). Base tilt of Poly[d(A)]–Poly[d(T)] and Poly[d(AT)]–Poly[d(AT)] in solution determined by linear dichroism. Biopolymers 24, 825841.CrossRefGoogle Scholar
Edmondson, S. & Johnson, C. Jr (1986). Base tilt of B-Form Poly[d(G)]–Poly[d(C)] and the B- and Z-conformations of Poly[d(GC)]-Poly[d(GC)] in solution. Biopolymers 25, 23352348.CrossRefGoogle Scholar
Einarsson, L., Eriksson, P.-O., Nordenskiöld, L. & Rupprecht, A. (1990). An NMR self-diffusion study of lithium ions in macroscopically oriented Li-(B)DNA. J. phys. Chem. 94, 26962702.CrossRefGoogle Scholar
Elvingson, C. (1991 a). A general Brownian dynamics simulation program for biopolymer dynamics and its implementation on a vector computer. J. comp. Chem. 12, 7177.CrossRefGoogle Scholar
Elvingson, C. (1991 b). The structure of DNA molecules in an electric field. Manuscript.Google Scholar
Ermak, D. L. & McCammon, J. A. (1978). Brownian dynamics with hydrodynamic interactions. J. chem. Phys. 69, 13521360.CrossRefGoogle Scholar
Evans, K. E. & Edwards, S. F. (1981). Computer simulation of the dynamics of highly entangled polymers. J. chem. Soc. Faraday Trans. 2, 18911912.CrossRefGoogle Scholar
Fangman, W. (1978). Separation of very large DNA molecules by gel electrophoresis. Nucleic Acids Res. 5, 653665.CrossRefGoogle ScholarPubMed
Fisher, M. & Dingman, C. W. (1971). Role of molecular conformation in determining the electrophoretic properties of polynucleotides in agarose-acrylamide composited gels. Biochemistry 10, 18951899.CrossRefGoogle ScholarPubMed
Flint, D. H. & Harrington, R. E. (1972). Gel electrophoresis of DNA. Biochemistry 11, 48585864.CrossRefGoogle Scholar
Fredericq, E. & Houssier, C. (1973). Electric dichroism and electric birefringence. Monographs on Physical Biochemistry (ed. Harrington, W. and Peacocke, A. R.. London: Oxford University Press.Google Scholar
Gardiner, K., Laas, W. & Patterson, D. (1986). Fractionation of large mammalian DNR restriction fragments using vertical pulsed-field gradient gel electrophoresis. Somatic Cell Mol. Genet. 12, 185195.CrossRefGoogle Scholar
Gekeler, V., Weger, S.Eichele, E. & Probst, H. (1989). Computer-controlled discontinuous rotating gel electrophoresis for separation of very large DNA molecules. Analyt. Biochem. 181, 227233.CrossRefGoogle ScholarPubMed
Graessley, W. W. (1983). Viscoelastic properties of entangled flexible polymers. Faraday Symp. Chem. Soc. 18, 727.CrossRefGoogle Scholar
Griess, G. A., Moreno, E. T., Easom, R. A. & Serwer, P. (1989). The sieving of spheres during agarose gel electrophoresis: quantitation and modeling. Biopolymers 28, 14751484.CrossRefGoogle ScholarPubMed
Griess, G. A., Moreno, E. T., Herrmann, R. & Serwer, R. (1990). The sieving of rodshaped viruses during agarose gel electrophoresis. I. Comparison with the sieving of spheres. Biopolymers 29, 12771287.CrossRefGoogle ScholarPubMed
Griffith, O. H., Habliston, D. L., Birrell, G. B. & Schabtach, E. (1990). Photoelectron imaging of DNA. Biopolymers 29, 14911493.CrossRefGoogle ScholarPubMed
Grossman, P. D. & Soane, D. S. (1990). Orientation effects on the electrophoretic mobility of rod-shaped molecules in free solution. Analyt. Chem. 62, 15921596.CrossRefGoogle ScholarPubMed
Guo, X.-M. & Chen, S.-H. (1990). Reptation mechanism in protein-sodium-dodecylsulphate (SDS) poltacrylamidegel electrophoresis. Phys. Rev. Lett. 64, 25792582.CrossRefGoogle ScholarPubMed
Gurrieri, S., Rizzarelli, E., Beach, G. & Bustamente, C. (1990). Imaging of kinhed configurations of DNA molecules undergoing orthogonal field alternating gel electrophoresis by fluorescence microscopy. Biochemistry 29, 33963401.CrossRefGoogle ScholarPubMed
Hagerman, P. J. (1988). Flexibility of DNA. A. Rev. Biophys. Biophys. Chem. 17, 265286.CrossRefGoogle ScholarPubMed
Heller, C. & Pohl, M. (1989). A systematic study of field inversion gel electrophoresis. Nucl. Acid Res. 17, 59896003.CrossRefGoogle ScholarPubMed
Hervet, H. & Bean, C. P. (1987). Electrophoretic mobility of λ phage Hind III and Hae III DNA fragments in agarose gels: a detailed study. Biopolymers 26, 727742.CrossRefGoogle ScholarPubMed
Holmes, D. L. & Stellwagen, N. C. (1990). The electric field dependence of DNA mobilities in agarose gels: a reinvestigation. Electrophoresis 11, 515.CrossRefGoogle ScholarPubMed
Holzwarth, G., McKee, C. B., Steiger, S. & Crater, G. (1987). Transient orientation of linear DNA molecules during pulsed-field gel electrophoresis. Nucl. Acids Res. 15, 1003110044.CrossRefGoogle ScholarPubMed
Holzwarth, G., Platt, K. F., McKee, C. B., Whitcomb, R. W. & Crater, G. D. (1989). The acceleration of linear DNA during pulsed-field gel electrophoresis. Biopolymers 28, 10431058.CrossRefGoogle ScholarPubMed
Hurley, I. (1986). DNA orientation during gel electrophoresis and its relation to electrophoretic mobility. Biopolymers 25, 539554.CrossRefGoogle ScholarPubMed
Jamil, T., Frisch, H. & Lerman, L. S. (1989). Relaxation effects in the gel electrophoresis of DNA in intermittent fields. Biopolymers 28, 14131427.CrossRefGoogle ScholarPubMed
Johansson, L. B.-Å., Lindblom, G., Gravsholt, S. & Norden, B. (1979). Viscoelastic amphiphile aqueous solutions studied by linear dichroism spectroscopy. J. Colloid. Interface Sci. 69, 358361.Google Scholar
Johnson, P. H. & Grossman, L. I. (1977). Electrophoresis of DNA in agarose gels. Optimizing separations of conformational isomers of double- and single-stranded DNAs. Biochemistry 16, 42174225.CrossRefGoogle ScholarPubMed
Jonsson, M., Åkerman, B. & Nordén, B. (1988). Orientation of DNA during gel electrophoresis studied with linear dichroism spectroscopy. Bipolymers 27, 381414.CrossRefGoogle ScholarPubMed
Jonsson, M., Jacobsson, U., Eriksson, T. & Nordén, B. (1991). Electrophoretic orientation of DNA in free solution studied at microgravity conditions. (Manuscript.)Google Scholar
Khurana, A. (1990). Physicists puzzle over gel electrophoresis of DNA. Physics Today (August), pp. 2022.CrossRefGoogle Scholar
Kramer, K. S. & Jolly, J. F. (1989). Biotechnology. In Gene Technology, vol. 7b. (ed Jacobson, G. K. and Jolly, S. O.), pp. 555570. New York: VCH Publishers.Google Scholar
Krasin, F. (1979). Effect of centrifuge speed on the sedimentation of high-molecular-weight bacteriophage G DNA. Bipolymers 18, 23532356.CrossRefGoogle ScholarPubMed
Kremer, K. (1988). DNA electrophoresis: Monte-Carlo simulation. Polymer Commun. 29, 292294.Google Scholar
Kuhn, W. (1939). Molekülkonstellation und Kristallitorientiering als Ursachen kautschukähnlicher Elastizität. Kolloid zeitschrift 87, 312.CrossRefGoogle Scholar
Kuhn, W. & Grün, F. (1942). Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrechung hochelastischer Stoffe. Kolloidzeitschrift 101, 248271.Google Scholar
Kuhn, W. & Kuhn, H. (1945). Wanderungsdoppelbrechung von Fadenmolekulionen im elektrischen Feld. Helv. chim. Acta 28, 493499.Google Scholar
Lai, E., Birren, W., Clark, S. M. & Hood, L. (1988). Relaxation intervals alter the mobility of large DNA molecules in pulsed field gel electrophoresis. Nucl. Acids Res. 16, 10376.CrossRefGoogle ScholarPubMed
Lalande, M., Noolandi, J., Turmel, C., Brousseau, R., Rousseau, J. & Slater, G. W. (1988). Scrambling of bands in gel electrophoresis of DNA. Nucl. Acids Res. 16, 54275437.CrossRefGoogle ScholarPubMed
Lalande, M., Noolandi, J., Turmel, C., Rousseau, J. & Slater, G. (1987). Pulsed-field electrophoresis: application of a computer model to the separation of large DNA molecules. Proc. natn. Acad. Sci. U.S.A. 84, 80118015.CrossRefGoogle Scholar
Lee, C. S. & Davidson, N. (1968). Flow dichroism of DNA solutions. Biopolymers 6, 531550.CrossRefGoogle Scholar
Lerman, L. S. & Frisch, H. L. (1982). Why does the electrophoretic mobility of DNA in gels vary with the length of the molecule? Biopolymers 21, 995997.CrossRefGoogle ScholarPubMed
Levene, S. & Zimm, B. H. (1987). Separations of open-circular DNA using pulsed-field electrophoresis. Proc. natn. Acad. Sci. U.S.A. 84, 40544057.CrossRefGoogle ScholarPubMed
Levene, S. & Zimm, B. (1989). Understanding the anomalous electrophoresis of bent DNA molecules: a reptation model. Science, Wash. 245, 396399.CrossRefGoogle ScholarPubMed
Lim, H. A., Slater, G. W. & Noolandi, J. (1990). A model of the DNA transient orientation overshoot during gel electrophoresis. J. chem. Phys. 92, 709721.CrossRefGoogle Scholar
Lumpkin, O. J., DeJardin, P. & Zimm, B. H. (1985). Theory of gel electrophoresis of DNA. Biopolymers 24, 15731593.CrossRefGoogle ScholarPubMed
Lumpkin, O. J. & Zimm, B. H. (1982). Mobility of DNA in gel electrophoresis. Biopolymers 21, 23152316.CrossRefGoogle ScholarPubMed
Ma, Y. & Yeung, E. S. (1990). Effect of ultrasound on the separation of DNA fragments in agarose gel electrophoresis. Analyt. Chem. 62, 11941196.CrossRefGoogle ScholarPubMed
Maddox, J. (1990). Understanding gel electrophoresis. Nature, Lond. 345, 381.CrossRefGoogle ScholarPubMed
Marrucci, G. & Hermans, J. J. (1980). Nonlinear viscoelasticity of concentrated polymeric liquids. Macromolecules 13, 380387.CrossRefGoogle Scholar
Massa, D. J. (1973). Flow properties of high-molecular-weight DNA solutions: viscosity, recoil and longest relaxation time. Biopolymers 12, 10721081.CrossRefGoogle Scholar
Mathew, M. K., Smith, C. L. & Cantor, C. R. (1988 a). High resolution separation and accurate size determination in pulsed-field gel electrophoresis of DNA. 1. DNA size standards and the effect of agarose and temperature. Biochemistry 27, 92049210.CrossRefGoogle ScholarPubMed
Mathew, M. K., Smith, C. L. & Cantor, C. R. (1988 b). High resolution separation and accurate size determination in pulsed-field gel electrophoresis of DNA. 2. Effect of pulse time and electric field strength and implications for models of the separation process. Biochemistry 27, 92109216.CrossRefGoogle ScholarPubMed
Matsuoka, Y. & Nordén, B. (1982 a). Linear dichroism studies of nucleic acid bases in stretched poly(vinyl alcohol) film. Molecular orientation and electronic transition moment directions. J. phys. Chem. 87, 220225.CrossRefGoogle Scholar
Matsuoka, Y. & Nordén, B. (1982 b). Linear dichroism studies of nucleic acids. II. Calculation of reduced dichroism curves of A- and B-form DNA. Biopolymers 21, 24332452.CrossRefGoogle ScholarPubMed
Matsuoka, Y. & Nordén, B. (1983). Linear dichroism studies of nucleic acids III. Reduced dichroism curves of DNA in ethanol–water and in poly(vinyl alcohol) films. Biopolymers 22, 17311746.CrossRefGoogle ScholarPubMed
Maxam, A. M. & Gilbert, W. (1980). Sequencing end-labeled DNA with base-specific chemical cleavages. Meth. Enzym. 65, 499560.CrossRefGoogle ScholarPubMed
McDonell, M. W., Simon, M. N. & Studier, F. W. (1977). Analysis of restriction fragments of T7 DNA and determination of molecular weights by electrophoresis in neutral and alkaline gels. J. molec. Biol. 110, 119146.CrossRefGoogle ScholarPubMed
McPeek, F. D., Coyle-Morris, J. F. & Gemill, R. M. (1986). Separation of large DNA molecules by modified pulsed field gradient gel electrophoresis. Analyt. Biochem. 156, 274285.CrossRefGoogle ScholarPubMed
Michl, J. & Thulstrup, E. W. (1986). Spectroscopy with polarized light. Solute alignment by photoselection, in liquid crystals, polymers and membranes. New York: VCH Publishers.Google Scholar
Moore, D. (1986). The orientation and relaxation of DNA during field inversion gel electrophoresis: a linear dichroism study. B.A. thesis, University of Oregon, Eugene, U.S.A.Google Scholar
Moore, D. P. M., Schellman, J. A. & Baase, W. A. (1986). The orientation, relaxation and reptation of DNA in orthogonal field, alternately-pulsed field gel electrophoresis (OFAGE); a linear dichroism study. Biophys. J. 49, 130a.Google Scholar
Moore, D. P., Schellman, J. A. & Baase, W. A. (1987). DNA conformation during field-inversion gel electrophoresis (FIGE). Biophys. J. 51, 509a.Google Scholar
Noolandi, J. (1991). Development and application of a new pulsed field gel electrophoresis process based on molecular dynamics. Can. J. Phys. 68, 10551070.CrossRefGoogle Scholar
Noolandi, J., Rousseau, J. & Slater, G. W. (1987). Self-trapping and anomalous dispersion of DNA in electrophoresis. Phys. Rev. Lett. 58, 24282431.CrossRefGoogle ScholarPubMed
Noolandi, J., Slater, G. W., Lim, H. A. & Viovy, L. (1989). Generalized tube model of biased reptation for gel electrophoresis of DNA. Science, Wash. 243, 14561458.CrossRefGoogle ScholarPubMed
Nordén, B. (1978). Applications of linear dichroism spectroscopy. Appl. Spectrosc. Rev. 14, 157248.CrossRefGoogle Scholar
Nordén, B. (1980). Simple formulas for dichroism analysis. III. Orientation of solutes in stretched polymer matrices, J. chem. Phys. 9, 50325038.CrossRefGoogle Scholar
Nordén, B., Elvingson, C., Jonsson, M. & Åkerman, B. (1991). Electrophoretic orientation of DNA. Proc. First Int. Conf. Electrophoresis, Super computing and the Human Genome (ed. Cantor, C. R. and Lim, H. A.), pp. 173198. New Jersey: World Scientific.Google Scholar
Nordén, B., Eriksson, S., Kim, S. K., Kubista, M., Lyng, R. & Åkerman, B. (1990). DNA drug interactions studied with polarized light spectroscopy: the DAPI case. Jerusalem Symposia on Quantum Chemistry and Biochemistry (ed. Pullman, B. and Jorner, J.), 23, pp. 2341. Dordrecht: Kluwer Academic Publishers.Google Scholar
Nordén, B., Jonsson, M., Åkerman, B. & Nordh, J. (1988). New techniques for aligning molecules: migrative orientation. In Polarized Spectroscopy of Ordered Systems, NATO ASI in Rimini 1987 (ed: Samori, and Thulstrup, E. W.), pp. 197209. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Nordén, B. & Seth, S. (1979). Structure of strand-separated DNA in different environments studied by linear dichroism. Biopolymers 18, 23232339.CrossRefGoogle ScholarPubMed
Nordén, B. & Seth, S. (1985). Critical aspects of measurement of circular and linear dichroism: a device for absolute calibration. Appl. Spectrosc. 39, 647.CrossRefGoogle Scholar
Ogston, A. G. (1958). The spaces in a uniform random suspension of fibres. Trans. Faraday Soc. 54, 17541757.CrossRefGoogle Scholar
O'Konski, C. T. (1976). Molecular Electo-optics. New York: Dekker.Google Scholar
Olivera, B. M., Baine, P. & Davidson, N. (1964). Electrophoresis of the nucleic acids. Biopolymers 2, 245257.CrossRefGoogle Scholar
Olivera De La Cruz, M., Deutsch, J. M. & Edwards, S. F. (1986). Electrophoresis in strong fields. Phys. Rev. A 33, 20472055.CrossRefGoogle Scholar
Olivera De La Cruz, M. O., Gersappe, D. & Shaffer, E. O. (1990). Dynamics of DNA during pulsed-field gel electrophoresis. Phys. Rev. Lett. 64, 23242327.CrossRefGoogle Scholar
Oriel, P. & Schellman, J. A. (1966). Studies of the birefringence and birefringence dispersion of polypeptides and proteins. Biopolymers 4, 469494.CrossRefGoogle ScholarPubMed
Osaki, K. & Doi, M. (1984). Nonlinear viscoelasticity of concentrated polymer systems. Polym. Engng Rev. 4, 3572.Google Scholar
Overbeek, J. TH. G. & Bijsterboch, B. H. (1979). Electrokinetic separation methods (ed. Righetti, P. G., van Oss, C. J. and Wanderhoff, J. W.). Amsterdam: Elsevier.Google Scholar
Parus, S. J., Shick, R. A., Matsumura, M.& Morris, M. D. (1988). Characterization of unseparated nucleic acid restriction enzyme fragments by electric birefringence frequency dispersion. Analyt. Chem. 60, 16321635.CrossRefGoogle ScholarPubMed
Platt, K. J. & Holzwarth, G. (1989). Velocity of DNA in gels during field inversion. Phys. Rev. A. 40, 72927300.CrossRefGoogle ScholarPubMed
Ploem, J. S. (1987). Laser scanning fluorescence microscopy. Appl. Optics 26, 32263231.CrossRefGoogle ScholarPubMed
Prins, W., Rimai, L. & Chompff, A. J. (1972). An audiofrequency resonance in the quasielastic light scattering of polymer gels. Macromolecules 5, 104106.CrossRefGoogle Scholar
Rau, D. & Bloomfield, V. A. (1979). Transient electric birefringence of T7 viral DNA. Bipolymers 18, 27832805.CrossRefGoogle ScholarPubMed
Riveron, A. M., Higginson, D., Lopez-Canovas, L., Perez, H. M., Garcia, M. & Manresa, R. (1989). Quantitative approach to the pulse time effect on DNA migration during pulsed field gradient gel electrophoresis: reorientation time and migration rate. Studia biophysica 133, 7380.Google Scholar
Rizzo, V. & Schellman, J. A. (1981). Flow dichroism of T7 DNA as a function of salt concentration. Biopolymers 20, 21432163.CrossRefGoogle ScholarPubMed
Rodbard, D. & Chrambach, A. (1970). Unified theory for gel electrophoresis and gel filtration. Proc. natn. Acad. Sci. U.S.A. 65, 970977.CrossRefGoogle ScholarPubMed
Scalettar, B. A., Selvin, P. R., Axelrod, D., Klein, N. P. & Hearst, J. E. (1990). A polarized photo-bleaching study of DNA reorientation in agarose gels. Biochemistry 29, 47904798.CrossRefGoogle Scholar
Schellman, J. & Jensen, H. P. (1987). Optical spectroscopy of oriented molecules. Chem. Rev. 87, 13591399.CrossRefGoogle Scholar
Schurr, J. M. & Smith, S. B. (1990). Theory for the extension of a linear polyelectrolyte attached at one end in an electric field. Biopolymers 29, 11611165.CrossRefGoogle Scholar
Schwartz, D. & Cantor, C. R. (1984). Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37, 6775.CrossRefGoogle ScholarPubMed
Schwartz, D. & Koval, M. (1989). Conformational dynamics of individual DNA molecules during gel electrophoresis. Nature, Lond. 338, 520522.CrossRefGoogle ScholarPubMed
Schwartz, D. C., Saffran, W., Welsh, J., Haas, R., Goldenberg, M. & Cantor, C. R. (1982). New techniques for purifying large DNAs and studying their properties and packaging. Cold Spring Harb. Symp. quant. Biol. 47, 189195.CrossRefGoogle Scholar
Schönherr, G., Lim, H. A., Slater, G. W. & Noolandi, J. (1991). DNA gel electrophoresis: a Monte Carlo simulation. (Manuscript.)Google Scholar
Serwer, P. (1980). Electrophoresis of duplex deoxyribonucleic acid in multipleconcentration agarose gels: fractionation of molecules with molecular weights between 2 ×106 and 110 × 106. Biochemistry 19, 30013004.CrossRefGoogle Scholar
Serwer, P. (1987). Gel electrophoresis with discontinuous rotation of the gel: an alternative to gel electrophoresis with changing direction of the electric field. Electrophoresis 8, 301304.CrossRefGoogle Scholar
Serwer, P. & Allen, J. L. (1984). Conformation of double-stranded DNA during agarose gel electrophoresis: fractionation of linear and circular molecules with molecular weights between 3 × 106 and 26 × 106 Biochemistry 23, 922927.CrossRefGoogle Scholar
Serwer, P. & Hayes, S. (1986). Exclusion of spheres by agarose gels during agarose gel electrophoresis: dependence on the sphere's radius and the gel's concentration. Analyt. Biochem. 158, 7278.CrossRefGoogle ScholarPubMed
Serwer, P. & Hayes, S. J. (1987). A voltage gradient-induced arrest of circular DNA during agarose gel electrophoresis. Electrophoresis 8, 244246.CrossRefGoogle Scholar
Serwer, P. & Hayes, S. J. (1989). Atypical sieving of open circular DNA during pulsed field agarose gel electrophoresis. Biochemistry 28, 58275832.CrossRefGoogle ScholarPubMed
Serwer, P., Louie, D., Hayes, S. J. & Griess, G. (1991). Overcoming the limitations of gel electrophoresis: fractionation of 0·05–0·29 Mb open circular DNA. First Int. Conf. Electrophoresis, Supercomputing and the Human Genome (ed. Cantor, C. R. and Lim, H. A.), pp. 230234. New Jersey: World Scientific.Google Scholar
Shaffer, E. O. & Olvera De La Cruz, M. O. (1989). Dynamics of gel electrophoresis. Macromolecules 22, 13511355.CrossRefGoogle Scholar
Skolnick, J., Kolinski, A. & Yaris, R. (1987). Monte Carlo studies of the long-time dynamics of dense polymer systems. The failure of the reptation model. Acct. Chem. Res. 20, 350356.CrossRefGoogle Scholar
Slater, G. W. & Noolandi, J. (1985). Prediction of chain elongation in the reptation theory of DNA gel electrophoresis. Bipolymers 24, 21812184.CrossRefGoogle Scholar
Slater, G. W. & Noolandi, J. (1986). On the reptation theory of gel electrophoresis. Biopolymers 25, 431454.CrossRefGoogle Scholar
Slater, G. W. & Noolandi, J. (1989). The biased reptation model of DNA gel electrophoresis: mobility vs molecular size and gel concentration. Biopolymers 28, 17811791.CrossRefGoogle ScholarPubMed
Slater, G. W., Rousseau, J., Noolandi, J., Turmel, C. & Lalande, M. (1988). Quantitative analysis of the three regimes of DNA electrophoresis in agarose gels. Biopolymers 27, 509524.CrossRefGoogle ScholarPubMed
Slater, G. W., Turmel, C., Lalande, M. & Noolandi, J. (1989). DNA gel electrophoresis: effect of field intensity and agarose concentration on band inversion. Biopolymers 28, 17931799.CrossRefGoogle ScholarPubMed
Smisek, D. & Hoagland, D. A. (1990). Electrophoresis of flexible macromolecules: evidence for a new mode of transport in gels. Science, Wash. 248, 12211223.CrossRefGoogle ScholarPubMed
Smith, S. B., Aldridge, K. & Callis, J. B. (1989). Observation of individual DNA molecules undergoing gel electrophoresis. Science, Wash. 243, 203206.CrossRefGoogle ScholarPubMed
Smith, S. B. & Bendich, A. J. (1990). Electrophoretic charge density and persistence length of DNA as measured by fluorescence microscopy. Bipolymers 29, 11671173.CrossRefGoogle ScholarPubMed
Smith, S. B., Heller, C. & Bustamante, C. (1990). A model and computer simulation of the motion of DNA molecules during pulse field gel electrophoresis. Biochemistry. (In Press.)Google Scholar
Smith, C. L., Warburton, P. E., Gaal, A. & Cantor, C. R. (1986). Analysis of genome organization and rearrangements by pulsed field gradient gel electrophoresis. Genet. Eng. 8, 4471.Google Scholar
Southern, E. M. (1979). Measurement of DNA length by gel electrophoresis. Analyt. Biochem. 100, 319323.CrossRefGoogle ScholarPubMed
Southern, E. M., Anand, R., Brown, W. R. & Fletcher, D. S. (1987). A model for the separation of large DNA molecules by crossed field gel electrophoresis. Nucl. Acids Res. 15, 59255943.CrossRefGoogle Scholar
Stellwagen, N. C. (1983 a). Accurate molecular weight determinations of deoxyribonucleic acid restriction fragments on agarose gels. Biochemistry 22, 61806185.CrossRefGoogle ScholarPubMed
Stellwagen, N. C. (1983 b). Anomalous electrophoresis of deoxyribonucleic acid restriction fragments on polyacrylamide gels. Biochemistry 22, 61866193.CrossRefGoogle ScholarPubMed
Stellwagen, N. C. (1985 a). Effect of the electric field on the apparent mobility of large DNA fragments in agarose gels Biopolymes 24, 22432255.CrossRefGoogle ScholarPubMed
Stellwagen, N. C. (1985 b). Orientation of DNA molecules in agarose gels by pulsed electric fields. J. Biomol. Struct. Dyn. 3, 299314.CrossRefGoogle ScholarPubMed
Stellwagen, N. C. (1987). Electrophoresis of DNA in agarose and polyacrylamide gels. Adv. Electroph. 1, 177224.Google Scholar
Stellwagen, N. C. (1988). Effect of pulsed and reversing electric fields on the orientation of linear and supercoiled DNA molecules in agarose gels. Biochemistry 27, 64176424.CrossRefGoogle ScholarPubMed
Stellwagen, N. C. (1991). Orientation of the agarose matrix in electric fields. First Int. Conf. Electrophoresis, Supercomputing and the Human Genome (ed. Cantor, C. R. and Lim, H. A.), pp. 245267. New Jersey: World Scientific.Google Scholar
Stellwagen, N. C. & Holmes, D. L. (1990). Resolution of a paradox in the electrophoresis of DNA in agarose gels. Electrophoresis 11, 649652.CrossRefGoogle ScholarPubMed
Stellwagen, J. & Stellwagen, N. C. (1989). Orientation of the agarose gel matrix in pulsed electric fields. Nucl. Acids Res. 17, 15371548.CrossRefGoogle ScholarPubMed
Stenhagen, E. & Teorell, T. (1939). Electrophoretic properties of thymonucleic acid. Trans. Faraday Soc. 35, 743750.CrossRefGoogle Scholar
Stigter, D. (1991). Shielding effects of small ions in gel electrophoresis of DNA. Manuscript.Google Scholar
Sturm, J. & Weill, G. (1989). Direct observation of DNA chain orientation and relaxation by electric birefringence: implications for the mechanism of separation during pulsed-field gel electrophoresis. Phys. Rev. Lett. 62, 14841487.CrossRefGoogle ScholarPubMed
Sutherland, J. C., Monteleone, D. C., Mugavero, J. H. & Trunk, J. (1987). Unidirectional pulsed-field electrophoresis of single- and double-stranded DNA in agarose gels: analytical expressions relating mobility and molecular length and their application in the measurement of strand breaks. Analyt. Biochem. 162, 511520.CrossRefGoogle ScholarPubMed
Takahashi, M., Kubista, M. & Nordén, B. (1989). Binding stoichiometry and structure of RecA-DNA complexes studied by flow linear dichroism and fluorescence spectroscopy. J. molec. Biol. 205, 137147.CrossRefGoogle ScholarPubMed
Thompson, D. S. & Gill, S. J. (1967). Polymer relaxation times from birefringence relaxation measurements. J. chem. Physics. 47, 50085017.CrossRefGoogle ScholarPubMed
Turmel, C., Brassard, E., Forsyth, R., Hood, K., Slater, G. W. & Noolandi, J. (1990). High resolution zero integrated field electrophoresis (ZIFE) of DNA. In Electrophoresis of Large DNA Molecules (ed. Birren, B. and Lai, E.). Current Communications in Molecular Biology, Vol. 1. Cold Spring Harbor Press, pp. 101131.Google Scholar
Turmel, C., Brassard, E., Slater, G. W. & Noolandi, J. (1989). Molecular detrapping and band narrowing with high frequency modulation of pulsed field electrophoresis. Nucl. Acids Res. 18, 569575.CrossRefGoogle Scholar
Ulanovsky, L., Drouin, G. & Gilbert, W. (1990). DNA trapping electrophoresis. Nature, Lond. 343, 190192.CrossRefGoogle ScholarPubMed
Viovy, J. L. (1988). Molecular mechanism of field-inversion electrophoresis. Phys. Rev. Lett. 60, 855858.CrossRefGoogle ScholarPubMed
Viovy, J. L., Monnerie, L. & Tassin, J. F. (1983). Tube relaxation: a necessary concept in the dynamics of strained polymers. J. Polym. Sci. 21, 24272444.Google Scholar
Vollrath, D. & Davis, R. W. (1987). Resolution of DNA molecules greater than 5 megabases by contour-clamped homogeneous electric fields. Nucl. Acids Res. 15, 78657876.CrossRefGoogle ScholarPubMed
Wada, A. (1964). Chain regularity and flow dichroism of deoxyribonucleic acids in solution. Biopolymers 2, 361380.CrossRefGoogle Scholar
Waki, S., Harvey, J. D. & Bellamy, A. R. (1982). Study of agarose gels by electron microscopy of freeze-fractured surfaces. Biopolymers 21, 19091926.CrossRefGoogle ScholarPubMed
Wang, Z. & Chu, B. (1989). Electrophoretic mobility and deformation of large DNA during gel electrophoresis. Phys. Rev. Letters 63, 2528.CrossRefGoogle ScholarPubMed
Wang, Z., Xu, R. & Chu, B. (1990). Transient electric birefringence of N4 DNA (71 kbp) in solution. Macromolecules 23, 790796.CrossRefGoogle Scholar
West, R. (1987). The electrophoretic mobility of DNA in agarose gel as a function of temperature. Biopolymers 26, 607608.CrossRefGoogle ScholarPubMed
Wilson, R. W. & Schellman, J. A. (1977). The dichroic tensor of flexible molecules. Biopolymers 16, 21432165.CrossRefGoogle Scholar
Wilson, R. W. & Schellman, J. A. (1978). The flow linear dichroism of DNA: Comparison with the Bead-spring theory. Biopolymers 17, 12351248.CrossRefGoogle ScholarPubMed
Yanagida, M., Hiraoka, Y. & Katsura, I. (1982). Dynamic behaviors of DNA molecules in solution studied by fluorescence microscopy. Cold Spring Harbor Symp. quant. Biol. 47, 177187.CrossRefGoogle Scholar
Yoshida, H., Swenberg, C. E. & Geacintov, N. E. (1987). Kinetic flow dichroism study of conformational changes in supercoiled DNA induced by ethidium bromide and noncovalent and covalent binding of benzo[α]pyrene diol epoxide. Biochemistry 26, 13511358.CrossRefGoogle Scholar
Zhang, T. Y., Smith, C. L. & Cantor, C. R. (1991). Secondary pulsed field gel electrophoresis: a new method for faster separation of larger DNA molecules. (Manuscript.)CrossRefGoogle Scholar
Zimm, B. H. (1988). Size fluctuations can explain anomalous mobility in field-inversion electrophoresis of DNA. Phys. Rev. Lett. 61, 2965.CrossRefGoogle Scholar
Zimm, B. H. (1991). ‘Lakes-straits’ model of field-inversion gel electrophoresis of DNA. J. chem. Phys. 94, 21872206.CrossRefGoogle Scholar
Zivanovic, Y., Coulet, I. & Prunell, A. (1989). Properties of supercoiled DNA in gel electrophoresis. The V-like dependence of mobility on topological constraint. DNA-matrix interactions. J. molec. Biol. 192, 645660.CrossRefGoogle Scholar