Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-23T13:27:25.021Z Has data issue: false hasContentIssue false

Magnetic resonance studies of enzymesubstrate complexes with paramagnetic probes as illustrated by creatine kinase

Published online by Cambridge University Press:  17 March 2009

Mildred Cohn
Affiliation:
Johnson Research Foundation, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104

Extract

Only two spectroscopic methods are capable of detecting individual atoms in macromolecular systems, X-ray diffraction in the crystalline state and nuclear magnetic resonance (NMR) in the liquid state. For an enzyme-substrate complex, X-ray diffraction can yield information on the geometric structure at the active site and nuclear magnetic resonance absorption can, in principle, yield information on the electronic structure at the active site and on the conformation of enzyme-substrate complexes. Both types of information are needed for unraveling the mechanism of enzyme catalysis on the molecular level. The exciting successes of X-ray diffraction in delineating active sites are already established; NMR, a comparative latecomer among spectroscopic techniques is just beginning to demonstrate its potentialities. McDonald & Phillips have summarized in their excellent review (1969) the work on direct observation of hydrogen atoms (protons) by NMR spectroscopy which has advanced our knowledge of protein structure. The extensive studies of Jardetzky and his co-workers on the NMR of ribonuclease and its inhibitor complexes has culminated in a suggested mechanism of catalytic action (Roberts et al. 1969).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benesch, R. E., Lardy, H. A. & Benesch, R. (1955). The sulfhydryl groups of crystalline proteins. I. Some albumins, enzymes and hemoglobins. J. biol. Chem. 216, 663.CrossRefGoogle ScholarPubMed
Blake, C. C. F., Johnson, L. N., Mair, G. A., North, A. C. T., Phillips, D. C. & Sarma, V. R. (1967). Crystallographic studies of the activity of hen egg-white lysozyme. Proc. Roy. Soc. (Lond.) B 167, 378.Google ScholarPubMed
Blake, C. C. F., Mair, G. A., North, A. C. T., Phillips, D. C. & Sarma, V. R. (1967). On the conformation of the hen egg-white lysozyme molecule. Proc. Roy. Soc. (Lond.) B 167, 365.Google ScholarPubMed
Cleland, W. W. (1967). Enzyme kinetics. A. Rev. Biochem. 36, 96.CrossRefGoogle ScholarPubMed
Cohn, M. (1963). Magnetic resonance studies of metal activation of enzymic reactions of nucleotides and other phosphate substrates. Biochemistry 2, 623.CrossRefGoogle ScholarPubMed
Cohn, M. (1967). Interpretation of NMR relaxation mechanism of water protons in solutions of enzyme-manganese-substrate complexes from temperature dependence of relaxation rates. In Magnetic Resonance in Biological Systems, p. 101. Eds. Ehrenberg, A., Malmstrom, B. G. and Vanngard, T.. New York: Pergamon Press.CrossRefGoogle Scholar
Cohn, M. & Leigh, J. S. Jr., (1962). Magnetic resonance investigations of ternary complexes of enzyme-metal-substrate. Nature, Lond. 193, 1037.CrossRefGoogle ScholarPubMed
Dawson, D. M., Eppenberger, H. M. & Kaplan, N. O. (1965). Creatine kinase: Evidence for a dimeric structure. Biochem. biophys. Res. Commun. 21, 346.CrossRefGoogle ScholarPubMed
Drenth, J., Jansonius, J. N., Kockouk, R., Swen, H. M. & Wolthers, B. G. (1968). Structure of papain. Nature, Lond. 218, 929.CrossRefGoogle ScholarPubMed
Eigen, M. & Wilkens, R. G. (1964). Mechanisms of inorganic reactions. In Adv. in Chem. no. 49, p. 55. Washington, D.C.: American Chemical Society.Google Scholar
Eisinger, J., Shulman, R. G. & Szymanski, B. M. (1962). Transition metal binding in DNA solutions. J. chem. Phys. 36, 1721.CrossRefGoogle Scholar
Eppenberger, H. M., Dawson, D. M. & Kaplan, N. O. (1967). The comparative enzymology of creatine kinases. I. Isolation and characterization from chicken and rabbit tissues. J. biol. Chem. 242, 204.CrossRefGoogle ScholarPubMed
Hamilton, C. L. & McConnell, H. M. (1968). Spin labels. In Structural Chemistry and Molecular Biology, p. 115. Eds. Rich, A. and Davidson, N.. San Francisco: W. Freeman and Co.Google Scholar
Hammes, G. G. & Hurst, J. K. (1969). Relaxation spectra of adenosine triphosphate-creatine phosphotransferase. Biochemistry 8, 1083.CrossRefGoogle ScholarPubMed
Hooton, B. T. (1968). Creatine kinase isoenzymes and the role of thiol groups in the enzymic mechanism. Biochemistry 7, 2063.CrossRefGoogle ScholarPubMed
Jacobs, G. & Cunningham, L. W. (1968). Creatine kinase. The relationship of trypsin susceptibility to substrate binding. Biochemistry 7, 143.CrossRefGoogle ScholarPubMed
Kartha, G., Bello, J. & Harker, D. (1967). Tertiary structure of ribonuclease. Nature, Lond. 213, 862.CrossRefGoogle ScholarPubMed
Kassab, R., Roustan, C. & Pradel, L. (1968). The active site of ATP: guanidine phosphotransferases. I. Reaction of the essential ε-NH2 lysine groups with I-dimethylaminoaphthalene-5-sulphonyl-chloride. Biochim. biophys. Acta 167, 308.CrossRefGoogle Scholar
Kuby, S. A., Noda, L. & Lardy, H. A. (1954). Adenosine triphosphatecreatine transphosphorylase. III. Kinetic studies. J. biol. Chem. 210, 65.CrossRefGoogle Scholar
Kuby, S. A. & Noltmann, E. A. (1962). ATP-creatine transphosphorylase. In The Enzymes, vol. 6, p. 515. Eds. Boyer, P. D., Lardy, H. and Myrback, K.. New York: Academic Press.Google Scholar
Leigh, J. S. Jr., (1970). Rigid lattice line shape in a system of two interacting spins. J. chem. Phys. (In the Press.)CrossRefGoogle Scholar
Lipscomb, W. N., Hartsuck, J. S., Reeke, G. N. Jr., Quiocho, F. A., Bethge, P. H., Ludwig, M. L., Steitz, T. A., Muirhead, H. & Coppola, J. C. (1968). The structure of carboxypeptidase A. VII. The 2·0-Å resolution studies of the enzyme and of its complex with glycyltyrosine and mechanistic deductions. In Brookhaven Symp. Biol., no. 21, vol. 1, p. 24.Google Scholar
Lui, N. S. T. & Cunningham, L. (1966). Cooperative effects of substrates and substrate analogs on the conformation of creatine phosphokinase. Biochemistry 5, 144.CrossRefGoogle ScholarPubMed
Luz, Z. & Meiboom, S. (1964). Proton relaxation in dilute solutions of cobalt(II) and nickel(II) ions in methanol and the rate of methanol exchange of the solution sphere. J. chem. Phys. 40, 2686.CrossRefGoogle Scholar
Mahowald, T. A. (1965). The amino acid sequence around the ‘reactive’ sulfhydryl groups in adenosine triphosphocreatine phosphotransferase. Biochemistry 4, 732.CrossRefGoogle ScholarPubMed
Mahowald, T. A. (1969). Identification of an epsilon amino group of lysine and a sulfhydryl group of cysteine near the reactive cysteine residue in rabbit muscle creatine kinase. Fedn Proc. Fedn Am. Socs exp. Biol. 28, 601.Google Scholar
Mahowald, T. A. & Kuby, S. A. (1960). Studies on ATP-transphosphorylases. Fedn Proc. Fedn Am. Socs exp. Biol. 19, 46.Google Scholar
Mahowald, T. A., Noltmann, E. A. & Kuby, S. A. (1962). Studies on adenosine triphosphate transphosphorylases. III. Inhibition reactions. J. biol. Chem. 237, 1535.CrossRefGoogle ScholarPubMed
McDonald, C. C. & Phillips, W. D. (1969). Proton magnetic resonance spectroscopy of proteins. In Biological Macromolecules, vol. III. Eds. Timasheff, S. N. and Fasman, G.. New York: Marcel Dekker, Inc. (In the Press.)Google Scholar
Mildvan, A. S. & Cohn, M. (1970). Aspects of enzyme mechanisms studied by nuclear spin relaxation induced by paramagnetic probes. Adv. in Enz. (In the Press.)Google Scholar
Mildvan, A. S., Leigh, J. S. & Cohn, M. (1967). Kinetic and magnetic resonance studies of pyruvate kinase. III. The enzyme-metal-phosphoryl bridge complex in the fluorokinase reaction. Biochemistry 6, 1805.CrossRefGoogle Scholar
Morrison, J. F. & Cleland, W. W. (1966). Isotope exchange studies of the mechanism of the reaction catalyzed by adenosine triphosphate: creatine phosphotransferase. J. biol. Chem. 241, 673.CrossRefGoogle ScholarPubMed
Morrison, J. F. & James, E. (1965). The mechanism of the reaction catalysed by adenosine triphosphate-creatine phosphotransferase. Biochem. J. 97, 37.CrossRefGoogle ScholarPubMed
Morrison, J. F. & Uhr, M. L. (1966). The function of bivalent metal ions in the reaction catalysed by ATP:creatine phosphotransferase. Biochim. biophys. Acta 122, 57.CrossRefGoogle ScholarPubMed
Morrison, J. F. & White, A. (1967). Isotope exchange studies of the reaction catalyzed by ATP:creatine phosphotransferase. Eur. J. Biochem. 3, 145.CrossRefGoogle ScholarPubMed
Noda, L., Nihei, T. & Moore, E. (1961). The sulphydryl groups of ATP-creatine transphosphorylase. 5th Intern. Cong. Biochem. Moscow, vol. 9, p. 177.Google Scholar
Noltmann, E. A., Mahowald, T. A. & Kuby, S. S. (1962). Studies on adenosine triphosphate transphosphorylase. II. Amino acid composition of adenosine triphosphate-creatine transphosphorylase. J. biol. Chem. 237, 1146.CrossRefGoogle ScholarPubMed
O'Sullivan, W. J. & Cohn, M. (1966 a). Magnetic resonance investigations of the metal complexes formed in the manganese-activated creatine kinase reaction. J. biol. Chem. 241, 3104.CrossRefGoogle ScholarPubMed
O'Sullivan, W. J. & Cohn, M. (1966 b). Nucleotide specificity and conformation of the active site of creatine kinase: Magnetic resonance and sulfhydryl reactivity studies. J. biol. Chem. 241, 3116.CrossRefGoogle ScholarPubMed
O'Sullivan, W. J. & Cohn, M. (1968). Magnetic resonance studies on inactivated forms of creatine kinase. J. biol. Chem. 243, 2737.CrossRefGoogle ScholarPubMed
O'Sullivan, W. J., Diefenbach, H. & Cohn, M. (1966). The effect of magnesium on the reactivity of the essential sulfhydryl groups in creatine kinase-substrate complexes. Biochemistry 5, 2666.CrossRefGoogle Scholar
O'Sullivan, W. J. & Morrison, J. F. (1963). The effect of trace metal contaminants and EDTA on the velocity of enzyme-catalyzed reactions. Studies on ATP: creatine phosphotransferase. Biochim. biophys. Acta 77, 142.CrossRefGoogle Scholar
Peacocke, A. R., Richards, R. E. & Sheard, B. (1969). Proton magnetic relaxation in solutions of E. coli ribosomal RNA containing Mn2+ ions. Molec. phys. 16, 177.CrossRefGoogle Scholar
Pradel, L. & Kassab, R. (1968). The active site of ATP:guanidine phospho-transferase. II. Evidence for a critical histidine residue through use of a specific reagent, diethylpyrocarbonate. Biockim. biophys. Acta 167, 317.CrossRefGoogle Scholar
Roberts, G. C. K., Dennis, E. A., Meadows, D. H., Cohen, J. & Jardetzky, O. (1969). The mechanism of action of ribonuclease. Proc. natn. Acad. Sci., U.S.A. 62, 1151.CrossRefGoogle ScholarPubMed
Swift, T. J. & Connick, R. E. (1962). NMR-relaxation mechanisms of O17 in aqueous solutions of paramagnetic cations and the lifetime of water molecules in the first coordination sphere. J. chetn. Phys. 37, 307.CrossRefGoogle Scholar
Taylor, J. S. (1969). Native and spin-labeled creatine kinase. I. Magnetic resonance studies of enzyme-nucleotide and enzyme-metal nucleotide complexes. II. Effects of denaturing agents on local conformation at the active site. Thesis, University of Pennsylvania.Google Scholar
Taylor, J. S., Leigh, J. S. Jr., & Cohn, M. (1969). Magnetic resonance studies of spin-labeled creatine kinase system and interaction of two paramagnetic probes. Proc. natn. Acad. Sci. U.S.A. 64, 219.CrossRefGoogle ScholarPubMed
Thomson, A. R., Eveleigh, J. W. & Miles, B. J. (1964). Amino-acid sequence around the reactive thiol groups of adenosine triphosphate-creatine phosphotransferase. Nature, Lond. 203, 267.CrossRefGoogle ScholarPubMed
Watts, D. C. (1963). Studies on the mechanism of action of adenosine 5-triphosphate-creatine phosphotransferase. Inhibition by manganese ions and by p-nitrophenyl acetate. Biochem. J. 89, 220.CrossRefGoogle ScholarPubMed
Watts, D. C. & Rabin, B. R. (1962). A study of the ‘reactive’ sulphydryl groups of adenosine 5′-triphosphate-creatine phosphotransferase. Biochem. J. 85, 507.CrossRefGoogle ScholarPubMed
Watts, D. C., Rabin, B. R. & Crook, E. M. (1961). The number of catalytic sites in creatine phosphokinase as determined by a study of its reactive sulfhydryl groups. Biochim. biophys. Acta 48, 380.CrossRefGoogle Scholar
Wyckoff, H. W., Hardman, K. D., Allewell, N. M., Inagami, T., Johnson, L. N. & Richards, F. M. (1967). The structure of ribonuclease-S at 3·5 A resolution. J. biol. Chem. 242, 3984.CrossRefGoogle ScholarPubMed
Yue, R. H., Palmieri, R. H., Olson, O. E. & Kuby, S. A. (1967). Studies on adenosine triphosphate transphosphorylases. V. Studies on the polypeptide chains of crystalline adenosine triphosphate-creatine transphos-phorylase from rabbit skeletal muscle. Biochemistry 6, 3204.CrossRefGoogle ScholarPubMed