Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T21:36:19.022Z Has data issue: false hasContentIssue false

Kinetic Analysis of ATPase Mechanisms

Published online by Cambridge University Press:  17 March 2009

D. R. Trentham
Affiliation:
Molecular Enzymology Laboratory, Department of Biochemistry, Medical School, University Walk, Bristol BS8 ITD, U. K.
J. F. Eccleston
Affiliation:
Molecular Enzymology Laboratory, Department of Biochemistry, Medical School, University Walk, Bristol BS8 ITD, U. K.
C. R. Bagshaw
Affiliation:
Molecular Enzymology Laboratory, Department of Biochemistry, Medical School, University Walk, Bristol BS8 ITD, U. K.

Extract

At even the simplest level we can expect an ATPase mechanism to comprise the following four steps: the binding of ATP, the reaction of ATP with water on the enzyme, and the release of the products ADP and P1. So at the outset techniques are needed to investigate these four processes. The range of techniques needed is soon extended once questions are asked about the role of protons and metal ions, the possibility of a multistep hydrolytic process, multistep substrate and product binding processes, and protein–lipid or protein–protein interactions. Since ATPases and ATP synthases are almost universally involved in some form of energy transduction there is a particular need in an ATPase or ATP synthase reaction to evaluate the equilibrium constants of the steps in the mechanism and to investigate the possibility of alternate reaction pathways. The nature of the coupling process by the protein of the chemical reactions of ATP to the other energetic process, be it muscle contraction, active transport, respiration or photosynthesis, is likewise of profound interest. Finally we would like to know as much as possible about the ATPase or ATP synthase mechanism during the period when the various forms of energy transduction are occurring.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albers, R. W., Fahn, S. & Koval, G. J. (1963). The role of sodium ions in the activation of Electrophorus electric organ adenosine triphosphatase. Proc. natn. Acad. Sci. U.S.A. 50, 474–81.CrossRefGoogle ScholarPubMed
Alberty, R. A. (1968). Effect of pH and metal ion concentration on the equilibrium hydrolysis of adenosine triphosphate to adenosine diphosphate. J. biol. Chem. 243, 1337–43.CrossRefGoogle ScholarPubMed
Alberty, R. A. (1969). Standard Gibbs free energy, enthalpy, and entropy changes as a function of pH and pMg for several reactions involving adenosine phosphates. J. biol. Chem. 244, 3290–302.CrossRefGoogle ScholarPubMed
Bagshaw, C. R. (1975). The kinetic mechanism of the manganous iondependent adenosine triphosphatase of myosin subfragment I. FEBS Lett. 8, 197201.CrossRefGoogle Scholar
Bagshaw, C. R., Eccleston, J. F., Eckstein, F., Goody, R. S., Gutfreund, H. & Trentham, D. R. (1974 a). The magnesium ion dependent adenosine triphosphatase of myosin. Biochem. J. 141, 351–64.CrossRefGoogle ScholarPubMed
Bagshaw, C. R., Eccleston, J. F. & Trentham, D. R. (1974 b). The magnesium ion dependent ATPase of myosin. In Proteins of Contractile Systems (9th FEBS Symp., Budapest) 37, 319.Google Scholar
Bagshaw, C. R., Eccleston, J. F. & Trentham, D. R., Yates, D. W. & Goody, R. S. (1972). Transient kinetic studies of the Mg++-dependent ATPase of myosin and its proteolytic subfragments. Cold Spring Harb. Symp. quant. Biol. 37, 127–35.CrossRefGoogle Scholar
Bagshaw, C. R. & Reed, G. H. (1976). Investigations of equilibrium complexes of myosin subfragment I with the manganous ion and adenosine diphosphate using magnetic resonance techniques. J. biol. Chem. 251 (in the press).Google Scholar
Bagshaw, C. R. & Trentham, D. R. (1973). The reversibility of adenosine triphosphate cleavage by myosin. Biochem. J. 133, 323–8.CrossRefGoogle ScholarPubMed
Bagshaw, C. R. & Trentham, D. R. (1974). The characterisation of myosinproduct complexes and of product release steps during the magnesium ion- dependent adenosine triphosphatase reaction. Biochem. J. 141, 331–49.CrossRefGoogle ScholarPubMed
Bagshaw, C. R., Trentham, D. R., Wolcott, R. G. & Boyer, P. D. (1975). Oxygen exchange in the y-phosphoryl group of bound ATP during Mg2+-dependent adenosine triphosphatase activity of myosin. Proc. natn. Acad. Sci. U.S.A. 72, 2592–6.CrossRefGoogle ScholarPubMed
Barany, M., Barany, K., Burt, C. T., Glonek, T. & Myers, T. C. (1975). Structural changes in myosin during contraction and the state of ATP in the intact frog muscle. J. Supramol. Struct. 3, 125–40.CrossRefGoogle ScholarPubMed
Bender, N., Fasold, H. & Rack, M. (1974). Interaction of rabbit muscle actin and chemically modified actin with ATP, ADP, and protein reactive analogues; role of the nucleotide. FEBS Lett. 44, 209–12.CrossRefGoogle ScholarPubMed
Boyer, P. D. (1974). Conformational coupling in biological energy transductions. In Dynamics of Energy Transducing Membranes (ed. Ernster, L., Estabrook, R. W. and Slater, E. C.). Amsterdam: Elsevier. Biochim. biophys. Acta Library 13, 289301.Google Scholar
Boyer, P. D. (1975). A model for conformational coupling of membrane potential translocation to ATP synthesis and to active transport. FEBS Lett. 58, 16.CrossRefGoogle Scholar
Boyer, P. D. & Bryan, D. M. (1967). The application of 18O methods to oxidative phosphorylation. In Oxidation and Phosphorylation (ed. Estabrook, R. W. and Pullman, M. E.). Meth. Enzym. 10, 6071.CrossRefGoogle Scholar
Boyer, P. D., Cross, R. L. & Momsen, W. (1973). A new concept for energy coupling in oxidative phosphorylation based on a molecular explanation of the oxygen exchange reactions. Proc. natn. Acad. Sci. U.S.A. 70, 2837–9.CrossRefGoogle ScholarPubMed
Brown, F. F., Campbell, I. D., Henson, R., Hirst, C. W. J. & Richards, R. E. (1973). A study of the interaction of manganese ions with ATP by 31 Fourier-transform nuclear magnetic resonance. Eur. J. Biochem. 38, 54–8.CrossRefGoogle Scholar
Bunton, C. A., Llewellyn, D. R., Oldham, K. G. & Vernon, C. A. (1958). The reactions of organic phosphates. I. The hydrolysis of methyl di- hydrogen phosphate. J. chem. Soc. 3574–87.Google Scholar
Chapman, D. (1975). Phase transitions and fluidity characteristics of lipids and cell membranes. Q. Rev. Biophys. 8, 585–235.CrossRefGoogle ScholarPubMed
Chock, S. P. & Eisenberg, E. (1974). Heavy meromyosin Mg-ATPase: Presteady-state and steady state H+ release. Proc. natn. Acad. Sci. U.S.A. 75, 4915–19.CrossRefGoogle Scholar
Chock, S. P. & Eisenberg, E. (1975). Interaction of ATP with heavy meromyosin and subfragment I: Effect of salt and temperature. Fedn Proc. Fedn Am. Socs exp. Biol. 34, 671.Google Scholar
Ciba Foundation symposium (1975). Energy Transformation in Biological Systems. No. 31. Amsterdam: Associated Scientific Publishers.Google Scholar
Cohn, M. (1963). Magnetic resonance studies of metal activation of enzymic reactions of nucleotides and other phosphate substrates. Biochemistry, N.Y. 2, 623–9.CrossRefGoogle ScholarPubMed
Cohn, M., Diefenbach, H. & Taylor, J. S. (1971). Magnetic resonance studies of the interaction of spin-labeled creatine kinase with paramagnetic manganese-substrate complexes. J. biol. Chem. 246, 6037–42.CrossRefGoogle ScholarPubMed
Cohn, M. & Hughes, T. R. (1962). Nuclear magnetic resonance spectra of adenosine di- and triphosphate. II. Effect of complexing with divalent metal ions. J. blot. Chem. 237, 176–81.Google ScholarPubMed
Cohn, M. & Townsend, J. (1954) A study of manganous complexes by paramagnetic resonance absorption. Nature, Lond. 173, 1090–91.CrossRefGoogle Scholar
Cooke, R. & Morales, M. F. (1969). Spin-label studies of glycerinated muscle fibers. Biochemistry, N.Y. 8, 3188–94.CrossRefGoogle ScholarPubMed
Cross, R. L. & Boyer, P. D. (1975). The rapid labeling of adenosine triphosphate by 32P-labelled inorganic phosphate and the exchange of phosphate oxygens as related to conformational coupling in oxidative phosphorylation. Biochemistry, N.Y. 14, 392–8.CrossRefGoogle Scholar
Curtin, N. A., Gilbert, C., Kretzchmar, K. M. & Wilkie, D. R. (1974). The effect of the performance of work on total energy output and metabolism during muscular contraction. J. Physiol. 238, 455–72.CrossRefGoogle ScholarPubMed
Dahms, A. S. & Boyer, P. D. (1973). Occurrence and characteristics of 18O exchange reactions catalysed by sodium- and potassium-dependent adenosine triphosphatases. J. biol. Chem. 248, 3155–62.CrossRefGoogle Scholar
Dahms, A. S., Kanazawa, T. & Boyer, P. D. (1973). Source of the oxygen in the C—O—P linkage of the acyl phosphate in transport adenosine triphosphatases. J. biol. Chem. 248, 6592–5.CrossRefGoogle ScholarPubMed
Danenburg, K. D. & Cleland, W. W. (1975). Use of chromium–adenosine triphosphate and lyxose to elucidate the kinetic mechanism and coordination state of the nucleotide substrate of yeast hexokinase. Biochemistry, N.Y. 14, 2839.CrossRefGoogle Scholar
Degani, C. & Boyer, P. D. (1973). A borohydride reduction method for characterization of the acyl phosphate linkage in proteins and its application to sarcoplasmic reticulum adenosine triphosphatase. J. biol. Chem. 248, 8222–6.CrossRefGoogle ScholarPubMed
Degani, C., Dahms, A. S. & Boyer, P. D. (1974.). Characterization of acyl phosphate in transport ATPases by a borohydride reduction method. Ann. N.Y. Acad. Sci. 242, 77–9.CrossRefGoogle ScholarPubMed
Dempsey, M. E., Boyer, P. D. & Benson, E. S. (1963). Characteristics of an orthophosphate oxygen exchange catalysed by myosin, actomyosin and muscle fibers. J. biol. Chem. 238, 2708–15.CrossRefGoogle Scholar
Dos, Remedios C., Yount, R. & Morales, M. F. (1972). Individual states in the cycle of muscle contraction. Proc. natn. Acad. Sci. U.S.A. 69, 2542-6.Google Scholar
Douzou, P. (1974). Use of subzero temperatures in biochemistry: Slow reactions. Meth. Biochem. Analysis 22, 401512.CrossRefGoogle ScholarPubMed
Dwek, R. A. (1973). Nuclear Magnetic Resonance (NMR) in Biochemistry. Oxford: Clarendon Press.Google Scholar
Eccleston, J. F. (1974). Chromophoric nucleotide analogues: An approach to characterizing the intermediates of myosin ATPase. Ph.D. thesis, University of Bristol.Google Scholar
Eccleston, J. F., Geeves, M. A., Trentham, D. R., Bagshaw, C. R. & Mrwa, U. (1975). The binding and cleavage of ATP in the Mg2+-dependent myosin and actomyosin ATPase mechanisms. In The Molecular Basis of Motility. pp. 4252. 26th Mosbach Symp. (ed. Heilmeyer, L.). Berlin: Springer-Verlag.Google Scholar
Eckstein, F., Goody, R. S. & Trentham, D. R. (1973). Hydrolyse von thiophosphatanalogen des ATP durch myosin fragment SI. Hoppe Seyler's Z. physiol. Chem. 354, 233–4.Google Scholar
Eisenberg, E., Dobkin, L. & Keilley, W. W. (1972). Heavy meromyosin: Evidence for a refractory state unable to bind to actin in the presence of ATP. Proc. natn. Acad. Sci. U.S.A. 69, 667–71.CrossRefGoogle ScholarPubMed
Eisenberg, E. & Moos, C. (1970). Actin activation of heavy meromyosin adenosine triphosphatase. Dependence on adenosine triphosphate and actin concentrations. J. biol. Chem. 245, 2451–6.CrossRefGoogle ScholarPubMed
Faust, V., Fasold, H. & Ortanderl, F. (1974). Synthesis of a protein- reactive ATP analog and its application for the affinity labeling of rabbit- muscle actin. Eur. J. Biochem. 43, 273–9.CrossRefGoogle ScholarPubMed
Feldman, I. (1972). Metal ion catalysis of ATP-dephosphorylation postulated reaction mechanism. Jerusalem Symp. of Quantum Chemistry and Biochemistry 4, 528–38.Google Scholar
Feldman, I. & Wee, V. (1974). Cupric ion-adenosine triphosphate system. Proton magnetic resonance line-broadening studies. Biochemistry, N. Y. 13, 1836–40.CrossRefGoogle ScholarPubMed
Fersht, A. R. & Jakes, R. (1975). Demonstration of two reaction pathways for the aminoacylation of tRNA. Application of the pulsed quenched flow technique. Biochemistry, N.Y. 14, 3350–6.CrossRefGoogle ScholarPubMed
Finlayson, B. & Taylor, E. W. (1969). Hydrolysis of nucleoside tri- phosphates by myosin during the transient state. Biochemistry, N.Y. 8, 802–10.CrossRefGoogle Scholar
Fox, J. J., Wempen, I., Hampton, A. & Doerr, I. L. (1958). Thiation of nucleosides. I. Synthesis of 2-amino-6-mercapto-9-βD-ribofuranosyl purine (‘thioguanosine’) and related purine nucleosides. J. Am. chem. Soc. 80, 1669–75.CrossRefGoogle Scholar
Fraser, A. B., Eisenberg, E., Keilly, W. W. & Carlson, F. C. (1975). The interaction of heavy meromyosin and subfragment I with actin. Physical measurements in the presence and absence of adenosine tRI- phosphate. Biochemistry, N.Y. 14, 2207–14.CrossRefGoogle Scholar
Froehlich, J. P. & Taylor, E. W. (1975). Transient state kinetic studies of sarcoplasmic reticulum adenosine tniphosphatase. J. biol. Chem. 250, 2013–21.CrossRefGoogle Scholar
Glynn, I. M. & Karlish, S. J. D. (1975). The sodium pump. A. Rev. Physiol. 37, 1355.CrossRefGoogle ScholarPubMed
Goody, R. S., Holmes, K. C., Mannherz, H. G., Barrington-Leigh, J. & Rosenbaum, G. (1975). Cross-bridge conformation as revealed by X-ray diffraction studies of insect flight muscles with ATP analogues. Biophys. J. 15, 687705.CrossRefGoogle ScholarPubMed
Grisham, C. M. & Barnett, R. E. (1972). The inter-relationship of membrane and protein structure in the functioning of the (Na+ + K+) activated ATPase. Biochim. biophys. Acta 266, 613–24.CrossRefGoogle Scholar
Grisham, C. M., Gupta, R. K., Barnett, R. E. & Mildvan, A. S. (1974). Thallium 205 nuclear relaxation and kinetic studies of sodium and potassium ion-activated adenosine triphosphatase. J. biol. Chem. 249, 6738–744.CrossRefGoogle ScholarPubMed
Grisham, C. M. & Mildvan, A. S. (1974). Magnetic resonance and kinetic studies of the mechanism of sodium and potassium ion-activated adenosine triphosphatase. J. biol. Chem. 249, 3187–97.CrossRefGoogle ScholarPubMed
Gutfreund, H. (1969). Rapid mixing: Continuous flow. Meth. Enzym. 16, 229–49. New York: Academic Press.Google Scholar
Gutfreund, H. (1971). Transient and relaxation kinetics of enzyme reactions. A. Rev. Biochem. 40, 315–44.CrossRefGoogle ScholarPubMed
Gutfreund, H. (1972). Enzymes: Physical Principles, pp. 194202. London, New York, Sydney, Toronto: Wiley-Interscience.Google Scholar
Gutfreund, H. (1975). Kinetic analysis of the properties and reactions of enzymes. Prog. Biophys. & molec. Biol. 29, 161–95.CrossRefGoogle ScholarPubMed
Gutfreund, H. & Trentham, D. R. (1975). Energy changes during the formation and interconversion of enzyme-substrate complexes. In Energy Transformation in Biological Systems, pp. 6981. Ciba Fdn Symp. no. 31. Amsterdam: Associated Scientific Publishers.Google Scholar
Harrigan, P. J. & Trentham, D. R. (1971). Reactions of D-glyceraldehyde 3-phosphate dehydrogenase with chromophoric thiol reagents. Biochem. J. 124, 573–80.CrossRefGoogle ScholarPubMed
Harrigan, P. J. & Trentham, D. R. (1973). Kinetic studies on the acylation of pig muscle D-glyceraldehyde 3-phosphate dehydrogenase by 1, 3- diphosphoglycerate and of proton uptake and release in the overall enzyme mechanism. Biochem. J. 135, 695703.CrossRefGoogle Scholar
Harrigan, P. J. & Trentham, D. R. (1974). Kinetic studies of oxidised nicotinamide–adenine dinucleotide–facilitated reactions of D-glyceraldehyde 3-phosphate dehydrogenase. Biochem. J. 143, 353–63.CrossRefGoogle ScholarPubMed
Hayley, B. & Yount, R. G. (1972). λ-Fluoroadenosine triphosphate: Synthesis, properties and interaction with myosin and heavy meromyosin. Biochemistry, N.Y. II, 2863–71.CrossRefGoogle Scholar
Herrman, J. L. (1970). Properties of some 18O-phosphate exchange reactions catalyzed by muscle and membrane adenosine triphosphatases. Ph.D. thesis, Washington State University.Google Scholar
Hilborn, D. & Hammes, G. (1973). Equilibrium binding of nucleotides to beef heart mitochondrial adenosine triphosphatase. Biochemistry, N.Y. 12, 983–90.CrossRefGoogle ScholarPubMed
Hill, T. E. (1974). Theoretical formalism for the sliding filament model of contraction of striated muscle, part I. Prog. Biophys. & molec. Biol. 28, 267340.CrossRefGoogle ScholarPubMed
Hiratsuka, T. & Uchida, K. (1973). Preparation and properties of 2' (or 3')-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate, an analog of adenosine triphosphate. Biochim. biophys. Acta 320, 635–47.CrossRefGoogle Scholar
Holbrook, J. J. (1972). Protein fluorescence of lactate dehydrogenase. Biochem. J. 128, 921–31.CrossRefGoogle ScholarPubMed
Holland, P. C., La, Belle W. C. & Lardy, H. A. (1974). Differential inhibition of the exchange reactions associated with oxidative phosphorylation. Biochemistry, N.Y. 13, 4549–53.CrossRefGoogle ScholarPubMed
Hori, M., Ito, E., Takita, T., Koyama, G., Takeuchi, T. & Umezawa, H. (1964). A new antibiotic, formycin. J. Antibiol., Tokyo, A 17, 96–9.Google ScholarPubMed
Hoult, D. I., Busby, S. J. W., Gadian, D. G., Radda, G. K., Richards, R. E. & Seeley, P. J.Observation of tissue metabolites using 31p nuclear magnetic resonance. Nature, Lond. 252, 285–7.CrossRefGoogle Scholar
Hull, W. E., Halford, S. E., Gutfreund, H. & Sykes, B. D. (1976). 31P NMR study of alkaline phosphatase: the role of inorganic phosphate in limiting the enzyme turnover rate at alkaline pH. Biochemistry, N. Y. 15 1547–61.CrossRefGoogle ScholarPubMed
Hull, W. E. & Sykes, B. D. (1976). Fluorotyrosine alkaline phosphatase: 19F nuclear magnetic resonance relaxation times and molecular motion of the individual fluorotyrosines. Biochemistry, N.Y. 15 1535–46.CrossRefGoogle Scholar
Hunt, J. P. (1963). Metal Ions in Aqueous Solution, pp. 73104. New York: Benjamin.Google Scholar
Huxley, A. F. (1957). Muscle structure and theories of contraction. Prog. Biophys. 7, 255318.Google ScholarPubMed
Imamura, K., Tada, M. & Tonomura, Y. (1966). The pre-steady state of the myosin-adenosine triphosphate system. IV. Liberation of ADP from the myosin system and effects of modifiers on the phosphorylation of myosin. J. Biochem. Tokyo 59, 280–9.Google ScholarPubMed
Jencks, W. P. (1969). Catalysis in Chemistry and Enzymology, pp. 112115. New York: McGraw Hill.Google Scholar
Jencks, W. P. (1975). Binding energy, specificity, and enzymic catalysis: the circe effect. Adv. Enzymol. 43, 219410.Google ScholarPubMed
Jones, D. H. & Boyer, P. D. (1969). The apparent absolute requirement of adenosine diphosphate for the inorganic phosphate == water exchange of oxidative phosphorylation. J. biol. Chem. 244, 5767–72.CrossRefGoogle ScholarPubMed
Kanazawa, T. & Boyer, P. D. (1973). Occurrence and characteristics of a rapid exchange of phosphate oxygens catalysed by sarcoplasmic reticulum vesicles. J. biol. Chem. 248, 3163–72.CrossRefGoogle Scholar
Kanazawa, T., Saito, M. & Tonomura, Y. (1967). Properties of a phosphorylated protein as a reaction intermediate of the Na+ - K+ sensitive ATPase. J. Biochem., Tokyo 61, 555–66.CrossRefGoogle ScholarPubMed
Kinoshita, N., Kubo, S., Onishi, H. & Tonomura, Y. (1969). The presteady state of the myosin-adenosine triphosphate system. VIII. Intermediate formation and activation of myosin by ATP. J. Biochem., Tokyo 65, 285301,.CrossRefGoogle Scholar
Knowles, A. F. & Racker, E. (1975). Formation of adenosine triphosphate from P1 and adenosine diphosphate by purified Cal2+-adenosine tnphosphatase. J. biol. Chem. 250, 1949–51.CrossRefGoogle Scholar
Koretz, J. F. & Taylor, E. W. (1975). Transient state kinetic studies of proton liberation by myosin and subfragment I. J. biol. Chem. 250, 6344–50.CrossRefGoogle Scholar
Korman, E. F. & McLick, J. (1973). Stereochemical reaction mechanism formulation for enzyme-catalysed pyrophosphate hydrolysis, ATP hydrolysis, and ATP synthesis. Bioorganic Chemistry 2, 179–90.CrossRefGoogle Scholar
Landoraf, W. C. & Inesi, G. (1969). ATP dependent conformational change in ‘spin labelled’ sarcoplasmic reticulum. Archs Biochein. Biophys. 130, 111–18.CrossRefGoogle Scholar
Leigh, J. S. (1970). ESR rigid-lattice line shape in a system of two interacting spins. J. chem. Phys. 52, 2608–12.CrossRefGoogle Scholar
Levy, H. M. & Koshland, D. E. (1959). Mechanism of hydrolysis of adenosine triphosphate by muscle proteins and its relation to muscular contraction. J. biol. Chem. 234, 1102–7.CrossRefGoogle ScholarPubMed
Lowey, S., Slayter, H. S., Weeds, A. G. & Baker, H. (1969). Substructure of the myosin molecule. Subfragments of myosin by enzymatic degradation. J. molec. Biol. 42, 129.CrossRefGoogle Scholar
Lymn, R. W. & Huxley, H. E. (1972). X-ray diagrams from skeletal muscle in the presence of ATP analogs. Cold Spring Harb. Symp. quant. Biol. 37, 449–53.CrossRefGoogle Scholar
Lymn, R. W. & Taylor, E. W. (1970). Transient state phosphate production in the hydrolysis of nucleotide triphosphates by myosin. Biochemistry, N.Y. 9, 2975–83.CrossRefGoogle ScholarPubMed
Lymn, R. W. & Taylor, E. W. (1971). Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry, N.Y. 10, 4617–24.CrossRefGoogle ScholarPubMed
Maclennan, D. H. & Holland, P. C. (1975). Calcium transport in sarcoplasmic reticulum. A. Rev. Biophys. Bioeng. 4, 377404.CrossRefGoogle ScholarPubMed
Mandelkow, E. M. & Mandelkow, E. (1973). Fluorimetric studies on the influence of metal ions and chelators on the interaction between myosin and ATP. FEBS Lett. 33, 161–6.CrossRefGoogle ScholarPubMed
Mannherz, H. G., Barrington-Leigh, J., Holmes, K. C. & Rosenbaum, G. (1973). Identification of the transitory complex myosin-ATP by the use of α β-methylene-ATP. Nature (New Biol.) 241, 226–9.CrossRefGoogle Scholar
Mannherz, H. G., Schenck, H. & Goody, R. S. (1974). Synthesis of ATP from ADP and inorganic phosphate at the myosin-subfragment I active site. Eur. J. Biochem. 48, 287–95.CrossRefGoogle Scholar
Margossian, S. S., Lowey, S. & Barshop, B. (1975). Effect of DTNB light chain on the interaction of vertebrate skeletal myosin with actin. Nature, Lond. 258, 163-6.CrossRefGoogle ScholarPubMed
Martonosi, A. & Halpin, R. A. (1969). Sarcoplasmic reticulum. VII. Properties of a phosphoprotein intermediate implicated in calcium transport. J. biol. Chem. 244, 613–20.CrossRefGoogle ScholarPubMed
Martonosi, A. & Malik, M. N. (1972). Kinetics of formation and dissociation of H-meromyosin–ADP complex. Cold Spring Harb. Symp. quant. Biol. 37, 184–5.CrossRefGoogle Scholar
McClure, W. R. & Scheit, K. H. (1973). Enzyme kinetic parameters of the fluorescent ATP analogue. 2-amino purine triphosphate. FEBS Lett. 32, 267–9.CrossRefGoogle Scholar
McConnell, H. M. & McFarland, B. G. (1970). Physics and chemistry of spin labels. Q. Rev. Biophys. 3, 91136.CrossRefGoogle ScholarPubMed
McCubbin, W. D., Willick, G. E. & Kay, C. M. (1973). Enzymatic studies on the interaction of myosin and heavy meromyosin with I, N6- ethenoadenosine triphosphate, a fluorescent analog of ATP. Biochem. biophys. Res. Commun. 50, 926–33.CrossRefGoogle ScholarPubMed
Mihashi, K. & Wahl, P. (1975). Nanosecond pulsefluorimetry in polarised light of G-actin-e ATP and F-actin-e ADP. FEBS Lett. 52, 812.CrossRefGoogle Scholar
Miki, M., Ohnuma, H. & Mihashi, K. (1974). Interaction of actin with eATP. FEBS Lett. 46, 1719.CrossRefGoogle Scholar
Mildvan, A. S. & Cohn, M. (1970). Aspects of enzyme mechanisms studied by nuclear spin relaxation induced by paramagnetic probes. Adv. Enzymol. 33, 170.Google Scholar
Miller, D. L. & Westheimer, F. H. (1966 a). The hydrolysis of λ-phenylpropyl di- and triphosphates. J. Am. chem. Soc. 88, 1507–11.CrossRefGoogle ScholarPubMed
Miller, D. L. & Westheimer, F. H. (1966 b). Interaction of λ-phenylpropyl triphosphate with cations. J. Am. chem. Soc. 88, 1514–17.CrossRefGoogle ScholarPubMed
Mitchell, P. D. (1966). Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. 41, 445502.CrossRefGoogle ScholarPubMed
Mitchell, R. A., Russo, J. A. & Lamos, C. M. (1975). The effects of ADP on reverse electron flow and the oxygen exchange reactions catalyzed by bovine heart muscle submitochondrial particles. J. Supramol. Struct. 3, 256–60.CrossRefGoogle ScholarPubMed
Morimoto, K. & Harrington, W. F. (1974). Evidence for structural changes in vertebrate thick filaments induced by calcium. J. molec. Biol. 88, 693709.CrossRefGoogle ScholarPubMed
Mowery, P. C. (1973). Investigations into the efficacy of I, N6-ethenoadenosine triphosphate as a substrate for contractility studies. Archs Biochem. Biophys. 59, 374–77.CrossRefGoogle Scholar
Murphy, A. J. (1971). Circular dichroism of the adenine and 6-mer- capto purine nucleotide complexes of actin. Biochemistry, N.Y. 10, 3723–8.CrossRefGoogle Scholar
Murphy, A. J. (1971). Circular dichroism studies of the adenine and 6- mercaptopurine nucleotide complexes of heavy meromyosin. Archs Biochem. Biophys. 163, 290–6.CrossRefGoogle Scholar
Murphy, A. J., Duke, J. A. & Stowring, L. (1970). Synthesis of 6-mercapto- 9-β-D-ribofuranosyl-purine 5'-triphosphate, a sulfhydryl analog of ATP. Archs Biochem. Biophys. 137, 297–8.CrossRefGoogle Scholar
Murphy, A. J. & Morales, M. F. (1970). Number and location of adenosine triphosphate sites of myosin. Biochemistry, N.Y. 9, 1528–32.CrossRefGoogle Scholar
Neufeld, A. H. & Levy, H. M. (1970). The steady state level of phos phorylated intermediate in relation to the two sodium-dependent adenosine triphosphatases of calf brain microsomes. J. biol. Chem. 245, 4962–7.CrossRefGoogle Scholar
Nishigaki, I., Chen, F. T. & Hokin, L. E. (1974). Studies on the characterization of the sodium–potassium transport adenosine tnphosphatase. XV. Direct chemical characterization of the acyl phosphate in the enzyme as an aspartyl β-phosphate residue. J. biol. Chem. 249, 4911–16.CrossRefGoogle ScholarPubMed
Onadera, M. & Yagi, K. (1971). Synthesis of 2-(dansylamino)ethyl tri-phosphate and its properties as a fluorescent substrate of heavy meromyosin ATPase. Biochim. biophys. Acta 253, 254–65.CrossRefGoogle Scholar
Onishi, H., Ohtsuka, E., Ikehara, M. & Tonomura, Y. (1973). Energy transfer from tryptophan residues to a fluorescent ATP analog, I, N6-etheno-adenosine triphosphate, bound to H-meromyosin. J. biochem. Tokyo 74, 435–50.CrossRefGoogle Scholar
Oplatka, A., Werber, M. M. & Danchin, A. (1974). Specific interaction of cobaltic complexes with myosin. FEBS Lett. 47, 710.CrossRefGoogle ScholarPubMed
Penefsky, H. S. (1974). Mitochondrial and chioroplast ATPases. In The Enzymes, vol. 10, 3rd ed. (ed. Boyer, P. D.), pp. 375–94. New York: Academic Press.Google Scholar
Perrie, W. T., Smillie, L. B. & Perry, S. V. (1973). A phosphorylated lightchain component of myosin from skeletal muscle. Biochem. J. 135, 151–4.CrossRefGoogle ScholarPubMed
Perutz, M. (1970). Stereochemistry of cooperative effects in haemoglobin. The Bohr effect and combination with organic phosphates. Nature, Lond. 228, 734–9.Google Scholar
Phillips, R. C., George, P. & Rutman, R. J. (1969). Thermodynamics data for the hydrolysis of adenosine triphosphate as a function of pH, Mg2+ ion concentrations and ionic strength. J. biol. Chem. 244, 3330–42.CrossRefGoogle ScholarPubMed
Post, R. L. & Kume, S. (1973). Evidence for an aspartyl phosphate residue at the active site of sodium and potassium ion transport adenosine triphosphatase. J. biol. Chem. 248, 6993–1000.CrossRefGoogle ScholarPubMed
Post, R. L., Sen, A. K. & Rosenthal, A. S. (1965). A phosphorylated intermediate in adenosine triphosphate–dependent sodium and potassium transport across kidney membranes. J. biol. Chem. 240, 1437–45.CrossRefGoogle ScholarPubMed
Quantities, Units and Symbols (1975). Publication of the Royal Society, 2nd ed., p. 16.Google Scholar
Reed, G. H. & Cohn, M. (1972). Structural changes induced by substrates and anions at the active site of creatine kinase. Electron paramagnetic resonance and nuclear magnetic relaxation rate studies of the manganous complexes. J. biol. Chem. 247, 3073–81.CrossRefGoogle ScholarPubMed
Reed, G. H. & Ray, W. J. Jr. (1971). Electron paramagnetic resonance studies of manganese (II) coordination in the phosphoglucomutase system. Biochenzistry, N.Y. 10, 3190–7.CrossRefGoogle ScholarPubMed
Rosing, J., Harris, D. A., Kemp, A. & Slater, E. C. (1975 a). Nucleotidebinding properties of native and cold-treated mitochondrial ATPases. Biochim. biophys. Acta 376, 1326.CrossRefGoogle Scholar
Rosing, J., Kayalar, C. & Boyer, P. D. (1975 b). Probes of energy input in ATP formation by oxidative phosphorylation. Int. Symp. Structural Basis of Membrane Function, University of Tehran.Google Scholar
Rosing, J. & Slater, E. C. (1972). The value of ΔG° for the hydrolysis of ATP. Biochim. biophys. Acta 267, 275–90.CrossRefGoogle Scholar
Rossi-Bernardi, L. & Roughton, F. J. W. (1967). The effect of temperature on the oxygen-linked ionization of haemoglobin. J. biol. Chem. 242, 784–92.CrossRefGoogle Scholar
Sartorelli, L., Fromm, H. J., Benson, R. W. & Boyer, P. D. (1966). Direct and 18O-exchange measurements relevant to possible activated or phosphorylated states of myosin. Biochemistry, N.Y. 5, 2877–84.CrossRefGoogle ScholarPubMed
Schlimme, E., Lamprecht, W., Eckstein, F. & Goody, R. S. (1973). Thiophosphate-analogues and I-N-oxides of ATP and ADP in mitochondrial translocatiort and phosphoryl-transfer reactions. Eur. J. Biochem. 40, 485–91.CrossRefGoogle ScholarPubMed
Secrist, J. A., Barrio, J. R., Leonard, N. J. & Weber, G. (1972). Fluorescent modification of adenosine-containing coenzymes. Biological activities and spectroscopic properties. Biochemistry, N.Y. II, 3499–506.CrossRefGoogle Scholar
Seidel, J. C. & Gergely, J. (1972). Investigation of conformational changes in spin labelled myosin: implications for the molecular mechanism of muscle contraction. Cold Spring Harb. Symp. quant. Biol. 37, 187–93.CrossRefGoogle Scholar
Seidel, J. C. & Gergely, J. (1973). Electron spin resonance of myosin spin labeled at the S1 thiol groups during hydrolysis of adenosine triphosphate. Arcis Biochem. Biophys. 158, 853–63.CrossRefGoogle ScholarPubMed
Senior, A. E. (1973). The structure of the mitochondrial ATPase. Biochim. biophys. Acta 301, 249–77.CrossRefGoogle ScholarPubMed
Shahak, Y., Chipman, D. M. & Shavit, N. (1973). Photophosphorylation studies with fluorescent adenine nucleotide analogs. FEBS Lett. 33, 293–6.CrossRefGoogle ScholarPubMed
Skvortsevich, E. G., Pantaleeva, N. S. & Pisareva, L. N. (1973). Reactions of oxygen isotope exchange in the system (Na+ + K+)-dependent ATPase. Dokl. (Proc.) Acad. Sci. U.S.S.R. (Biochem.) 206, 363–5.Google Scholar
Sleep, J. A. (1975). Transient kinetics of myosin ATPase. Ph.D. thesis, King's College, University of London.Google Scholar
Sleep, J. A. & Taylor, E. W. (1975). Mechanism of actomyosin ATPase. In 3rd Cold Spring Harb. Symp. Cell Prohf eration–Cell Motility (in the Press).Google Scholar
Spiro, T. G., Kjellstrom, W. A., Zeydel, M. & Butow, R. A. (1968). On the kinetics of metal-catalysed adenosine triphosphate dephosphorylation. Biochemistry, N.Y. 7, 859–65.CrossRefGoogle Scholar
Stone, D. B. (1973). Interaction of actin with spin-labeled heavy meromyosin in the presence of nucleotides. Biochemistry, N.Y. 12, 3672–9.CrossRefGoogle ScholarPubMed
Swanson, J. R. & Yount, R. G. (1966). The properties of heavy meromyosin and myosin catalysed ‘medium’ and ‘intermediate’18O-phosphate exchange. Biochem. Z. 345, 395409.Google Scholar
Swartz, H. M., Bolton, J. R. & Borg, D. C. (1972). Biological Application of Electron Spin Resonance. New York: Wiley-Interscience.Google Scholar
Sykes, B. D. & Scott, M. D. (1972). Nuclear magnetic resonance studies of the dynamic aspects of molecular structure and interaction in biological systems. A. Rev. Biophys. Bioeng. I, 2750.CrossRefGoogle Scholar
Tannigochi, K. & Post, R. L. (1975). Synthesis of adenosine triphosphate and exchange between inorganic phosphate and adenosine triphosphate in sodium and potassium ion transport adenosine triphosphatase. J. biol. Chem. 250, 3010–18.CrossRefGoogle Scholar
Taylor, E. W. (1973). Mechanism of actomyosin ATPase and the problem of muscle contraction. Curr. Top. Bioenerg. 5, 20131.CrossRefGoogle Scholar
Tetas, M. & Lowenstein, J. M. (1963). The effect of bivalent metal ions on the hydrolysis of adenosine di- and triphosphate. Biochemistry, N.Y. 2, 350–7.CrossRefGoogle ScholarPubMed
Thames, K. E., Cheung, H. L. & Harvey, S. C. (1974). Binding of I, N6-ethenoadenosine triphosphate to actin. Biochem. biophys. Res. Commun. 6, 1252–61.CrossRefGoogle Scholar
Tokiwa, T. (1971). EPR spectral observations on the binding of ATP and F-actin to spin labelled myosin. Biochem. biophys. Res. Commun., 44 471–6.CrossRefGoogle Scholar
Tokiwa, T. & Morales, M. F. (1971). Independent and cooperative reactions of myosin heads with F-actin in the presence of adenosine triphosphate. Biochemistry, N.Y. 10, 1722–7.Google ScholarPubMed
Tondre, C. & Hammes, G. G. (1973). A kinetic study of the binding of an ADP fluorescent analog to mitochondrial ATPase. Biochim. biophys. Acta 314, 245-9.CrossRefGoogle ScholarPubMed
Tonomura, Y. (1972). Muscle Proteins, Muscle Contraction and Cation Transport. Tokyo: University of Tokyo Press.Google Scholar
Tonomura, Y. & Inoue, E. A. (1974). The substructure of myosin and the reaction mechanism of its adenosine triphosphatase. Molecular & Cellular Biochemistry 5, 127–43.CrossRefGoogle ScholarPubMed
Trentham, D. R. (1971). Reactions of D-glyceraldehyde 3-phosphate dehydrogenase facilitated by oxidised nicotinamide–adenine dinucleotide. Biochem. J. 122, 5969.CrossRefGoogle Scholar
Trentham, D. R. (1976). The adenosine triphosphatase reactions of myosin and actomyosin and their relation to energy transduction in muscle. Biochem. Soc. Trans. London (in the Press).Google Scholar
Trentham, D. R., Bardsley, R. G., Eccleston, J. F. & Weeds, A. G. (1972). Elementary processes of the magnesium ion-dependent adenosine triphosphatase activity of heavy meromyosin. Biochem. J. 126, 635–44.CrossRefGoogle ScholarPubMed
Vandermeulen, D. L. & Govindjee, (1975). Interactions of fluorescent analogs of adenine nucleotides with coupling factor proteins isolated from spinach chioroplasts. FEBS Lett. 57, 272–5.CrossRefGoogle Scholar
Wagner, P. D. & Yount, R. G. (1975 a). Stoichiometry of labeling of myosin's proteolytic fragments by a purine disulfide analog of adenosine triphosplate. Biochemistry, N. Y. 14, 1900–7.CrossRefGoogle Scholar
Wagner, P. D. & Yount, R. G. (1975 b). Subunit location of sulfhydryl groups of myosin labeled with a purine disulfide analog of adenosine triphosphate. Biochemistry, N.Y. 14, 1908–14.CrossRefGoogle ScholarPubMed
Ward, D. C., Cerami, A., Reich, E., Acs, G. & Altwerger, L. (1969 a). Biochemical studies on the nucleoside analogue, formycin. J. biol. Chem. 244, 3243–50.CrossRefGoogle ScholarPubMed
Ward, D. C., Reich, E. & Stryer, L. (1969 b). Fluorescence studies on nucleotides and polynucleotides. J. biol. Chem. 244, 1228–37.CrossRefGoogle ScholarPubMed
Warren, G. B., Toon, P. A., Birdsall, N. J. M., Lee, A. G. & Metcalfe, J. C. (1974). Reversible lipid titrations of the activity of pure adenosine triphosphatase–lipid complexes. Biochemistry, N.Y. 13, 5501–7.CrossRefGoogle ScholarPubMed
Watterson, J. G. & Schaub, M. C. (1973). Conformational differences in myosin. II. Evidence for differences in the conformation induced by bound or hydrolysed adenosine triphosphate. Hoppe-Seyler's Z. physiol. Chem. 354, 1619–25.CrossRefGoogle ScholarPubMed
Weeds, A. G. & Taylor, R. S. (1975). Separation of subfragment 1 iso-enzymes from rabbit skeletal muscle myosin. Nature, Lond. 257, 54–6.CrossRefGoogle Scholar
Werber, M., Szent-Gyorgyi, A. G. & Fasman, G. (1972). Fluorescence studies on heavy meromyosin: Substrate interaction. Biochemistry, N. Y. 11, 2872–83.CrossRefGoogle ScholarPubMed
Wilkie, D. R. (1974). The efficiency of muscular contraction. J. Mechanochem. Cell Motility 2, 257–67.Google ScholarPubMed
Wilkie, D. R. (1975). Muscle as a thermodynamic machine. In Energy Transformation in Biological Systems, pp. 327–39. Ciba Fdn Symp. no. 31. Amsterdam: Associated Scientific Publishers.Google Scholar
Willick, G. E., Oikawa, K., McCubbin, W. D. & Kay, C. M. (1973). Equilibrium dialysis binding studies of I, N6-ethenoadenosine diphosphate to myosin, heavy meromyosin and subfragment I. Biochem. biophys. Res. Commun. 53, 923–8.CrossRefGoogle Scholar
Wolcott, R. G. & Boyer, P. D. (1973). On the nature of ρ-nitrothiophenylated myosin. Biochim. biophys. Acta 303, 292–7.CrossRefGoogle ScholarPubMed
Wolcott, R. G. & Boyer, P. D. (1974). The reversal of the myosin and actomyosin ATPase reactions and the free energy of ATP binding to myosin. Biochem. biophys. Res. Commun. 57, 709–16.CrossRefGoogle ScholarPubMed
Wolcott, R. G. & Boyer, P. D. (1975). Isotopic probes of catalytic steps of myosin adenosine triphosphatase. J. Supramol. Struct. 3, 154–61.CrossRefGoogle ScholarPubMed
Woltermann, G. M., Scott, R. A. & Haight, G. P. (1974). On the coupling of adenosine triphosphate hydrolysis to a simple inorganic redox system: VO2++H2O2. J. Am. chem. Soc. 96, 7569–70.CrossRefGoogle Scholar
Yamamoto, T. & Tonomura, Y. (1967). Reaction mechanism of the Ca++-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Kinetic studies. J. Biochem. Tokyo 62, 558–75.CrossRefGoogle ScholarPubMed
Yamamoto, T. & Tonomura, Y. (1968). Reaction mechanism of the Ca++- dependent ATPase of sarcoplasmic reticulum from skeletal muscle. II. Intermediate formation of phosphoryl protein. J. Biochem. Tokyo 64, 137–45.CrossRefGoogle ScholarPubMed
Yazawa, M. & Morita, F. (1974). Electron spin resonance study of the interaction between heavy meromyosin and Mn2+. J. Biochem., Tokyo 76, 217–19.CrossRefGoogle ScholarPubMed
Young, D. M., Himmelfarb, S. & Harrington, W. F. (1965). On the structural assembly of the polypeptide chains of heavy meromyosin. J. biol. Chem. 240, 2428–36.CrossRefGoogle ScholarPubMed
Young, J. H., McLick, J. & Korman, E. F. (1974). Pseudorotation mechanism of ATP hydrolysis in muscle contraction. Nature, Lond. 249, 474–6.CrossRefGoogle ScholarPubMed
Yount, R. G. (1975). ATP analogs. Adv. Enzymol. 43, 156.Google ScholarPubMed
Yount, R. G., Babcock, D., Ballantyne, W. & Ojala, D. (1971 a). Adenylyl imidodiphosphate, an adenosine triphosphate analog containing a P-N-P linkage. Biochemistry, N. Y. 10, 2484–9.CrossRefGoogle ScholarPubMed
Yount, R. G., Ojala, D. & Babcock, D. (1971 b). Interaction of P-N-P and P-C-P analogs of adenosine triphosphate with heavy meromyosin, myosin and actomyosin. Biochemistry, N.Y. 10, 2490–6.CrossRefGoogle ScholarPubMed