Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-23T13:20:45.213Z Has data issue: false hasContentIssue false

Haemocyanins

Published online by Cambridge University Press:  17 March 2009

K. E. van Holde
Affiliation:
Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
Karen I. Miller
Affiliation:
Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331

Extract

About ten years ago, one of the authors participated in a review of haemocyanin structure and function (van Holde & van Bruggen, 1971). At that time, it was possible to describe the field in terms of a limited amount of exciting new structural information, and a long list of unanswered questions. While the stoichiometry of oxygen binding was understood, virtually nothing was known about the active site. Even the oxidation state of the copper was a matter of conjecture. The size of the haemocyanin polypeptide chains was the subject of intense debate, with very little substantive knowledge available. While the haemocyanins were known to be allosteric proteins, there were virtually no experimental studies of oxygen binding on a level that could be meaningfully interpreted in terms of extant theories.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adair, G. S. & Elliott, F. G. (1968). Measurements of very small osmotic pressures of the haemocyanin of Pila leopoidvillensis. Nature, Lond. 219, 8182.CrossRefGoogle Scholar
Albergoni, V., Cassini, A., & Salvato, B. (1972). The carbohydrate portions of hemocyanin from Octopus vulgaris. Comp. Biochem. Physiol. 41B, 445451.Google Scholar
Alvarez, O., Diaz, E. & Lattore, R. (1975). Voltage-dependent conductance induced by hemocyanin in black lipid films. Biochem. biophys. Acta 389, 444448.CrossRefGoogle ScholarPubMed
Antolini, R., & Menestrina, G. (1979). Ion conductivity of the open keyhole limpet hemocyanin channel. FEBS Lett. 100, 377381.CrossRefGoogle ScholarPubMed
Antonini, E. & Chiancone, E. (1977). Assembly of multisubunit respiratory proteins. A. Rev. Biophys. Bioeng. 6, 239271.CrossRefGoogle ScholarPubMed
Arisaka, F. (1977). Allosteric properties and the association equilibria of hemocyanin from Callianassa californiensis. Ph.D. Thesis, Oregon State University.Google Scholar
Arisaka, F., Van, Holde K. E. (1979). Allosteric properties and the association equilibria of hemocyanin from Callianassa californiensis. J. molec. Biol. 134, 4173.CrossRefGoogle ScholarPubMed
Bannister, J. V. (ed.) (1977) Structure and Function of Haemocyanin. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Barker, V. C. & Graziadei, P. (1965). The fine structure of cephalopod blood vessels. I. Some smaller peripheral vessels. Z. Zellforsch. mikrosk. Anat. 66, 765781.Google Scholar
Barnhart, M. C. & Arp, A. (1980). Low O2, and high CO2 pressures in dormant land snails: Relation to respiratory gas exchange and hemocyanin function. Am. Zool. 20, 871.Google Scholar
Berger, J., Pilz, I., Witters, R. & Lontie, R. (1976). Röntgenkleinwinkel-und sedimentations studien am α-Hämocyanin Helix pomatia (halbe moleküle) in glycerin-und saccharoselösungen. Z. Naturf. 31, 238244.CrossRefGoogle Scholar
Berger, J., Pilz, I., Witters, R. & Lontie, R. (1977 a). Studies by small angle X-ray scattering of the quaternary structure of dissociation products of the β-hemocyanin of Helix pomatia. Eur. J. Biochem. 73, 247253.CrossRefGoogle Scholar
Berger, J., Pilz, I., Witters, R. & Lontie, R. (1977 b). Studies by small-angle X-ray scattering of the quaternary structure of the β-hemocyanin of Helix pomatia. Eur. J. Biochem. 80 7982.CrossRefGoogle Scholar
Berthet, J., Baudhuin, P. & Wibo, M. (1964). Charactéristiques des hémocyanines d'Isopodes. Archs int. Physiol. Biochim. 72, 676677.Google Scholar
Bhagvat, K. & Richter, D. (1938). Animal phenolases and adrenaline. Biochem. J. 32, 13971406.CrossRefGoogle ScholarPubMed
Bijholt, M. M. C., van, Bruggen E. F. J. & Bonaventura, J. (1979). Dissociation and reassembly of Limulus polyphemus hemocyanin. Eur. J. Biochem. 95, 399405.CrossRefGoogle Scholar
Blair, D. & van, Holde K. E. (1976). Sedimentation equilibrium studies of a complex association reaction. Biophys. Chem. 5, 165170.CrossRefGoogle ScholarPubMed
Bonaventura, C., Sullivan, B., Bonaventura, J. & Bourne, S. (1974). CO binding by hemocyanins of Limulus polyphemus, Busycon carica and Callinectes sapidus. Biochemistry 13, 47844789.CrossRefGoogle ScholarPubMed
Bonaventura, C., Sullivan, B., Bonaventura, J. & Brunori, M. (1977). Hemocyanin of the horseshoe crab, Limulus polyphemus. A temperature-jump study of the oxygen kinetics of the isolated components. In Structure and Function of Haemocyanin. (ed. Bannister, J. V.), pp. 265270.Google Scholar
Bonaventura, C., Bonaventura, J., Miller, K. I. & Van, Holde K. E. (1981). Hemocyanin of the chambered nautilus: Structure- function relationships. Archs Biochem. Biophys. 211, 589598.CrossRefGoogle ScholarPubMed
Bonaventura, J., Bonaventura, C. & Sullivan, B. (1975). Hemoglobins and hemocyanins: Comparative aspects of structure and function. J. exp. Zool. 194, 155174.CrossRefGoogle ScholarPubMed
Bonaventura, J., Brunori, M., Wilson, M. T., Martin, J. P., Garlick, R. L. & Davis, B. J. (1979). Properties of hemocyanins isolated from Amazon River Arthropods and Molluscs. Comp. Biochem. Physiol. 62A, 251256.CrossRefGoogle Scholar
Bonaventura, J. & Bonaventura, C. (1980 a). Hemocyanins - Relationships in their structure, function and assembly. Am. Zool. 20, 717.CrossRefGoogle Scholar
Bonaventura, J. & Bonaventura, C. (1980 b). Respiratory proteins: Molecular interfaces between the organism and its environment. In Animals and Environmental Fitness, (ed. Gilles, R.), pp. 157169. Oxford, N.Y.: Pergamon Press.Google Scholar
Boone, W. R., Schoffeniels, E. (1979). Hemocyanin synthesis during hypo-osmotic stress in the shore crab Carcinus maenas (L). Comp. Biochem. Physiol. 63B, 207214.Google Scholar
Bouchilloux, S., McMahill, P. & Mason, H. S. (1963). The multiple forms of mushroom tyrosinases. Purification and molecular properties of the enzymes. J. biol. Chem. 238, 16991707.CrossRefGoogle ScholarPubMed
Brenowitz, M., Bonaventura, C., Bonaventura, J. & Gianazza, E. (1981). Subunit composition of a high molecular weight oligomer: Limulus polyphemus hemocyanin. Archs Biochem. Biophys. 210, 748761.CrossRefGoogle ScholarPubMed
Brix, O., Lykkeboe, G. & Johansen, K. (1979). Reversed Bohr and Root shifts in hemocyanin of the marine prosobranch, Buccinum undatum: Adaptations to a periodically hypoxic habitat. J. Comp. Physiol. 129, 97103.CrossRefGoogle Scholar
Brohult, S. (1974) Hemocyanins of the gastropods. J. phys. Colloid Chem. 51, 206217.CrossRefGoogle Scholar
Brouwer, M. & Kuiper, H. A. (1973). Molecular weight analysis of Helix pomatia alpha hemocyanin in guanidine hydrochloride, urea and sodium dodecyl sulfate. Eur. J. Biochem. 35, 428435.CrossRefGoogle Scholar
Brouwer, M., Wolters, M. & van, Bruggen E. F. J. (1976). Proteolytic fragmentation of Helix pomatia α-hemocyanin: Structural domains in the polypeptide chain. Biochemistry 15, 26182623.CrossRefGoogle ScholarPubMed
Brouwer, M., Bonaventura, C. & Bonaventura, J. (1977). Oxygen binding by Limulus polyphemus hemocyanin: Allosteric modulation by chloride ions. Biochemistry 16, 38973902.CrossRefGoogle ScholarPubMed
Brouwer, M., Bonaventura, C. & Bonaventura, J. (1978 a). Analysis of the effect of 3 different allosteric ligands on oxygen binding by hemocyanin of the shrimp, Penaeus setiferus. Biochemistry 17, 21482154.CrossRefGoogle Scholar
Brouwer, M., Ryan, M., Bonaventura, J. & Bonaventura, C. (1978 b). Functions and structural properties of Murex fulvescens hemocyanin: Isolation of 2 different subunits required for reassociation of a molluscan hemocyanin. Biochemistry 17, 28102815.CrossRefGoogle Scholar
Brouwer, M., Wolters, M. & Van, Bruggen E. F. J. (1979). Proteolytic fragmentation of Helix pomatia α-hemocyanin. Isolation of a functionally active chemically pure domain and evidence for subunit heterogeneity. Archs Biochem. Biophys. 193 487495.CrossRefGoogle ScholarPubMed
Brown, J. M., Powers, L., Kincaid, B., Larrabee, J. A., Spiro, T. G. (1980). Structural studies of the hemocyanin active-site. I. Extended X-ray absorption fine-structure (EXAFS) analysis. J. Am. chem. Soc. 102, 42104216.CrossRefGoogle Scholar
Brunori, M. & Amiconi, G. (1977). Properties of hemocyanin from Limulus polyphemus (horseshoe crab) under dissociating conditions. In Structure and Function of Haemocyanin (ed. Bannister, J. V.), pp. 253257. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Buc, H., Johannes, K. J. & Hess, B. (1973). Allosteric kinetics of pyruvate kinase of Saccharomyces carlsbergensis. Appendix. J. molec. Biol. 76, 199205.Google Scholar
Busselen, P. (1970). The electrophoretic heterogeneity of Carcinus maenas hemocyanin. Archs Biochem. Biophys. 137, 415420.CrossRefGoogle ScholarPubMed
Carpenter, D. & Van, Holde K. E. (1973). Amino acid composition, amino terminal analysis, and subunit structure of Cancer magister hemocyanin. Biochemistry 12 22312238.CrossRefGoogle ScholarPubMed
Chantler, E. N., Harris, R. R. & Bannister, W. H. (1973). Oxygenation and aggregation properties of haemocyanin from Carcinus mediterraneus and Potamon edulis. Comp. Biochem. Physiol. 46A, 333343.CrossRefGoogle Scholar
Ching, Mming Chung M. & Ellerton, D. (1979). The physicochemical and functional properties of extracellular respiratory haemoglobins and chlorocruorins. Prog. Biophys. & molec. Biol. 35, 53102.CrossRefGoogle Scholar
Colosimo, A., Brunori, M. & Wyman, J. (1977). Oxygen binding to haemocyanin: A tentative analysis in the framework of a concerted model. In Structure and Function of Haemocyanin (ed. Bannister, J. V.), pp. 189192. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Condie, R. M. & Langer, R. B. (1964). Linear polymerization of a gastropod hemocyanin. Science 144, 11381140.CrossRefGoogle ScholarPubMed
Decker, H., Schmid, R., Markl, J. & Linzen, B. (1980). Hemocyanins in spiders. XII. Dissociation and reassociation of Eurypelma hemocyanin. Hoppe-Seyler's Z. physiol. Chem. 361, 17071719.CrossRefGoogle ScholarPubMed
Deinum, J., Lerch, K. & Reinhammar, B. (1976). An EPR study of Neurospora tyrosinase. FEBS Letts. 69, 161164.CrossRefGoogle ScholarPubMed
Decleir, W. & Richard, A. (1970). A study of the blood proteins in Sepia officinalis L. with special reference to embryonic hemocyanin. Comp. Biochem. Physiol. 34, 203211.CrossRefGoogle Scholar
Decleir, W., Lemaire, J. & Richard, A. (1971). The differentiation of blood proteins during ontogeny in Sepia officinalis L. Comp. Biochem. Physiol. 40B, 923930.Google Scholar
DePhillips, H. A., Nickerson, K. W., Johnson, M. & Van, Holde K. E. (1969). Physical studies of hemocyanins. IV. Oxygen linked dissociation of Loligo paelei hemocyanin. Biochemistry, 8, 36653672.CrossRefGoogle Scholar
DePhillips, H. A., Nickerson, K. W. & van, Holde K. E. (1970). Oxygen binding and subunit equilibria of Busycon hemocyanin. J. molec. Biol. 50, 471479.CrossRefGoogle ScholarPubMed
Dhére, C. L. & Schneider, A. (1919). Sur une combinaison de l'hémocyanien d'Escargot avec le bioxide d'azote. C.r. Séanc. Soc. Biol. 82, 10411043.Google Scholar
DiGiamberardino, L. (1967). Dissociation of Eriphia hemocyanin. Archs Biochem. Biophys. 118, 273278.CrossRefGoogle Scholar
Dijk, M., Brouwer, M., Coert, A. & Gruber, M. (1970). Structure and function of hemocyanins. VII. The smallest subunit of α and β hemocyanin of Helix pomatia: size, composition, N- and C-terminal amino acids. Biochem. biophys. Acta 221, 467479.Google ScholarPubMed
Dilly, P. N. & Messenger, J. B. (1972). The branchial gland: a site of haemocyanin synthesis in Octopus. Z. Zellforsch. 132, 193201.CrossRefGoogle ScholarPubMed
Dooley, D. M., Scott, R. A., Ellinghaus, J., Solomon, E. I. & Gray, H. B. (1978). Magnetic susceptibility studies of laccase and oxyhemocyanin. Proc. natn. Acad. Sci. U.S.A. 75, 30193022.CrossRefGoogle ScholarPubMed
Eickman, N. C., Solomon, E. I., Larrabee, J. R., Spiro, T. G. & Lerch, K. (1978). Ultraviolet resonance Raman study of oxytyrosinases: comparison with oxyhemocyanins. J. Am. chem. Soc. 100, 65296531.CrossRefGoogle Scholar
Eickman, N. C., Himmelwright, R. S. & Solomon, E. I. (1979). Geometric and electronic structure of oxyhemocyanin: spectral and chemical correlations to met apo, half met, and dimer active sites. Proc. natn. Acad. Sci. U.S.A. 76, 20942098.CrossRefGoogle ScholarPubMed
Ellerton, H. D., Carpenter, D. E. & van, Holde K. E. (1970). Physical studies of hemocyanins. V. Characterization and subunit structure of the hemocyanin of Cancer magister. Biochemistry 9, 22252232.CrossRefGoogle ScholarPubMed
Ellerton, H. D. & Anderson, D. M. (1981). Subunit structure of the hemocyanin from the prawn Penaeus monodon. In Invertebrate Oxygen Binding Proteins: Structure, Active Site, and Function. (ed. Lamy, J. and Lamy, J.), pp. 159170. New York: Marcel Dekker.Google Scholar
Elliott, F. G. & van, Baelen H. (1965). Poids moleculaire et zone de stabilité de l'hémocyanine de Pila leopoldvillensis. Bull. Soc. Chim. biol. 47, 19791986.Google ScholarPubMed
Elliott, F. G., Witters, R., Borginon, H. & Lontie, R. (1972). The haemocyanin of Pila leopoldvillensis. III. The dissociation studied by ultracentrifugation. Comparison with the α-haemocyanin of Helix pomatia. Comp. Biochem. Physiol. 42B, 649657.Google Scholar
Engelborghs, Y. & Lontie, R. (1973). Dissociation of Helix pomatia haemocyanin under the influence of alkali salts. J. molec. Biol. 77, 577587.CrossRefGoogle ScholarPubMed
Er-El, Z., Shaklai, N. & Daniel, E. (1972). Oxygen binding properties of haemocyanin from Levantina hierosolima. J. molec. Biol. 64, 341352.CrossRefGoogle ScholarPubMed
Eriksson-Quensel, I.-B. & Svedberg, T. (1936). The molecular weights and pH stability regions of the hemocyanins. Biol. Bull. mar. biol. Lab. Woods Hole 71, 498547.CrossRefGoogle Scholar
Fahrenbach, W. A. (1970). The cyanoblast: haemocyanin formation in Limulus polyphemus. J. Cell Biol. 44, 445453.CrossRefGoogle ScholarPubMed
Fasman, G. (1976). Handbook of Biochemistry and Molecular Biology. 3rd Edition, vol. III. Cleveland, Ohio: CRC Publishing Company.Google Scholar
Fee, J. H., Malkin, R., Malnstrom, B. G. & Vängård, T. (1969). Anaerobic oxidation-reduction titrations of fungal laccase. J. biol. Chem. 244, 42004207.CrossRefGoogle ScholarPubMed
Felsenfeld, G. & Printz, M. J. (1959). Specific reactions of hydrogen peroxide with the active site of hemocyanin. The formation of ‘methemocyanin’. J. Am. chem. Soc. 82, 62596264.CrossRefGoogle Scholar
Frager, L. Y. & Alben, J. O. (1972). Structure of the carbon monoxide binding site of hemocyanins studied by Fourier transform infra-red spectroscopy. Biochemistry II, 47864792.CrossRefGoogle Scholar
Fredericq, M. L. (1878). Sur l'hémocyanine, substance nouvelle du sang de Poulpe (Octopus vulgaris). C.r. hebd. Séanc. Acad. Sci. Paris 87, 996998.Google Scholar
Freedman, T. B., Loehr, I. S. & Loehr, T. M. (1976). A resonance Raman study of the copper protein hemocyanin. New evidence for the structure of the oxygen-binding site. J. Am. chem. Soc. 98, 28092815.CrossRefGoogle ScholarPubMed
Freel, R. W. (1978). Oxygen affinity of the hemolymph of the mesopelagic mysidacean Gnathophausia ingens. J. exp. Zool. 204, 267274.CrossRefGoogle Scholar
Ghiretti-Magaldi, A., Nuzzolo, C. & Ghiretti, F. (1966). Chemical studies on hemocyanins. I. Amino acid composition. Biochemistry 5, 19431951.CrossRefGoogle ScholarPubMed
Ghiretti-Magaldi, A., Milanese, C. & Salvato, B. (1973). Identification of hemocyanin in the cyanocytes of Carcinus maenas. Experientia 29, 12651267.CrossRefGoogle ScholarPubMed
Ghiretti-Magaldi, A., Tamino, G. & Salvato, B. (1975). The monophyletic origin of hemocyanins on the basis of the amino acid composition. Structural implications. Boll. Zool. 42, 167179.CrossRefGoogle Scholar
Ghiretti-Magaldi, A. & Tamino, G. (1977) Evolutionary studies on hemocyanin. In Structure and Function of Haemocyanin (ed. Bannister, J. V.), pp. 271278. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Ghiretti-Magaldi, A., Milanesi, C. & Tognon, G. (1977). Hemopoiesis in crustacea decapoda: Origin and evolution of hemocytes and cyanocytes of Carcinus maenas. Cell Differ. 6, 167186.CrossRefGoogle Scholar
Ghiretti-Magaldi, A., Salvato, B., Tallandini, L. & Beltramini, M. (1979). The hemocyanin of Aplysia limacina. Comp. Biochem. Physiol. 62A, 579584.CrossRefGoogle Scholar
Ghiretti, F. (1962). Hemerythrin and hemocyanin. In Oxygenases (ed. Hayashi, O.), pp. 517563. New York: Academic Press.CrossRefGoogle Scholar
Ghiretti, F., Ghiretti-Magaldi, A. & Salvato, B. (1973). The chemical basis of the evolution of hemocyanins. In Comparative Physiology (ed. Bolis, L., Schmidt-Nielson, K. and Maddrell, S. H. P.), pp. 509522. Amsterdam: North Holland.Google Scholar
Gielens, C., Préaux, G. & Lontie, R. (1973). Isolation of the smallest functional subunit of Helix pomatia haemocyanin. Archs int. Physiol. Biochim. 81, 182183.Google ScholarPubMed
Gielens, C., Préaux, G., Lontie, R. (1975). Limited trypsinolysis of β-haemocyanin of Helix pomatia. Characterization of the fragments and heterogeneity of the copper groups by circular dichroism. Eur. J. Biochem. 60, 271280.CrossRefGoogle ScholarPubMed
Gielens, C., Préaux, G. & Lontie, R. (1977). Structural investigations on β-haemocyanin of Helix pomatia by limited proteolysis. In Structure and Function of Haemocyanin (ed. Bannister, J. V.), pp. 8594. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Gielens, C., DeJonghe, C., Préaux, G. & Lontie, R. (1981 a). The binding of sodium dodecyl sulfate by molluscan and arthropod hemocyanins in Tris buffer. In Invertebrate Oxygen Binding Proteins: Structure, Active Site, and Function (ed. Lamy, J. and Lamy, I.), pp. 109116. New York: Marcel Dekker.Google Scholar
Gielens, C., Verschueren, L. J., Préaux, G. & Lontie, R. (1981 b). Localization of the domains in the polypeptide chain of βc hemocyanin of Helix pomatia. In Invertebrate Oxygen Binding Proteins: Structure, Active Site and Function (ed. Lamy, J. and Lamy, J.), pp. 295304. New York: Marcel Dekker.Google Scholar
Gilbert, G. A. (1955). The physical chemistry of enzymes. Discuss. Faraday Soc. 20 6872.Google Scholar
Gullick, W. J., Herries, D. G. & Wood, E. J. (1979). Characterization of domains obtained from a mollusk hemocyanin by limited proteolytic digestion. Biochem. J. 179, 593602.CrossRefGoogle ScholarPubMed
Hall, R. L. & Wood, E. J. (1975). The carbohydrate content of gastropod hemocyanin. Biochem. Soc. Trans. 4, 307309.CrossRefGoogle Scholar
Hall, R. L., Pearson, J. S. & Wood, E. J. (1975). The hemocyanin of Lymnaea stagnalis L. (Gastropoda pulmonata). Comp. Biochem. Physiol. 52 B, 211218.Google ScholarPubMed
Hall, R. L., Wood, E. J., Kamberling, J. P., Gerwig, G. & Vliegenthart, F. G. (1977). Identification of 3-ο-methylgalactose and 3-ο-methylmannose in pulmonate gastropod haemocyanins. Biochem. J. 165, 173176.CrossRefGoogle ScholarPubMed
Hamlin, L. M. & Fish, W. W. (1977). The subunit characterization of Callinectes sapidus hemocyanin. Biochim. biophys. Acta 491, 4652.CrossRefGoogle ScholarPubMed
Heirweigh, K., Borginon, H. & Lontie, R. (1961). Separation and absorption spectra of α- and β-haemocyanin of Helix pomatia. Biochim. biophys. Acta 48, 517526.CrossRefGoogle Scholar
Herskovits, T. T., Erhunmwunsee, L. J., San, George R. C. & Herp, A. (1981 a). Subunit structure and dissociation of Callinectes sapidus hemocyanin. Biochim. biophys. Acta 667, 4458.CrossRefGoogle ScholarPubMed
Herskovits, T. T., San, George R. C. & Erhunmwunsee, L. J. (1981 b). Light scattering investigation of the subunit dissociation of Homarus americanus hemocyanin. Effects of salts and ureas. Biochemistry 20, 25802587.CrossRefGoogle ScholarPubMed
Himmelwright, R. S., Eickman, N. C., Lublen, C. D. & Solomon, E. I. (1980). Chemical And Spectroscopic Comparison of The Binuclear Copper Active-site of Mollusk And Arthropod Hemocyanins. J. Am. Chem. Soc. 102, 53785388.CrossRefGoogle Scholar
Jeffrey, P. D., Shaw, D. C. & Treacy, G. B. (1976). Hemocyanin From The Australian Freshwater Crayfish Cherax Destructor. Studies of Two Different Monomers And Their Participation In The Formation of Multiple Hexamers. Biochemistry 15, 55275533.CrossRefGoogle ScholarPubMed
Jeffrey, P. D., Haw, D. C. & Treacy, G. B. (1978). Hemocyanin from the Australian freshwater crayfish Cherax destructor. Characterization of a dimeric subunit and its involvement in the formation of the 25S component. Biochemistry 17, 30783084.CrossRefGoogle ScholarPubMed
Jeffrey, P. D. & Treacy, G. B. (1980). Hemocyanin from the Australian freshwater crayfish Cherax destructor. Oxygen binding studies of the major components. Biochemistry 19, 54285433.CrossRefGoogle ScholarPubMed
Jeffrey, P., Lamy, J., Lamy, J., LeClerc, M. & Marlborough, D. (1981). Immunochemical properties of Cherax destructor hemocyanin. In Invertebrate Oxygen Binding Proteins: Structure, Active Site and Function (ed. Lamy, J. and Lamy, J.), pp. 227238. New York: Marcel Dekker.Google Scholar
Johannes, K. J. & Hess, B. (1973). Allosteric kinetics of pyruvate kinase of Saccharomyces carisbergensis. J. molec. Biol. 76, 181199.CrossRefGoogle Scholar
Johansen, K., Lenfant, C., Mecklenburg, T. A. (1970). Respiration in the crab, Cancer magister. Z. vergl. Physiol. 70, 119.CrossRefGoogle Scholar
Johansen, K. & Petersen, J. A. (1975). Respiratory adaptation in Limulus polyphemus (L.). In Physiological Ecology of Estuarine Organisms (ed. Vernberg, F. J.), pp. 129145. Columbia, South Carolina: Univ. of South Carolina Press.Google Scholar
Johnson, M. L. & Yphantis, D. A. (1978). Subunit association and heterogeneity of Limulus polyphemus hemocyanin. Biochemistry 17, 14481455.CrossRefGoogle ScholarPubMed
Jolles, J., Jolles, P., Lamy, J. & Lamy, J. (1979). Structural characterization of seven different subunits in Androctonus australis haemocyanin. FEBS Letts. 106, 289291.CrossRefGoogle ScholarPubMed
Jolly, R. L. Jr, Evans, L. H., Makino, N., Mason, H. S. (1974). Oxytyrosinase. J. biol. Chem. 249, 335345.CrossRefGoogle Scholar
Klarman, A., Shaklai, N. & Daniel, E. (1972). The binding of calcium ions to hemocyanin from Levantina hierosolima at physiological pH. Biochim. biophys. Acta 257, 150157.CrossRefGoogle ScholarPubMed
Klarman, A., Shaklai, N. & Daniel, E. (1975). Oxygen binding by hemocyanin from Levantina hierosolima. I. Exclusion of subunit interactions as a basis for cooperativity. Biochemistry 14, 102104.CrossRefGoogle ScholarPubMed
Klarman, A., Gottlieb, J. & Daniel, E. (1979). Quaternary structure and arrangement of subunits in hemocyanin from the scorpion Leirus quinquestriatus. Biochemistry 18, 22392244.CrossRefGoogle ScholarPubMed
Klarman, A. & Daniel, E. (1980). Oxygen binding properties of stripped (Ca2+ and Mg2+ free) hemocyanin from the scorpion Leirus quinquestriatus. Biochemistry 19, 51765180.CrossRefGoogle ScholarPubMed
Klippenstein, G. L., Holleman, J. W. & Klotz, I. (1968). The primary structure of Golfingia gouldii hemerythrin. Order of peptides in fragments produced by tryptic digestion of succinylated hemerythrin. Complete amino acid sequence. Biochemistry 7, 38683878.CrossRefGoogle Scholar
Klippenstein, G. L., Van, Riper D. A. & Oosterholm, E. (1972). A comparative study of the oxygen transport proteins of Dendrostonum pyroides. J. biol. Chem. 247, 59595963.CrossRefGoogle ScholarPubMed
Klotz, I. M. & Klotz, T. (1955). Oxygen carrying proteins: A comparison of the oxygenation reaction in hemocyanin and hemerythrin with that in hemoglobin. Science, N. Y. 121, 477480.CrossRefGoogle ScholarPubMed
Klotz, I. M., Klippenstein, G. L. & Hendrickson, W. A. (1976). Hemerythrin: An alternative oxygen carrier. Science, N. Y. 192, 335344.CrossRefGoogle ScholarPubMed
Konings, W. (1969). Structure and function of hemocyanins. Ph.D. thesis, Groningin.Google Scholar
Konings, W. N., Siezen, R. J. & Gruber, J. M. (1969). Structure and properties of hemocyanins. XI. Association—dissociation behavior of Helix pomatia hemocyanin. Biochim. biophys. Acta 194, 376385.CrossRefGoogle Scholar
Kubowitz, F. (1938). Spaltung und resynthese der polyphenoloxydas und des hemocyanins. Biochem. Z. 299, 3257.Google Scholar
Kuiper, H. A. (1976). Helix pomatia and Panulirus interruptus hemocyanin: Structure and function. Ph.D. thesis, University of Groningen.Google Scholar
Kuiper, H. A., Gaastra, W., Beintema, J. J., Van, Bruggen E. F. J., Schepman, A. M. H. & Drenth, J. (1975). Subunit composition, X-ray diffraction, amino acid analysis and oxygen binding behavior of Panulirus interruptus hemocyanin. J. molec. Biol. 99, 619629.CrossRefGoogle ScholarPubMed
Kuiper, H. A., Torensma, R. & Van, Bruggen E. F. J. (1976). Binding of carbon monoxide to α -hemocyanin and β-hemocyanin from Helix pomatia. Eur. J. Biochem. 68, 425430.CrossRefGoogle ScholarPubMed
Kuiper, H. A., Antonini, E., Brunori, M. (1977). Kinetic control of cooperativity in oxygen binding of Panulirus interruptus hemocyanin. J. molec. Biol. 116, 569576.CrossRefGoogle ScholarPubMed
Kuiper, H. A., Brunori, M. & Antonini, E. (1978). Kinetics of Bohr effect in the reaction of Helix pomatia β-hemocyanin with oxygen. Biochem. biophys. Res. Comm. 82, 10621069.CrossRefGoogle ScholarPubMed
Kuiper, H. A., Forlani, L., Chiancone, E., Antonini, E., Brunori, M. & Wyman, J. (1979). Multiple linkage in Panulirus interruptus hemocyanin. Biochemistry 18, 58495854.CrossRefGoogle ScholarPubMed
Kuiper, H. A., Agró, A. F., Antonini, E. & Brunori, M. (1980 a). Luminescence of carbon monoxide hemocyanins. Proc. natn. Acad.Sci. U.S.A. 77, 23872389.CrossRefGoogle ScholarPubMed
Kuiper, H. A., Coletta, M., Zolla, L., Chiancone, E. & Brunori, M. (1980 b). Root effect of Panulirus interruptus hemocyanin. Biochim. biophys. Acta 626, 12416.CrossRefGoogle ScholarPubMed
Kuiper, H. A., Lerch, K., Brunori, M. & Agró, A. F. (1980 c). Luminescence of the copper—carbon monoxide complex of Neurospora tyrosinase. FEBS Letts. III, 232234.CrossRefGoogle Scholar
Lamy, J. & Lamy, J. (1981). Invertebrate Oxygen Binding Proteins: Structure, Active Site, and Function. New York: Marcel Dekker.Google Scholar
Lamy, J., Chalons, F., Goyffon, M. & Weill, J. (1973). Sur la taille des produits de la dissociation de l'hémocyanine du scorpion Androctonus australis (L.). C.r. hebd. Seanc. Acad. Sci. Paris Serie D276, 419422.Google Scholar
Lamy, J., Lamy, J., Baglin, M.-C. & Weill, J. (1977 a). Scorpion hemocyanin subunits: Properties, dissociation, association. In Structure and Function of Haemocyanin (ed. Bannister, J. V.), pp. 3749. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Lamy, J., Sizaret, P.-Y., Maillet, M. & Weill, J. (1977 b). Ultrastructure of 16 substances obtained by reassociation using different combinations of 3 isolated subunits of scorpion hemocyanin (Androctonus australis garzonii). J. molec. Biol. 117, 869875.CrossRefGoogle Scholar
Lamy, J., Lamy, J., Weill, J., Bonaventura, J., Bonaventura, C. & Brenowitz, M. (1979). Immunological correlates between the multiple hemocyanin subunits of Limulus polyphemus and Tachypleus tridentatus. Archs Biochem. Biophys. 196, 324339.CrossRefGoogle Scholar
Lamy, J., Lamy, J., Bonaventura, J. & Bonaventura, C. (1980). Structure, function and assembly in the hemocyanin system of the scorpion Androctonus australis. Biochemistry 19, 30333039.CrossRefGoogle ScholarPubMed
Lamy, J., Bijholt, M. C., Sizaret, P.-Y., Lamy, J. & Van, Bruggen E. F. J. (1981 a). Quaternary structure of scorpion (Androctonus australis) hemocyanin: Localization of subunits with immunological methods and electron microscopy. Biochemistry 20, 18491856.CrossRefGoogle ScholarPubMed
Lamy, J., Lamy, J., Sizaret, P.-Y. & Weill, J. (1981 b). Quatemary structure of Androctonus australis hemocyanin. In Invertebrate Oxygen Binding Proteins: Structure, Active Site and Function (ed. Lamy, J. and Lamy, J.), pp. 425444. New York: Marcel Dekker.Google Scholar
Larrabee, J. A. & Spiro, T. G. (1980). Structural studies of the hemocyanin active site. II. Resonance Raman-spectroscopy. J. Am. chem. Soc. 102, 42174223.CrossRefGoogle Scholar
Larson, B. A., Terwilliger, N. B. & Terwilliger, R. C. (1981). Subunit heterogeneity of Cancer magister hemocyanin. Biochim. biophys. Acta. 667, 294302.CrossRefGoogle ScholarPubMed
Luffer, M. & Swaby, L. G. (1955). The size, shape, and hydration of lobster hemocyanin. Biol. Bull, mer. biol. Lab. Woods Hole 108, 290295.CrossRefGoogle Scholar
Lerch, K. (1976). Neurospora tyrosinase: molecular weight, copper content and spectral properties. FEBS Letts. 69, 157160.CrossRefGoogle ScholarPubMed
Lijnan, H. J., Witters, R. & Lontie, R. (1978). The reaction of azide with Limulus polyphemus met haemocyanin. FEBS Letts. 88, 358361.CrossRefGoogle Scholar
Linzen, B., Angersbach, D., Loewe, R., Markl, J., Schmid, R. (1977). Spider hemocyanins: Recent advances in the study of their structure and function. In Structure and Function of Haemocyanin (ed. Bannister, J. V.), pp. 271278. Berlin: Springer-Verlag.Google Scholar
Loehr, J. S. & Mason, H. S. (1973). Dimorphism of Cancer magister hemocyanin subunits. Biochem. biophys. Res. Commun. 51, 741745.CrossRefGoogle ScholarPubMed
Loehr, J. S., Freedman, T. B. & Loehr, T. M. (1974). Oxygen binding to hemocyanin: A resonance Raman spectroscopic study. Biochem. biophys. Res. Commun. 56, 510515.CrossRefGoogle ScholarPubMed
Loewe, R. & Linzen, B. (1975). Haemocyanins in spiders. II. Automatic recording of oxygen binding curves, and the effect of Mg2+ on oxygen affinity, cooperativity, and subunit association of Cupiennius salei hemocyanin. J. comp. Physiol. 98, 147156.CrossRefGoogle Scholar
Loewe, R., Schmid, R. & Linzen, B. (1977). Subunit association and oxygen binding properties in spider hemocyanins. In Structure and Function of Haemocyanin (ed. Bannister, J. V.), pp. 5054. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Lontie, R. & Witters, R. (1966). Helix pomatia hernocyanins. In The Biochemistry of Copper (ed. Peisach, J., Aisen, P. and Blumberg, W. E.), pp. 455463. New York: Academic Press.Google Scholar
Lontie, R. & Witters, R. (1973). Hemocyanin. In Inorganic Biochemistry (ed. Eichorn, G. L.), pp. 344358. Amsterdam: Elsevier.Google Scholar
Lontie, R., DeLay, M., Robberecht, H. & Witters, R. (1973). Isolation of small functional subunits of Helix pomatia haemocyanin after subtilisin treatment. Nature New Biol. 242, 180182.CrossRefGoogle ScholarPubMed
Lontie, R., Vanquickenborne, L. (1974). The role of copper in hemocyanins. In Metal Ions in Biological Systems. Vol. III. High Molecular Complexes (ed. Sigel, H.), pp. 182200. New York: Marcel Dekker.Google Scholar
Lontie, R. & Gielens, C. (1979). Molluscan and arthropod hemocyanins. In Metalloproteins (ed. Weser, U.), pp. 6272. Stuttgardt: Thieme.Google Scholar
Lykkeboe, G., Brix, O. & Johansen, K. (1980). Oxygen-linked CO2, binding independent of pH in cephalopod blood. Nature 287, 330331.CrossRefGoogle ScholarPubMed
McIntosh, T. S., Robertson, J. D., Ting-Beall, H. P., Walter, A. & Zampighi, G. (1980). On the structure of the hemocyanin channel in lipid bilayers. Biochim. biophys Acta 601, 289301.CrossRefGoogle ScholarPubMed
Magnus, K. A. (1980). Crystal structure of Limulus. II. Hemocyanin subunit. Ph.D. Thesis, Johns Hopkins Univ.Google Scholar
Makino, N. (1971). Hemocyanin from Dolabella auricularia. J. Biochem. 70, 149155.CrossRefGoogle ScholarPubMed
Makino, N., McMahill, P., Mason, H. S. & Moss, T. H. (1974). The oxidation state of copper in resting tyrosinase. J. biol. Chem. 249, 60626066.CrossRefGoogle ScholarPubMed
Mangum, C. P. (1980). Respiratory function of the hemocyanins. Am. Zool. 20, 1938.CrossRefGoogle Scholar
Mangum, C. P. (1981). The influence of inorganic ions and pH on HcO2, transport systems. In Invertebrate Oxygen Binding Proteins: Structure, Active Site, and Function (ed. Lamy, J. and Lamy, J.). New York: Marcel Dekker.Google Scholar
Mangum, C. P. (1982). Oxygen transport in the blood. In Biology of Crustacea, vol. II. (ed. Mantel, L. H.). New York: Academic Press. (In the Press.)Google Scholar
Mangum, C. P., Freadman, M. A. & Johansen, K. (1975). The quantitative role of hemocyanin in aerobic respiration of Limulus polyphemus. J. exp. Zool. 191, 279285.CrossRefGoogle ScholarPubMed
Mangum, C. P. & Johansen, K. (1975). The colloid osmotic pressures of the body fluids of invertebrates. J. exp. Biol. 63, 661671.CrossRefGoogle Scholar
Mangum, C. P. & Weiland, A. L. (1975). The function of hemocyanin in respiration of the blue crab Callinectes sapidus. J. exp. Zool. 193, 257264.CrossRefGoogle ScholarPubMed
Mangum, C. P. & Lykkeboe, G. (1979). The influence of inorganic ions and pH on oxygenation properties of the blood in the gastropod mollusc Busycon canaliculatum. J. exp. Zool. 207, 417430.CrossRefGoogle Scholar
Mangum, C. P. & Polites, G. (1980). Oxygen uptake and transport in the prosobranch mollusc Busycon canaliculatum. I. Gas exchange and the response to hypoxia. Biol. Bull. mar. biol. Lab. Woods Hole 158, 7790.CrossRefGoogle Scholar
Markl, J. (1980). Hemocyanins in spiders. XI. The quaternary structure of Cupiennius hemocyanin. J. comp. Physiol. 140B, 199207.CrossRefGoogle Scholar
Markl, J., Markl, A., Schartau, W. & Linzen, B. (1979 a). Subunit heterogeneity in arthropod hemocyanins. I. Chelicerata. J. comp. Physiol. 130, 283292.CrossRefGoogle Scholar
Markl, J., Hofer, A., Bauer, G., Markl, A., Kempter, B., Renzinger, M. & Linzen, B. (1979 b). Subunit heterogeneity in arthropod hemocyanins. II. Crustacea. J. comp. Physiol. 133, 167175.CrossRefGoogle Scholar
Markl, J., Decker, H., Stöcker, W., Savel, A., Linzen, B., Schutter, W. G. & Van, Bruggen E. F. J. (1981). On the role of dimeric subunits in the quaternary structure of arthropod hemocyanins. Hoppe-Seyler's Z. physiol. Chem. 362, 185188.Google ScholarPubMed
Marlborough, D. I., Jeffrey, P. D. & Treacy, G. B. (1981). Aggregation patterns in Cherax destructor hemocyanin: Control of oligomer distribution by incorporation of specific subunits. Biochemistry 20, 48164821.CrossRefGoogle ScholarPubMed
Mason, H. S. (1965). Oxidases. A. Rev. Biochem. 34, 595634.CrossRefGoogle ScholarPubMed
Mellema, J. E. & Klug, A. (1972). Quaternary structure of gastropod hemocyanin. Nature, Lond. 239, 145150.CrossRefGoogle Scholar
Menestrini, G. & Antolini, R. (1979). A different kind of hemocyanin channel in oxidized cholesterol membranes. Biochem. biophys. Res. Comm. 88, 433439.CrossRefGoogle Scholar
Messenger, J. B., Muzii, E. O., Nardi, G. & Steinberg, H. (1974). Haemocyanin synthesis and the branchial gland of Octopus. Nature, Lond. 250, 154155.CrossRefGoogle ScholarPubMed
Miller, K. I. & Van, Holde K. E. (1974). Oxygen binding by Callianassa californiensis hemocyanin. Biochemistry 13, 16681674.CrossRefGoogle ScholarPubMed
Miller, K. I., Eldred, N. W., Arisaka, F. & Van, Holde K. E. (1977). Structure and function of hemocyanin from thalassinid shrimp. J. comp. Physiol. 115B, 171184.CrossRefGoogle Scholar
Miller, K. I. & Van, Holde K. E. (1981 a). The effect of environmental variables on the structure and function of hemocyanin from Callianassa californiensis. I. Oxygen binding. J. comp. Physiol. 143B, 253260.CrossRefGoogle Scholar
Miller, K. I. & Van, Holde K. E. (1981 b). The effect of environmental variables on the structure and function of hemocyanin from Callianassa californiensis. II. Subunit association—dissociation equilibrium. J. comp. Physiol. 143, 261267.CrossRefGoogle Scholar
Monod, J., Wyman, J. & Changeaux, J. P. (1965). On the nature of allosteric transition: a plausible model. J. molec. Biol. 12, 88118.CrossRefGoogle ScholarPubMed
Moons, C. H., Henderson, R. W., Nichol, L. W. (1968). An examination of the polymerization behavior of Jasus lalandii hemocyanin and its relation to allosteric binding of oxygen. Biochemistry 7, 40784085.Google Scholar
Morimoto, K. & Kegeles, G. (1971). Subunit interactions of lobster hemocyanin. I. Ultracentrifuge studies. Archs Biochem. Biophys. 142, 247257.CrossRefGoogle ScholarPubMed
Moss, T. H., Gould, D. C., Ehrenberg, A., Loehr, J. S., Mason, H. S. (1973). Magnetic properties of Cancer magister hemocyanin. Biochemistry 12, 24442449.CrossRefGoogle ScholarPubMed
Murray, A. C., Jeffrey, P. D. (1974). Hemocyanin from the Australian freshwater crayfish Cherax destructor. Subunit heterogeneity. Biochemistry 13, 36673671.CrossRefGoogle ScholarPubMed
Nickerson, K. W. & Van, Holde K. E. (1971). A comparison of molluscan and arthropod hemocyanins. I. Circular dichroism and absorption spectra. Comp. Biochem. Physiol. 39B, 855872.Google Scholar
Ochs, R. L., Ochs, D. C. & Burton, P. R. (1980). Axons of crayfish nerve cord contain intracellular hemocyanin. (Abstract). J. Cell. Biol. 87, 73.Google Scholar
Omura, T., Fujita, T., Yamada, F. & Yamamoto, S. (1961). Hemocyanin of Ommatostrephes sloani pacificus. J. Biochem. 50, 400404.CrossRefGoogle ScholarPubMed
Orgel, L. E. (1958). Enzyme-metal-substrate complexes as coordination compounds. Biochem. Soc. Symp. 15, 820.Google Scholar
Pant, H. C. & Couran, P. (1972). Keyhole limpet hemocyanin (KLH) - lipid bilayer membrane (BLM) interaction. J. Membrane Biol. 8, 357362.CrossRefGoogle Scholar
Pearson, J. S. & Wood, E. J. (1974). Attempts to obtain small functional subunits of the haemocyanins from Buccinum undatum and Neptunea antiqua. Biochem. Soc. Trans. 2, 333336.CrossRefGoogle Scholar
Pickett, S. M., Riggs, A. F., Larimer, J. L. (1966). Lobster hemocyanin: Properties of the minimal functional subunit and of aggregates. Science 151 10051007.CrossRefGoogle Scholar
Pilz, I., Engelborghs, Y., Witters, R. & Lontie, R. (1974). Studies by X-ray small-angle scattering of the quaternary structure in solution of halves and tenths of Helix pomatia haemocyanin and of Sepia officinalis haemocyanin. Eur. J. Biochem. 42, 195202.CrossRefGoogle ScholarPubMed
Pilz, I., Goral, K., Hoylaerts, M., Witters, R. & Lontie, R. (1980). Studies by small-angle X-ray scattering of the quaternary structure of the 24S component of the haemocyanin of Astacus leptodactylus in solution. Eur. J. Biochem. 105, 539543.CrossRefGoogle ScholarPubMed
Préaux, G., Gielens, C. & Lontie, R. (1979). Immunological comparison of molluscan hemocyanins. In Metalloproteins (ed. Weser, U.), pp. 7380. Stuttgardt: Thieme.Google Scholar
Préaux, G., Gielens, C., Verschueren, L. J. & Lontie, R. (1981 a). Immunological comparison of the hemocyanins of Helix pomatia and of the proteolytic fragments of the βc componen. In Invertebrate Oxygen Binding Proteins: Structure, Active Site, and Function (eds. Lamy, J. and Lamy, J.), pp. 197206. New York: Marcel Dekker.Google Scholar
Préaux, G., Vanderbeke, E., Marbaix, G. & Lontie, R. (1981 b). Isolation of the mRNA of Loligo vulgaris haemocyanin and its translation in Xenopus oocytes. 14th FEBS Meeting (Abstract).CrossRefGoogle Scholar
Prosser, C. L. (1973). Comparative Animal Physiology. Philadelphia: W. B. Saunders.Google Scholar
Quitter, S., Watts, L. A., Crosby, C. & Roxby, R. (1978 a). Molecular weights of aggregation states of Busycon hemocyanin. J. biol. Chem. 253, 525530.CrossRefGoogle ScholarPubMed
Quitter, S., Watts, L. A. & Roxby, R. (1978 a). Molecular properties of Busycon hemocyanin-SDS complex with reference to its usefulness as a high molecular-weight standard. Analyt. Biochem. 89, 187195.Google Scholar
Rajulu, G. S. (1969). Presence of haemocyanin in the blood of a centipede Scutigera longicornis (Chilopoda: Myriapoda). Curr. Sci. 38, 168169.Google Scholar
Redfield, A. C., Coolidge, T., Montgomery, H. (1928). The respiratory proteins of the blood. II. The copper-combining ratio of oxygen and copper in some bloods containing hemocyanin. J. biol. Chem. 76, 197205.CrossRefGoogle Scholar
Redmond, J. R. (1968). The respiratory functions of hemocyanin. In Physiology and Biochemistry of Hemocyanin (ed. Ghiretti, F.), pp. 523. New York: Academic Press.Google Scholar
Redmond, J. R. (1978). Bohr effect of the hemocyanin of the pearly nautilus, Nautilus macromphalus. Spec. Sci. Tech. I, 325328.Google Scholar
Robinson, H. A. & Ellerton, H. D. (1977). Heterogeneous subunits of the hemocyanins from Jasus edwardsii and Ovalipes catharus. In Structure and Function of Haemocyanin (ed. Bannister, J. V.), pp. 5570. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Rochu, D. & Lambin, P., Ghidalia, W. & Fine, J. M. (1978). Hemocyanin subunits and their polymeric forms in some decapod crustacea. Comp. Biochem. Physiol. 59B, 117122.Google Scholar
Root, A. (1934). The combination of carbon monoxide with hemocyanin. J. biol. Chem. 104, 239244.CrossRefGoogle Scholar
Roxby, R., Miller, K. I., Blair, D. & Van, Holde K. E. (1974). Subunits and association equilibria of Callianassa californiensis hemocyanin. Biochemistry 13, 16621668.CrossRefGoogle ScholarPubMed
Rutledge, P. S. (1981). Temperature acclimation response of crayfish hemocyanin. Am. J. Physiol. 240, 9398.Google ScholarPubMed
Ryan, M. C. (1980). Characterization and subunit structure of the hemocyanin of a polyplacophoran, Katherina tunicata (Wood). M.S. Thesis, University of Oregon.Google Scholar
Salvato, B., Sartore, S., Rizzotti, M. & Ghirett-Magaldi, A. (1972). Molecular weight determination of polypeptide chains of molluscan and arthropod hemocyanins. FEBS Lett. 22, 57.CrossRefGoogle ScholarPubMed
Salvato, B. & Ricchelli, F. (1977). The minimal subunit of arthropod hemocyanin. In Structure and Function of Haemocyanin (ed. Bannister, J. V.), pp. 113121. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Salvato, B. & Tallandini, L. (1977). Oxygen-binding of associated and dissociated Octopus vulgaris hemocyanin. In Structure and Function of Haemocyanin (ed. Bannister, J. V.), pp. 217230. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Salvato, B. & Zatta, P. (1978). The binding capacity of hemocyanins of sodium dodecylsulfate. Comp. Biochem. Physiol. 60B, 107109.Google Scholar
Salvato, B., Ghiretti-Magaldi, A. & Ghiretti, F. (1979). Hemocyanin of Octopus vulgaris. Molecular weight of the minimal functional subunit in 3M-urea. Biochemistry 18, 27312736.CrossRefGoogle Scholar
Schmekel, L. & Weischner, M. (1973). Die blutchüse der Doridoides (Gastropoda, Opisthobranchia) als ort möglicher Haemocyanin-synthese. Z. Morphol. Okol Tiere 76, 261264.CrossRefGoogle Scholar
Schneider, H. J., Schartau, W., Linzen, B. & Lottspeich, F. (1980). Hemocyanins in spiders. X. Limited proteolysis of chain-e of Eurypelma hemocyanin and partial sequence of two large fragments. Hoppe-Seyler's Z. Physiol. Chem. 361, 12111216.CrossRefGoogle ScholarPubMed
Schoot-Uiterkamp, A. J. M. (1972). Monomer and magnetic dipole-coupled Cu2+ EPR signals in nitrosyl hemocyanin. FEBS Letts. 20, 9396.CrossRefGoogle Scholar
Schoot-Uiterkamp, A. J. M., Van, Der Dean H., Berendsen, H. C. J. & Boas, J. F. (1974). Computer simulation of the EPR spectra of mononuclear and dipolar coupled Cu(II) ions in nitricoxide — and nitrite-treated hemocyanins and tyrosinase. Biochim. biophys. Acta 372, 407425.CrossRefGoogle Scholar
Shaklai, N., Klarman, A. & Daniel, E. (1975). Oxygen binding by hemocyanin from Levantina hierosolima. II. Interpretation of cooperativity in terms of ligand—ligand linkage. Biochemistry 14, 105108.CrossRefGoogle ScholarPubMed
Siezen, R. J. (1974). Structure and properties of hemocyanins. XIV. Reassociation of Helix pomatia α-hemocyanin. J. molec. Biol. 90, 103113.CrossRefGoogle ScholarPubMed
Siezen, R. J. & Van, Driel R. (1973). Structure and properties of hemocyanins. VIII. Microheterogeneity of α-hemocyanins of Helix pomatia. Biochim. biophys. Acta 295, 131139.CrossRefGoogle Scholar
Siezen, R. J. & Van, Driel R. (1974). Structure and properties of hemocyanin. XIII. Dissociation of Helix pomatia α-hemocyanin at alkaline pH. J. molec. Biol. 90, 91102.CrossRefGoogle ScholarPubMed
Siezen, R. J. & Van, Bruggen E. F. J. (1974). Structure and properties of hemocyanin. XII. Electron microscopy of dissociation products of Helix pomatia α-hemocyanin: Quaternary structure. J. molec. Biol. 96, 7780.CrossRefGoogle Scholar
Simo, C. (1966). Studies on the active center in Cancer magister hemocyanin. Ph.D. Thesis, University of Oregon Medical School.Google Scholar
Sminia, T. (1977). Hemocyanin-producing cells in gastropod molluscs. In Structure and Function of Haemocyanin (ed. Bannister, J. V.), pp. 279287. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Sminia, T. & Boer, H. H. (1973). Hemocyanin production in pore cells of the freshwater snail Lymnaea stagnalis. Z. Zellforsch 145, 443445.CrossRefGoogle ScholarPubMed
Solomon, E. I., Dooley, D. M., Wang, R.-H., Gray, H. B., Cerdonio, M., Mogno, F. & Romani, G. L. (1975). Susceptibility studies of laccase and oxyhemocyanin using an ultrasensitive magnetometer. Antiferromagnetic behaviour of the type 3 copper in Rhus laccase. J. Am. chem. Soc. 98 10291031.CrossRefGoogle Scholar
Spoek, G. L., Bakker, H. & Wolvekamp, H. P. (1965). Experiments on the haemocyanin-oxygen equilibrium of the blood of the edible snail (Helix pomatia). Comp. Biochem. Physiol. 12, 209221.CrossRefGoogle Scholar
Sugita, H. & Sekiguchi, K. (1975). Heterogeneity of the minimal functional unit of hemocyanins from the spider (Argiope bruennichii), the scorpion (Heterometrus sp.) and the horseshoe crab (Tachypleus tridentatus). J. Biochem. 78, 713718.CrossRefGoogle Scholar
Sugita, H. & Sekiguchi, K. (1980). Amino acid composition of hemocyanin monomers from the horseshoe crab, Tachypleus tridentatus. Experientia 36, 10271028.CrossRefGoogle Scholar
Sullivan, B., Bonaventura, J. & Bonaventura, C. (1974). Functional differences in the multiple hemocyanins of the horseshoe crab, Limulus polyphemus. Proc. natn. Acad. Sci. U.S.A. 71, 25582562.CrossRefGoogle ScholarPubMed
Svedberg, T. (1933). Sedimentation constants, molecular weights, and isoelectric points of the respiratory proteins. J. biol. Chem. 103, 311325.CrossRefGoogle Scholar
Svedberg, T. & Pedersen, K. O. (1940). The Ultracentrifuge. London: Oxford Univ. Press.Google Scholar
Tai, M.-S. & Kegeles, G. (1971). Subunit interactions of lobster hemocyanin. II. Temperature-jump kinetics. Archs Biochem. Biophys. 142, 258267.Google Scholar
Tai, M. S., Kegeles, G. & Kehuang, C. H. (1977). Relaxation kinetics of Helix pomatia alpha-hemocyanin whole-half molecule reaction at pH 5·7 in 0·4 mNaC1. Archs Biochem. Biophys. 180, 537542.CrossRefGoogle Scholar
Taki, I. (1964). On the morphology and physiology of the branchial gland in the Cephalopoda. J. Fac. Fish. Anim. Husb. Hiroshima Univ. 5, 345417.Google Scholar
Terwilliger, N. B., Terwilliger, R. C., Applestein, M., Bonaventura, C. & Bonaventura, J. (1979). Subunit structure and oxygen binding by hemocyanin of the isopod Ligia exotica. Biochemistry 18, 102108.CrossRefGoogle ScholarPubMed
Terwilliger, N. B. & Terwilliger, R. C. (1980). Developmental changes in Cancer magister hemocyanin. (Abstract). Am. Zool. 20, 907.Google Scholar
Terwilliger, R. C. (1980). Structures of invertebrate hemoglobins. Am. Zool. 20, 5367.CrossRefGoogle Scholar
Thannan, T. J., Loehr, J. S. & Loehr, T. M. (1977). Resonance Raman study of oxyhemocyanin with unsymmetrically labelled oxygen. J. Am. chem. Soc. 99, 41874189.CrossRefGoogle Scholar
Thomson, L. C. G., Hines, M. & Mason, H. S. (1959). On the binding of copper by hemocyanin. Archs Biochem. Biophys. 83, 8895.CrossRefGoogle ScholarPubMed
Tiselius, A. & Horsfall, F. L Jr. (1939). Electrophoretic technique. I. Electrophoresis of hemocyanins. Ark. Miner. Geol. 13A, (18) 20 pp.Google Scholar
Truchot, J.-P. (1973). Action spécifique du dioxyde carbone sur l'affinité pour l'oxygène de l'hèmocyanine de Carcinus maenas (L.) (Crustacé Décapode Brachyoure). C.r. hebd. Séanc. Acad. Sci., Paris. 276 29652968.Google Scholar
Truchot, J.-P. (1980). Lactate increases the oxygen affinity of crab hemocyanin. J. exp. Zool. 214, 205208.CrossRefGoogle Scholar
Van, Breemen J. F. L., Wichterjes, T., Muller, M. F. J., Van, Driel R. & Van, Bruggen E. F. J. (1975). Tubular polymers derived from Helix pomatia β-hemocyanin. Eur. J. Biochem. 60, 129135.Google Scholar
Van, Breemen J. F. L., Ploegman, J. H. & Van, Bruggen E. F. J. (1979). Structure of Helix pomatia oxy-β-hemocyanin and deoxy β-hemocyanin tubular polymers. Eur. J. Biochem. 100, 6165.Google Scholar
Van, Bruggen E. F. J. (1978). Electron microscopy of hemocyanins from arthropods and molluscs: assembly, dissociation and reassembly. Ninth Inter. Cong. on Electron Microscopy, Toronto. vol. 13, pp. 450458.Google Scholar
Van, Der Berg A. A., Gaastra, W. & Kuiper, H. A. (1977). Heterogeneity of Panulirus interruptus hemocyanin. In Structure and Function of Haemocyanins (ed. Bannister, J. V.). pp. 612. Berlin: Springer-Verlag.Google Scholar
Van, Der Deen H. & Hoving, H. (1977). Nitrite and nitric oxide treatment of Helix pomatia hemocyanin. Single and double oxidation of the active site. Biochemistry 16, 35193525.Google Scholar
Van, Driel R. (1973). Oxygen binding and subunit interactions in Helix pomatia hemocyanin. Biochemistry 12, 26962698.Google Scholar
Van, Driel R. (1974). Relationship between structure and function of Helix pomatia α-hemocyanin. Ph.D. Thesis, University of Groningen.Google Scholar
Van, Driel R. & Van, Bruggen E. F. J. (1974). Oxygen linked association–dissociation of Helix pomatia hemocyanin. Biochemistry 13, 40794083.Google Scholar
Van, Driel R. & Van, Bruggen E. F. J. (1975). Functional properties of chemically modified hemocyanin. Fixation of hemocyanin in the low and the high oxygen affinity state by reaction with a bifunctional imido ester. Biochemistry 14, 730735.Google Scholar
Van, Driel R., Kuiper, H. A., Antonini, E. & Brunori, M. (1978). Kinetics of the cooperative reaction of Helix pomatia hemocyanin with oxygen. Oxygen binding at low and intermediate oxygen saturations. J. molec. Biol. 121, 431439.Google Scholar
Van, Heel M. (1981). Image formation and image analysis in electron microscopy. Ph.D. Thesis, University of Groningen.Google Scholar
Van, Heel M. & Frank, J. (1980). Classification of particles in noisy electron micrographs using corresponding analysis. In Pattern Recognition in Practice (ed. Gelsema, E. S. and Kanal, L. N.). Amsterdam: North Holland.Google Scholar
Van, Holde K. E. (1967). Physical studies of hemocyanins. III. Circular dichroism and absorption spectra. Biochemistry 6, 9399.Google Scholar
Van, Holde K. E. & Cohen, L. B. (1964 a). The dissociation and reassociation of Loligo paelei hemocyanin. Brookhaven Symp. Biol. 17, 184193.Google Scholar
Van, Holde K. E. & Cohen, L. B. (1964 b). Physical studies of hemocyanins. I. Characterization and subunit structure of Loligo paelei hemocyanin. Biochemistry 13, 18031808.Google Scholar
Van, Holde K. E. & Van, Bruggen E. F. J. (1971). The Hemocyanins. In Biological Macromolecules, vol. 5, pt. A (ed. Timasheff, S. N. and Fasman, G. D.), pp. 155. New York: Marcel Dekker.Google Scholar
Van, Holde K. E., Blair, D., Eldred, N. & Arisaka, F. (1977). Association equilibria of Callianassa hemocyanin. In Structure and Function of Haemocyanin (ed. Bannister, J. V.), pp. 2230. Berlin: Springer-Verlag.Google Scholar
Van, Holde K. E. & Brenowitz, M. (1981). Subunit structure and physical properties of the hemocyanin of the giant isopod Bat hynomus giganteus. Biochemistry 20, 52325239.Google Scholar
Van, Schaick E. J. M., Schutter, W. G., Gaykema, W. P. J., Van, Bruggen E. F. J. & Hol, W. G. J. (1981). The crystal structure of the hemocyanin hexamer from Panulirus interruptus at 0·5 nm resolution. In Invertebrate Oxygen Binding Proteins: Structure, Active Site and Function (ed. Lamy, J. and Lamy, J.), pp. 353362. New York: Marcel Dekker.Google Scholar
Verplaeste, J., Van, Tornout P., Defreyn, G., Witters, R. & Lontie, R. (1979). The reaction of nitrogen monoxide and of nitrite with deoxyhaemocyanin and met haemocyanin of Helix pomatia. Eur. J. Biochem. 95, 327331.CrossRefGoogle Scholar
Verschueren, L. J., De, Sadeleer J., Gielens, C. & Lontie, R. (1981). Plasminolysis of the two polypeptide chains of the - hemocyanin of Helix pomatia. In Invertebrate Oxygen Binding Proteins: Structure, Active Site and Function (ed. Lamy, J. and Lamy, J.), pp. 285294. New York: Marcel Dekker.Google Scholar
Waxman, L. (1975). The structure of arthropod and mollusc hemocyanins. J. biol. Chem. 250, 37963801.CrossRefGoogle ScholarPubMed
Witters, R. & Lontie, R. (1975). The formation of Helix pomatia met haemocyanin accelerated by azide and fluoride. FEBS Lett. 60, 400403.CrossRefGoogle Scholar
Wolf, G., Witters, R., Decleir, W. & Lontie, R. (1980). Immunological evidence for haemocyanin-related proteins in mature eggs and embryos of Sepia officinalis L. Arch. int. Physiol. Biochim. 88, 254.Google Scholar
Wood, E. J. (1973). Gastropod haemocyanins: Dissociation of haemocyanins from Buccinum undatum, Neptunea antiqua and Colus gracilus in the region pH 7·5–9·2. Biochim. biophys. Acta 328, 101106.CrossRefGoogle Scholar
Wood, E. J. (1980). The oxygen transport and storage proteins of invertebrates. Essays Biochem. 16, 147.Google ScholarPubMed
Wood, E. J., Bannister, W. H., Oliver, C. J., Lontie, R. & Witters, R. (1971). Diffusion coefficients, sedimentation coefficients, and molecular weights of some gastropod hemocyanins. Comp. Biochem. Physiol. 40B, 1924.Google Scholar
Wood, E. J. & Peacocke, A. R. (1973). Murex trunculus haemocyanin. i. Physical properties and pH-induced dissociation. Eur. J. Biochem. 35, 410420.CrossRefGoogle ScholarPubMed
Wood, E. J. & Daloleish, D. G. (1973). Murex trunculus haemocyanin. 2. The oxygenation reaction and circular dichroism. Eur. J. Biochem. 35, 421427.CrossRefGoogle ScholarPubMed
Wood, E. J. & Mosby, L. J. (1977 a). Fragments resulting from the limiting proteolytic digestion of a mollusc hemocyanin. Biochem. Soc. Trans. 5, 694696.CrossRefGoogle Scholar
Wood, E. J. & Mosby, L. J. (1977 b). The haemocyanin from the river snail Viviparus viviparus (L.): Some properties and subunit structure. Biochem. Soc. Trans. 5, 696698.CrossRefGoogle ScholarPubMed
Wood, E. J., Cayley, G. R. & Pearson, S. J. (1977). Oxygen binding by the haemocyanin from Buccinum undulatum. J. molec. Biol. 109, 111.CrossRefGoogle Scholar
Wood, E. J., Siggens, K. W., Hall, R. L., Orton, J. M. (1979). Isolation of poly (adenosine) containing ribonucleic acid from the tissues of gastropod molluscs, and its translation in a heterologous system. Biochem. Soc. Trans. 7, 389390.CrossRefGoogle Scholar
Wood, E. J. & Bonaventura, J. (1981). Identification of Limulus polyphemus haemocyanin messenger RNA. Biochem. J. 196 653656.CrossRefGoogle ScholarPubMed
Wyman, J. (1964). Linked functions and reciprocal effects in hemocyanin. A second look. Adv. Protein Chem. 19, 223286.CrossRefGoogle Scholar
Young, R. E. (1972). The physiological ecology of haemocyanin in some selected crabs. I. The characteristics of haemocyanin in a tropical population of the blue crab Callinectes sapidus Rathbun. J. Exp. Mar. Biol. & Ecol. 10, 183192.CrossRefGoogle Scholar
Zolla, L., Kuiper, H. A., Vecchini, P., Antonini, E. & Brunori, M. (1978). Dissociation and oxygen binding behavior of β- hemocyanin from Helix pomatia. Eur. J. Biochem. 87, 467473.CrossRefGoogle ScholarPubMed