Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T11:38:16.590Z Has data issue: false hasContentIssue false

Enzymic modification of environmental intoxicants: the role of cytochrome P–450

Published online by Cambridge University Press:  17 March 2009

W. E. Blumberg
Affiliation:
Bell Laboratories Murray Hill, N.J. 07974

Extract

As of November 1977, the American Chemical Society's Chemical Abstracts Service computer registry of chemicals contained 4039907 distinct entities, and has been growing at an average rate of about 6000 per week. How many of these chemicals are in everyday use? Current estimates from the Environmental Protection Agency indicate that there may be as many as 50000 commonly used chemicals, not including pesticides, pharmaceuticals, and food additives. The EPA estimates that there may be as many as 1500 different active ingredients in pesticides. The Food and Drug Administration estimates that there are about 4000 active ingredients in drugs and about 2000 other ancillary compounds used in the drug industry. The FDA also estimates that there are about 2500 additives used for nutritional value and flavouring and 3000 chemicals used to preserve processed food. Thus there seem to be about 63000 chemicals in common use.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alvares, A. P., Schilling, G. R.Kuntzman, R. (1968). Differences in the kinetics of benzpyrene hydroxylation by hepatic drug-metabolizing enzymes from phenobarbital and 3-methylcholanthrene-treated rats. Biochem. biophys. Res. Commun. 30, 588593.CrossRefGoogle ScholarPubMed
Alvares, A., Bickers, D. R. & Kappas, A. (1973). Polychlorinated biphenyls: a new type of inducer of cytochrome P-448 in the liver. Proc. natn. Acad. Sci. U.S.A. 70, 13211325.Google Scholar
Alvares, A. P. & Kappas, A. (1975). Induction of aryl hydrocarbon hydroxylase by polychiorinated biphenyls in the foeto-placental unit and neonatal livers during lactation. FEBS Lett. 50, 172174.Google Scholar
Arias, I. M. (1975). Biotransformation in the liver of the fetus and newborn. In Drugs and the Liver (ed. Gerok, W. and Sickinger, W.), pp. 165172. Stuttgart: Schattauer.Google Scholar
Bekesi, J. G., Holland, J. F., Anderson, H. A., Fischbein, S. A., Rom, W., Wolff, M. S. & Selikoff, I. J. (1978). Lymphocyte function of Michigan dairy farmers exposed to polybrominated biphenyls. Science, N.Y. 199, 12071209.CrossRefGoogle ScholarPubMed
Bend, J. R., James, M. O. & Dansette, P. M. (1977). In vitro metabolism of xenobiotics in some marine animals. Ann. N. Y. Acad. Sci. 298, 505521.CrossRefGoogle Scholar
Bickers, D. R., Eiseman, J., Kappas, A. & Alvares, A. P. (1975). Microscope immersion oils: effects of skin application on cutaneous and hepatic drug-metabolizing enzymes. Biochem. Pharmacol. 24, 779783.CrossRefGoogle ScholarPubMed
Bingham, E., Niemeier, R. W. & Reid, J. B. (1976). Multiple factors in carcinogenesis. Ann. N.Y. Acad. Sci. 271, 1421.CrossRefGoogle ScholarPubMed
Bradlow, H. L., Zumoff, B., Fukushima, D. K., Hellman, L., Bickers, D. R., Alvares, A. P. & Kappas, A. (1973). Drug-induced alterations of steroid hormone metabolism in man. Ann. N.Y. Acad. Sci. 212, 148154.CrossRefGoogle ScholarPubMed
Carlson, G. P. (1977). Halogenated benzenes, effect on xenobiotic metabolism and the toxicity of other chemicals. Ann. N.Y. Acad. Sci. 298, 159169.CrossRefGoogle Scholar
Clark, D. R., LaVal, P. K. & Swineford, D. M. (1978). Dieldrin-induced mortality in an endangered species, the Gray Bat (Myotis grisescens). Science, N.Y. 199, 13571359.CrossRefGoogle Scholar
Conney, A. H. (1967). Pharmacological implications of microsomal enzyme induction. Pharmac. Rev. 19, 317366.Google ScholarPubMed
Conney, A. H. (1971). Environmental factors influencing drug metabolism. In Fundamentals of Drug Metabolism and Drug Disposition (ed. Du, B. N. La, Mandel, H. G. and Way, E. L.), pp. 253278. Baltimore: Williams and Wilkins.Google Scholar
Dewhurst, F. (1963). The effect of stress upon the metabolism of 2-naphthylamine in mice. Experientia 19, 646664.CrossRefGoogle Scholar
Dowty, B., Carlisle, D., Lasete, J. L. & Storer, J. (1975). Halogenated hydrocarbons in New Orleans drinking water and blood plasma. Science, N.Y. 187, 7577.CrossRefGoogle ScholarPubMed
Dyte, C. E. (1967). Possible new approach to the chemical control of plant feeding insects. Nature 216, 298.CrossRefGoogle Scholar
Estabrook, R. W., Mason, J. I., Baron, J., Lambeth, D. & Waterman, M. (1973). Drugs, alcohol and sex hormones: a molecular perspective of the receptivity of cytochrome P-450. Ann. N.Y. Acad. Sci. 212, 2747.CrossRefGoogle ScholarPubMed
Falk, H. L., Thompson, S. J. & Kotin, P. (1965). Carcinogenic potential of pesticides. Archs. envir. Hlth. 10, 847858.CrossRefGoogle ScholarPubMed
Garfinkel, D. (1958). Pig liver microsomes. Enzymatic and pigment composition of different microsomal fractions. Archs. Biochem. Biophys. 77, 493509.CrossRefGoogle Scholar
Gelboin, H. V., Selkirk, J., Okuda, T., Nemoto, N., Yang, S. K., Weibel, F. J., Whitlock, J. P., Rapp, H. J. & Bart, R. C. (1977). Benzo[a]pyrene metabolism – enzymatic and liquid chromatographic analysis. In Biological Reactive Intermediates (ed. Jollow, D. J., Kocsis, J. J., Snyder, R. and Vanio, H.), pp. 98123. New York: Plenum Press.CrossRefGoogle Scholar
Greim, H., Trülzsch, P. C., Hutterer, F., Schaffner, F. & Popper, H. (1973). Bile acid formation by liver microsomal systems. Ann. N.Y. Acad. Sci. 212, 139147.CrossRefGoogle ScholarPubMed
Hammond, E. C., Selikoff, I. J., Lawther, P. L. & Seidman, H. (1977). Inhalation of benzpyrene and cancer in man. Ann. N. Y. Acad. Sci. 271, 116124.Google Scholar
Haugen, D. A., Van, Der Hoeven T. & Coon, M. J. (1975). Purified liver microsomal cytochrome P-450. J. biol. Chem. 250, 35673570.CrossRefGoogle ScholarPubMed
Hites, R. A., Laflamme, R. E. & Farrington, J. W. (1977). Sedimentary polycyclic aromatic hydrocarbons: the historical record. Science, N.Y. 198, 829831.Google Scholar
Ichikawa, Y. & Mason, H. S. (1973). Distribution of cytochrome P-450 and related Redox systems among hepatocyte membranes. In Oxidases and Related Redox Systems (ed. King, T. E., Mason, H. S. and Morrison, M.), pp. 606673. Baltimore: University Park Press.Google Scholar
Kappas, A. & Alvares, A. P. (1975). How the liver metabolizes foreign substances. Scient. Am. 232, 2231.Google Scholar
Klingenberg, M. (1958). Pigments of rat liver microsomes. Archs. Biochem. Biophys. 75, 376386.CrossRefGoogle ScholarPubMed
Klinger, W. & Muller, D. (1976). Developmental aspects of xenobiotic transformation. Environ. Health Perspec. 18, 1323.CrossRefGoogle ScholarPubMed
Lee, R. F. (1975). Fate of petroleum hydrocarbons in marine zooplankton. In Proc. Conf on Prevention and Control of Oil Pollution. Amer. Petr. Inst., Washington, D.C., pp. 549553.Google Scholar
Lloyd, J. W. (1971). Long-term mortality study of steelworkers, V. Respiratory cancer in coke plant workers. J. occup. Med. 13, 5368.Google Scholar
Lu, A. Y. H. & Coon, M. J. (1968). Role of hemoprotein P-450 in fatty acid ω-hydroxylation in a soluble enzyme system from liver microsomes. J. biol. Chem. 243, 1329–1330.Google Scholar
Maines, M. D. & Kappas, A. (1975). Cobalt stimulation of heme degradation in the liver. J. biol. Chem. 250, 41714177.CrossRefGoogle ScholarPubMed
Maines, M. D. & Kappas, A. (1977). Metals as regulators of heme metabolism. Science, N.Y. 198, 12151221.CrossRefGoogle ScholarPubMed
Mason, H. S. (1957). Mechanisms of oxygen metabolism. In Advances in Enzymology, vol. 19 (ed. Nord, F. F.), pp. 79233. New York: Inter-science.Google Scholar
Mason, H. S., North, J. C. & Vanneste, M. (1965). Microsomal mixedfunction oxidations: the metabolism of xenobiotics. Fediz. Proc. Fedn. Am. Socs. exp. Biol. 24, 11721180.Google ScholarPubMed
Nebert, D. W., Thorgeirsson, S. S. & Lambert, G. H. (1976). Genetic aspects of toxicity during development. Environ. Health Perspec. 18, 3545.CrossRefGoogle ScholarPubMed
Omura, T., Sato, R., Cooper, D. Y., Rosenthal, O. & Estabrook, R. W. (1965). Function of cytochrome P-450 of microsomes. Fedn. Proc. Fedn. Am. Socs. exp. Biol. 24, 11811189.Google ScholarPubMed
Omura, T. & Sato, R. (1963). Fractional solubilization of hemoproteins and partial purification of carbon monoxide binding cytochrome from liver microsomes. Biochim. biophys. Acta 71, 224226.CrossRefGoogle ScholarPubMed
Omura, T. & Sato, R. (1964). The carbon monoxide binding pigment of liver microsomes, I and II. J. biol. Chem. 239, 23702378 and 2379–2385.Google Scholar
Payne, J. F. & Penrose, W. R. (1975). Induction of aryl hydrocarbon (benzo[a]pyrene) hydroxylase in fish by petroleum. Bull. env. Contam. & Toxicol. 14, 112116.CrossRefGoogle Scholar
Peterson, J. A., Ishimura, Y., Baron, J. & Estabrook, R. W. (1973). Cytochrome P-450: its function and chemistry during substrate hydroxylation. In Oxidases and Related Redox Systems (ed. King, T. E., Mason, H. S. and Morrison, M.), pp. 566577. Baltimore: University Park Press.Google Scholar
Poland, A. & Glover, E. (1973). Chlorinated dibenzo-p–dioxins: potent inducers of δ-aminolevulinic acid and synthetase and aryl hydrocarbon hydroxylase. Mol. Pharmacol. 9, 736747.Google Scholar
Popper, H. & Schaffner, F. (1970). Pathophysiology of cholestasis. Human Pathol. 1, 1.CrossRefGoogle ScholarPubMed
Reddy, B. S. & Wynder, E. L. (1977). Metabolic epidemiology of colon cancer: fecal bile acids and neutral steroids in colon cancer patients with adenatomous polyps. Cancer 39, 25332539.3.0.CO;2-X>CrossRefGoogle Scholar
Resman, B. H., Blumenthal, H. P. & Jusko, W. J. (1977). Breast milk distribution of theobromine from chocolate. J. Pediat. 91, 477480.Google Scholar
Root, B., Eichner, E. & Sunshine, I. (1961). Blood secobarbital levels and their clinical correlation in mothers and newborn infants. Am. J. Obstet. Gynec. 81, 948956.Google Scholar
Sanborn, H. & Malins, D. C. (1977). Toxicity and metabolism of naphthalene: a study with marine larval invertebrates. Proc. Soc. exp. Biol. Med. 154, 151155.Google Scholar
Schoental, R. (1963). Experimental induction of squamous carcinoma of the lung, oesophagus and stomach. Acta Union Intl. Contre le Cancer. 19, 680683.Google ScholarPubMed
Shank, R. C., Gordon, J. E., Nondasuta, A., Subhamani, B. & Wogan, G. N. (1972). Dietary afiatoxins and human liver cancer. Food Cosmet. Toxicol. 10, 7184.CrossRefGoogle ScholarPubMed
Sladek, N. E. & Mannering, G. J. (1966). Evidence for a new P-450 hemoprotein in hepatic microsomes from methyicholanthrene treated rats. Biochem. biophys. Res. Commun. 24, 668674.Google Scholar
Smith, R. J. (1978). Spraying of herbicides on Mexican marijuana backfires on U.S.. Science, N.Y. 199, 861864.Google Scholar
Tardiff, R. G. (1976). Compilation of organic compounds identified in drinking water in the United States. Health Effects Research Laboratory, Environmental Protection Agency, Cincinnati, Ohio.Google Scholar
Ullrich, V. (1977). Mechanism of microsomal monooxygenase and drug toxicity. In Biological Reactive Intermediates (ed. Jollow, D. J., Kocsis, J. J., Snyder, R. and Vanio, H.), pp. 6580. New York: Plenum Press.Google Scholar
Welch, R. M., Harrison, Y. E., Conney, A. H., Poppers, P. J. & Finster, M. (1968). Cigarette smoking: stimulatory effect on metabolism of 3,4-benzpyrene by enzymes in human placenta. Science, N.Y. 160, 541542.CrossRefGoogle Scholar
Wogan, G. N. (1975). Dietary factors and special epidemiological situations of liver cancer in Thailand and Africa. Cancer Res. 35, 34993502.Google Scholar
Wynder, E. L. (1978). Nutritional carcinogenesis. Ann. N.Y. Acad. Sci. 300, 360378.Google Scholar
Zumoff, B., Bradlow, H. L., Gallagher, T. F. & Hellman, L. (1971). Decreased conversion of androgens to normal 17-ketOsteroid metabolites – nonspecific consequence of illness. J. clin. Endocr. Metab. 32, 824.Google Scholar