Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-23T13:17:22.844Z Has data issue: false hasContentIssue false

Energy transfer and dynamical structure

Published online by Cambridge University Press:  17 March 2009

Josef Eisinger
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974, U.S.A.

Extract

It is only some 50 years ago that biophysicists obtained reliable experimental methods for estimating the molecular weights of biological macromolecules, chiefly as a result of Svedberg's work in developing the ultracentrifuge as an analytical instrument (Svedberg & Pedersen, 1940). Having gained some understanding of the size of proteins, interest soon thereafter turned to the shape and rotational relaxation times of these molecules, and Perrin's work on fluorescence depolarization helped to lay the foundations there (Perrin, 1929). Biophysics had to wait for the development of X-ray spectroscopy of proteins and nucleic acids to provide a picture of the interior structure of biological macromolecules.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beardsley, K. & Cantor, C. R. (1970). Studies of transfer RNA tertiary structure by singlet-singlet energy transfer. Proc. natn. Acad. Sci. U.S.A. 65, 3946.CrossRefGoogle ScholarPubMed
Blumberg, W. E., Dale, R. E., Eisinger, J. & Zuckerman, D. M. (1974). Energy transfer in tRNAPhe (Yeast). The solution structure of transfer RNA. Biopolymers 13, 1607–20.CrossRefGoogle ScholarPubMed
Dale, R. E. & Eisinger, J.Intramolecular distances determined by energy transfer. Dependence on orientational freedom of donor and acceptor. Biopolymers 13, 1573–85.CrossRefGoogle Scholar
Dale, R. E. & Eisinger, J. (1975). Polarized excitation energy transfer. In Biochemical Fluorescence, vol. I (ed. Chen, R. F. and Edelhock, H.), ch. 4, pp. 115284. New York: Marcel Dekker.Google Scholar
Eisinger, J. & Dale, R. E. (1974). Interpretation of intramolecular energy transfer experiments. J. molec. Biol. 84, 643–7.CrossRefGoogle ScholarPubMed
Eisinger, J., Feuer, B. & Lamola, A. A. (1969). Intramolecular singlet excitation transfer. Applications to polypeptides. Biochemistry, N.Y. 8, 3908–14.CrossRefGoogle ScholarPubMed
Eisinger, J. & Lamola, A. A. (1971). In Excited States of Proteins and Nucleic Acids (ed. Steiner, R. F. and Weinryb, I.), p. 168. New York: Plenum Press.Google Scholar
Förster, Th. (1948 a). Zwischenmolekulare Energiewanderung und Fluoreszenz. Annln Phys. 2, 5575.CrossRefGoogle Scholar
Förster, Th. (1948 b). Fluoreszenz organischer verbindungen. Göttingen: Vandenhoeck and Ruprecht.Google Scholar
Förster, Th. (1965). Modern Quantum Chemistry. Istanbul International School of Quantum Chemistry Lectures (ed. Sinanoglu, O.). New York: Academic Press.Google Scholar
Galanin, M. D. (1955). The problem of the effect of concentration on the luminescence of solutions. Soviet Phys. JETP. 1, 317–25.Google Scholar
Maksimov, M. Z. & Rozman, I. M. (1962). On energy transfer in solid solutions. Optics Spectrosc. 12, 337–8.Google Scholar
Perrin, F. (1929). La fluorescence des solutions induction moléculaire – polarization et durée d'émission – photochimie. Annls Phys. 12, 169275.CrossRefGoogle Scholar
Svedberg, T. & Pedersen, K. O. (1940). The Ultracentrifuge. Oxford University Press.Google Scholar