Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T08:29:07.681Z Has data issue: false hasContentIssue false

The effect of high pressure upon proteins and other biomolecules

Published online by Cambridge University Press:  17 March 2009

Gregorio Weber
Affiliation:
School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Harry G. Drickamer
Affiliation:
School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Extract

We shall not attempt here to enumerate the results or review in a systematic way the significant literature dealing with the use of high pressure in studies of proteins and other molecules of biological interest. Two recent reviews on this subject, one by MOrild (1981) and another by Heremans (1982), and a further article by Jaenicke (1981) on enzymes under extreme environmental conditions contain expositions and references that would render redundatn such a task. Rather we concentrate here on the examination of othe conceptual framework employed in the interpretation of high pressure experiments and in the critical discussion of our knowledge of selected areas of present interest and likely future significance.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, S. & Weber, G. (1966). The reversible acid denaturation of lactic dehydrogenase. Archs Biochem. Biophys. 116, 207223.CrossRefGoogle ScholarPubMed
Benesi, H. A. & Hildebrand, J. H. (1949). Investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. chem. Soc. 71, 27032707.CrossRefGoogle Scholar
Benson, A. M. & Drickamer, H. G. (1957). Stretching vibrations in condensed systems. J. chem. Phys. 27, 11641174.CrossRefGoogle Scholar
BøJe, L. & Hvidt, A. (1971 a). Densities of aqueous mixtures of non-electrolytes. J. Chem. Thermodyn. 3, 663669.CrossRefGoogle Scholar
BøJe, L. & Hvidt, A. (1971 b). Volume effects in aqueous solutions of macromolecules containing non-polar groups. Biopolymers II, 23572364.Google Scholar
Brandts, J. F., Olivera, R. J. & Westort, C. (1970). Thermodynamics of protein denaturation. Effect of pressure on the denaturation of ribonuclease. Biochemistry Philad. 9, 10381047.CrossRefGoogle ScholarPubMed
Bruun, S. G. & Hvidt, A. (1977). Volume properties of binary mixtures of water with 2-propanol. Ber. Deu-Ges. Phys. Chemie. 81, 930933.CrossRefGoogle Scholar
Chryssomallis, G. S., Drickamer, H. G. & Weber, G. (1978). The measurement of fluorescence polarization at high pressure. J. appl. Phys. 49, 30843087.CrossRefGoogle Scholar
Chryssomallis, G. S., Torgerson, P. M., Drickamer, H. G. & Weber, G. (1981). Effect of Hydrostatic pressure upon lysozyme and chymo-trypsinogen detected by fluorescence polarization. Biochemistry Philad. 20, 39553959.CrossRefGoogle Scholar
Eden, D., Matthew, J. B., Rosa, J. J. & Richards, F. M. (1982). Increase in apparent compressibility of cytochrome C upon oxidation. Proc. natn. Acad. Sci. U.S.A. 79, 815819.CrossRefGoogle ScholarPubMed
Engelborghs, Y., Heremans, K. A. H., De Maeyer, L. & Hoebeke, J. (1976). Effect of temperature and pressure on polymerization equilibrium of neuronal microtubules. Nature Land., 259, 686689.CrossRefGoogle ScholarPubMed
Ewald, A. H. (1967). Effect of pressure on charge-transfer complexes in solution. Trans. Faraday Soc. 64, 733743.CrossRefGoogle Scholar
Fitos, I. & Heremans, K. A. H. (1979). Kinetic investigation of glutamate dehydrogenase self-association under high pressure. React. Kinet. Catal. Lett. 12, 399403.CrossRefGoogle Scholar
Gavish, B., Gratton, E. & Hardy, J. C. (1983). Adiabaticcompressibility of globular proteins. Proc. natn. Acad. Sci. USA. 80, 750754.CrossRefGoogle ScholarPubMed
Gekko, K. & Noguchi, H. (1979). Compressibility of globular proteins at 25 C.; J. phys. Chem. 83, 27062714.CrossRefGoogle Scholar
Hauer, J., Luedemann, H.-D. & Jaenicke, R. (1982 a). Free activation energy and activation volume for amide rotation in some peptides studied by high resolution NMR. Naturwissenschaften (In press).Google Scholar
Hauer, J., Mueller, K., Luedemann, H. D. & Jaenicke, R. (1982 b). The pressure dependence of the histidine ring protonation constant studied by IH HRNMR. FEES Lett. 135, 135138.CrossRefGoogle Scholar
Hawley, S. A. (1971). Reversible pressure-temperature denaturation of chymotrypsinogen. Biochemistry Philad. 10, 24362442.CrossRefGoogle ScholarPubMed
Heremans, K. A. H., Snauwaert, J., Vandersypen, H. A. & Van Nuland, Y. (1974). The interaction of dyes with proteins and nucleic acids. Chemical relaxation spectrometry at high pressure. Proc. 4th. Int. Conf. on High Pressure. Kyoto, 1974, pp. 623626.Google Scholar
Heremans, K. A. H. (1974). The self association of biological macro-molecules. High pressure light scattering studies on glutamate dehydrogenase. Proc. 4th. Int. Conference on High Pressure, Kyoto, 1974, PP. 627630.Google Scholar
Heremans, K. A. H. (1977). Bijdrage tot de studie van de lichtverstrooiing onder hoge druck. Ver. Konig. Akad. Weten. van Belgie 34, no. 138.Google Scholar
Heremans, K. A. H. (1982). High pressure effects upon proteins and other biomolecules. A. Rev. Biophys. Bioengeng. II, 121.Google Scholar
Herman, R., Jaenicke, R. & Rudolph, R. (1981). Analysis of the recon-stitution of oligomeric enzymes by crosslinking with glutaraldehide. Kinetics of reassociation of lactate dehydrogenase. Biochemistry Philad. 20, 51955201.CrossRefGoogle Scholar
Hvidt, A., Moss, R. & Nielsen, G. (1978). Volume properties of aqueous solutions of tert-butyl alcohol at temperatures between 5 and 25 °C. Acta chem. scand. B, 32, 274280.CrossRefGoogle Scholar
Jaenicke, R. & Koberstein, R. (1979). High pressure dissociation of lactic dehydrogenase. FEES. Lett. 17, 351354.CrossRefGoogle Scholar
Jaenicke, R., Luedemann, H.-D. & Schade, B. C. (1981). High pressure effects on the endothermic association of tobacco mosaic virus. Biophys. Struct. & Mechanism 7, 1952033.CrossRefGoogle Scholar
Jaenicke, R. (1981). Enzymes under extremes of physical conditions. A. Rev. Biophys. Bioengng. 10, 167.CrossRefGoogle ScholarPubMed
Jaffe, H. H. & Orchin, M. (1962). Complex formation equilibria. In Theory and Application of Ultraviolet Spectroscopy, pp. 578586. New York. Wiley.Google Scholar
Johnson, P. C. & Offen, H. W. (1972). Effect of pressure on pyrene excimer in toluene. J. chem. Phys. 56, 16381642.CrossRefGoogle Scholar
Jonas, J. (1982). High pressure NMR studies. Science, N.Y. 216, 11791184.CrossRefGoogle Scholar
Josephs, R. & Harrington, W. F.(1967). An unusual pressure dependence for a reversibly associating protein system; sedimentation studies on myosin. Proc. natn. Acad. Sci. U.S.A. 58, 15871594.CrossRefGoogle ScholarPubMed
Karplus, M., Gelin, B. R. & McCammon, J. A. (1980). Internal dynamics of proteins. Biophys. J. 16, 603618.CrossRefGoogle Scholar
Kita, Y. & Miller, K. W. (1982). I-Alkanol volumes in water, lipid bilayers and erythrocyte ghosts. Biochemistry Philad. 21, 28402847.CrossRefGoogle ScholarPubMed
Li, T. M., Hook, J. W. III., Drickamer, H. G. & Weber, G. (1976 a). Effects of pressure upon the fluorescence of the riboflavin binding protein and its flavin mononucleotide complex. Biochemistry Philad. 15, 32053211.CrossRefGoogle ScholarPubMed
Li, T. M., Hook, J. W. III., Drickamer, H. G. & Weber, G. (1976 b). Plurality of pressure denatured forms in lysozyme and chymotrypsi- nogen. Biochemistry, Philad. 15, 55715580.CrossRefGoogle Scholar
Lown, D. A., Thirsk, H. R. & Lord, Wynne-Jones. (1968). Volume changes in the dissociation of acetic acid. Trans. Faraday Soc. 64, 20732080.CrossRefGoogle Scholar
Masterton, W. L. (1954). Partial molal volumes of hydrocarbons in water solutions. J. chem. Phys. 22, 18301833.CrossRefGoogle Scholar
Morero, R. & Weber, G. (1982). Properties of S-ioo protein studied by fluorescence methods. Biochim. biophys. Acta. 703, 231240.CrossRefGoogle Scholar
Morild, E. (1981). Theory of the pressure effects on enzymes. Adv. Protein Chem. 34, 93168.CrossRefGoogle ScholarPubMed
Mueller, K., Luedemann, H.-D. & Jaenicke, R. (1981). Pressure dependent deactivation and reactivation of dimeric enzymes. Natur-wissenschaften. 68, 524525.CrossRefGoogle Scholar
Mueller, K., Luedemann, H.-D. & Jaenicke, R. (1982). Thermodynamics and mechanism of high pressure deactivation and dissociation of porcine lactic dehydrogenase. Biophys. Chem. 16, 17.CrossRefGoogle Scholar
Neuman, R. C. Jr., Kauzmann, W. & Zipp, A. (1973). Pressure dependence of weak acid ionizations in aqueous buffers. J. phys. Chem. 77, 26872691.CrossRefGoogle Scholar
Paladini, A. A. & Weber, G. (1981 a). Absolute measurements of fluorescence polarization at high pressures. Rev. Scient. Instrum. 52, 419427.Google Scholar
Paladini, A. A. & Weber, G. (1981 b). Pressure-induced reversible dissociation of enolase. Biochemistry Philad. 20, 25872593.CrossRefGoogle ScholarPubMed
Payens, T. A. J. & Heremans, K. A. H. (1969). Effect of pressure on the temperature-dependent association of beta casein. Biopolymers 8, 335345.CrossRefGoogle ScholarPubMed
Penniston, J. T. (1971). High hydrostatic pressure and enzyme activity: Inhibition of multimeric enzymes by dissociation. Archs Biochem. Biophys. 142, 322330.CrossRefGoogle ScholarPubMed
Pratt, L. R. & Chandler, D. (1977). Theory of the hydrophobic effect. J. chem. Phys. 67, 36833704.CrossRefGoogle Scholar
Pratt, L. R. & Chandler, D. (1980 a). Hydrophobic solvation of non-spherical solutes. J. chem. Phys. 73, 34343441.CrossRefGoogle Scholar
Pratt, L. P. & Chandler, D. (1980 b). Hydrophobic interactions and osmotic second virial coefficient for methanol in water. J. Solution Chem. 9, 117.CrossRefGoogle Scholar
Richards, F. M. (1977). Areas, volumes, packing and protein structure. A. Rev. Biophys. Bioengng 6, 151176.Google ScholarPubMed
Richards, F. M. (1979). Packing defects, cavities, volume fluctuations and access to the interior of proteins. Carlsberg Res. Commun. 44, 4763.CrossRefGoogle Scholar
Sawamura, S., Taniguchi, Y. & Suzuki, K. (1979). Effect of pressure on Iodine complexes. Bull. chem. Soc. Japan I: 52, 281283. II: 52, 284286.Google Scholar
Schade, B. C., Rudolph, R., Luedemann, H.-D. & Jaenicke, R. (1980 a). Reversible high pressure dissociation of lactic dehydrogenase from pig muscle. Biochemistry Philad. 19, 11211126.CrossRefGoogle ScholarPubMed
Schade, B. C., Luedemann, H.-D., Rudolph, R. & Jaenicke, R. (1980 b). Kinetics of reconstitution of porcine lactate dehydrogenase after reversible high pressure deactivation. Biophys. Chem. II, 257263.CrossRefGoogle Scholar
Spencer, R. D. & Weber, G. (1972). Thermodynamics and kinetics of the intramolecular complex of flavin-adenine dinucleotide. In Structure and Function of Oxidation-Reduction Enzymes (ed. Akeson, A. and Ehrenberg, A.), pp. 393399. Oxford & New York. Pergamon.CrossRefGoogle Scholar
Stillinger, F. H. (1980). Water revisited. Science 209, 451457.CrossRefGoogle ScholarPubMed
Suzuki, K., Miyosawa, Y. & Suzuki, C. (1963). Protein denaturation by high pressure: Measurements of turbidity of isoelectric ovalbumin and horse serum albumin under high pressure. Archs. Biochem. Biophys. 101, 225228.CrossRefGoogle ScholarPubMed
Torgerson, P. M., Drickamer, H. G. & Weber, G. (1979). Inclusion complexes of beta-polycyclodextrins: A model for pressure effects on ligand protein complexes. Biochemistry, Philad. 18, 30793083.CrossRefGoogle Scholar
Torgerson, P. M., Drickamer, H. G. & Weber, G. (1980). Effect of hydrostatic pressure upon ethydium bromide association with transfer ribonucleic acid. Biochemistry Philad. 19, 39573960.CrossRefGoogle Scholar
Visser, A. J. W. G., Li, T. M., Drikamer, H. G. & Weber, G. (1977 a). Effect of pressure upon the fluorescence of various flavodoxins. Biochemistry, Philad. 16, 48794881.CrossRefGoogle ScholarPubMed
Visser, A. J. W. G., Li, T. M., Drickamer, H. G. & Weber, G. (1977 b). Volume changes in the formation of internal complexes of flavinyl-tryptophan peptides. Biochemistry Philad. 16, 48834886.CrossRefGoogle ScholarPubMed
Wagner, G. (1980). Activation volumes for the rotational motion of internal aromatic rings in globular proteins determined by high resolution iH HRNMR at variable pressure. FEBS Lett. 112, 280284.CrossRefGoogle Scholar
Weber, H. H. (1930). Die Bjerrumsche zwitterionentheorie und die hy-dratation der Eiweisskoerper. Biochem. Z. 218, 135.Google Scholar
Weber, G., Tanaka, F., Okamoto, B. Y. & Drickamer, H. G. (1974). The effect of pressure upon the molecular complex of isoalloxazine and adenine. Proc. natn. Acad. Sci. U.S.A. 71, 12641266.CrossRefGoogle ScholarPubMed
Weber, G. (1980). The effect of high pressure upon proteins and other biomolecules. In New Horizons in Biological Chemistry (ed. Koike, M. and others), pp. 237245. Tokyo: JSSP Press.Google Scholar
Williams, R. K. (1981). Pressure enhancement of charge-transfer complexing of I-methyl 3(carbomethoxy) pyridinium cation and 8-chlorotheophyllinate anion in aqueous solution. J. phys. Chem. 85, 17951799.CrossRefGoogle Scholar
Xu, G.-J. & Weber, G. (1982). Dynamics and time-averaged chemical potential of proteins: Importance in oligomer association. Proc. natn. Acad. Sci. U.S.A. 79, 52685271.CrossRefGoogle ScholarPubMed
Zamyatnin, A. A. (1972). Protein volume in solution. Prog. Biophys. molec. Biol. 24, 107123.CrossRefGoogle ScholarPubMed
Zipp, A. & Kauzmann, W. (1973). Pressure denaturationof metmyoglobin. Biochemistry Philad. 12, 42174228.CrossRefGoogle ScholarPubMed