Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-07T23:02:21.011Z Has data issue: false hasContentIssue false

Diffuse scattering in protein crystallography

Published online by Cambridge University Press:  17 March 2009

Jean-Pierre Benoit
Affiliation:
Laboratoire d'Utilisation du Ravonnement Electromagnétique, Bât. 209D, Universite Paris-Sud, F-91405, Orsay Cedex, France
Jean Doucet
Affiliation:
Laboratoire d'Utilisation du Ravonnement Electromagnétique, Bât. 209D, Universite Paris-Sud, F-91405, Orsay Cedex, France Laboratoire d'Utilisation du Ravonnement Electromagnétique, Bât. 209D, Universite Paris-Sud, F-91405, Orsay Cedex, France

Extract

The understanding of flexibility and deformability in proteins is one of the current major challenges of structural molecular biology. The knowledge of the average atomic positions of three-dimensional folding of proteins, which is obtained either by X-ray diffraction or n.m.r. spectroscopy, is generally not sufficient to explain their functional mechanisms. Very often it is necessary to consider the existence of other concerted atomic motions as, for example, in the well-known case of the CO molecule fixation at the active site of myoglobin which requires the concerted displacement of a large number of atoms in order to open a channel down to this site. This opening, which depends on the physico-chemical conditions, plays the role of a regulator in the biochemical reactions (Janin & Wodak, 1983; Tainer et al. 1984; Westhof et al. 1984; Ormos et al. 1988).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amorós, J. L. & Amorós, M. (1968). Molecular Crystals: Their Transforms and Diffuse Scattering. New York: J. Wiley & Sons.Google Scholar
Arnold, G. & Ornstein, R. (1994). An evaluation of implicit and explicit solvent model systems for the molecular dynamics simulation of bacteriophage T4 lysozyme. Proteins 18, 1933.CrossRefGoogle ScholarPubMed
Artymiuk, P. J., Blake, C. C. F., Grace, D. E. P., Oatley, S. J., Phillips, D. C. & Sternberg, M. J. E. (1979). Crystallographic studies of the dynamic properties of lysozyme. Nature 280, 563568.CrossRefGoogle ScholarPubMed
Baldwin, J. & Chothia, C. (1979). Haemoglobin: the structural changes related ligand binding and its allosteric mechanism. J. Mol. Biol. 129, 175220.CrossRefGoogle ScholarPubMed
Bennett, W. S. & Steitz, T. A. (1978). Glucose-induced conformational change in yeast hexokinase. Proc Natl. Acad. Sci. USA 75, 48484852.CrossRefGoogle ScholarPubMed
Bennett, W. S. & Huber, R. (1984). Structural and functional aspects of domains motions in proteins. Crit. Rev. Biochem. 15, 291384.CrossRefGoogle ScholarPubMed
Bentley, G. A., Delepierre, M., Dobson, C. M., Mason, S. A., Poulsen, F. M. & Wedin, R. E. (1983). Exchange of individual hydrogens for a protein in a crystal and in solution. J. Mol. Biol. 170, 243247.CrossRefGoogle Scholar
Berendsen, H. (1991). Molecular dynamics studies of proteins and nucleic acids. Curr Opin. Struct. Biol. 1, 191195.CrossRefGoogle Scholar
Biltonen, R. C. & Freire, E. (1978). Thermodynamic characterization of conforma tional states of biological macromolecules using differential scanning calorimetry. Crit. Rev. Biochem. 5, 85124.CrossRefGoogle Scholar
Born, M. (1942). Effect of thermal vibrations on the scattering of X-rays. Proc. Roy Soc, A 180, 397413.Google Scholar
Brawer, S. (1985). Relaxation in Viscous Liquids and Glasses. Columbus, Ohio: Am Chem. Soc.Google Scholar
Brooks, B. & Karplus, M. (1983). Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. USA 80, 65716575.CrossRefGoogle ScholarPubMed
Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S. & Karplus, M. (1983). CHARMm: a program for macromolecular energy, minimization and dynamics calculations. J. Comput. Chem. 4, 187217.CrossRefGoogle Scholar
Brünger, A. T., Kuriyan, J. & Karplus, M. (1987). Crystallographic R factor refinement by molecular dynamics. Science 235, 458460.Google Scholar
Brünger, A. T. & Nilges, M. (1993). Computational challenges for macromolecular structure determination by X-ray crystallography and solution NMR-spectroscopy. Q. Rev. Biophys. 26 (1), 49125.Google Scholar
Caspar, D. L. D., Clarage, J. B., Salunke, D. M. & Clarage, M. S. (1988). Liquidlike movements in crystalline insulin. Nature 332, 659662.CrossRefGoogle ScholarPubMed
Chacko, S. & Phillips, G. N. (1992). Diffuse x-ray scattering from tropomyosin crystals. Biophys. J. 61, 12561266.CrossRefGoogle ScholarPubMed
Clarage, J. B., Clarage, M. S., Philipps, W. C, Sweet, R. M. & Caspar, D. L. D. (1992). Correlations of atomic movements in lysozyme crystals. Proteins 12, 145157.CrossRefGoogle ScholarPubMed
Cowley, J. M. (1986). Diffraction Physics. Amsterdam: North-Holland.Google Scholar
Cruickshank, D. W. J. (1956 a). The determination of the anisotropic thermal motion of atoms in crystals. Acta Cryst. 9, 747753.CrossRefGoogle Scholar
Cruickshank, D. W. J. (1956b). The analysis of the anisotropic thermal motion of molecules in crystals. Acta Cryst. 9, 754756.CrossRefGoogle Scholar
Cruickshank, D. W. J. (1961). Coordinate errors due to rotational oscillations of molecules. Acta Cryst. 14, 896897.CrossRefGoogle Scholar
Cruickshank, D. W. J., Jones, D. W. & Walker, G. (1964). The crystal structure of ammonium trifluoroacetate. J. Chem. Soc. part II, 13031314.CrossRefGoogle Scholar
Cusack, S. & Doster, W. (1990). Temperature dependence of the low frequency dynamics of myoglobin: measurement of the vibrational frequency distribution by inelastic neutron scattering. Biophys. J. 58, 243251.CrossRefGoogle ScholarPubMed
Diamond, R. (1990). On the use of normal modes in thermal parameter refinement: theory and application to the bovine pancreatic trypsin inhibitor. Acta Cryst. A46, 425435.CrossRefGoogle Scholar
Doster, W., Cusack, S. & Petry, W. (1989). Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature 337, 754756.CrossRefGoogle ScholarPubMed
Doucet, J. & Benoit, J. P. (1987). Molecular dynamics studied by analysis of the X-ray diffuse scattering from lysozyme crystal. Nature 325, 643646.CrossRefGoogle Scholar
Doucet, J., Benoit, J. P., Cruse, W. B., Prangé, T. & Kennard, O. (1989). Coexistence of A- and B-form DNA in a single crystal lattice. Nature 337, 190192.CrossRefGoogle Scholar
Doucet, J., Benoit, J. P., Faure, P. & Durand, D. (1992). Analyse de la diffusion diffuse donnée par les cristaux de proteines. J. Phys. I France 2, 981993.CrossRefGoogle Scholar
Edwards, C., Palmer, S. B., Emsley, P., Helliwell, J. R., Glover, I. D., Harris, G. W. & Moss, D. S. (1990). Thermal motion in protein crystals estimated using laser-generated ultra-sound and Young' modulus measurements. Acta Cryst. A46, 315320.CrossRefGoogle Scholar
Eftink, M. R. & Ghiron, C. A. (1981). Fluorescence quenching studies with proteins. Anal. Biochem. 114, 199227.CrossRefGoogle ScholarPubMed
Faber, H. R. & Matthews, B. W. (1990). A mutant T4 lysozyme displays five different crystal conformations. Nature 348, 263266.CrossRefGoogle ScholarPubMed
Faure, Ph., Micu, A., Perahia, D., Doucet, J., Smith, J. C. & Benoit, J. P. (1994 a). Correlated intramolecular motions and diffuse X-ray scattering in lysozyme. Nat. Struct. Biol. 1, 124128.CrossRefGoogle ScholarPubMed
Faure, P., Pérez, J., Doucet, J. & Benoit, J. P. (1994 b). X-ray diffuse scattering and molecular dynamics in proteins. J. Physique IV–C9 4, 293298.Google Scholar
Fox, R. O., Evans, P. A. & Dobson, C. M. (1986). Multipole conformations of a protein demonstrated by magnetization transfer N.M.R. spectroscopy. Nature 320, 192194.CrossRefGoogle Scholar
Frauenfelder, H. (1989). New looks at protein motions. Nature 338, 623624.CrossRefGoogle Scholar
Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. (1991). The energy landscapes and motions of proteins. Science 254, 15981602.CrossRefGoogle ScholarPubMed
Fujinaga, M., Gros, P. & Van Gunsteren, W. F. (1989). Testing the method of crystallographic refinement using molecular dynamics, J. Appl. Crystallogr. 22, 18.CrossRefGoogle Scholar
Furois-Corbin, S., Smith, J. C. & Kneller, G. R. (1993). Picosecond timescale rigidhelix and side-chain motions in doxymyoglobin. Proteins 16, 141154.CrossRefGoogle Scholar
Genzel, L., Keilmann, F., Martin, T. P., Winterling, G., Yacoby, Y., Fröhlich, H. & Makinen, M. W. (1976). Low-frequency Raman Spectra of Lysozyme. Biopolymers 15, 219225.CrossRefGoogle ScholarPubMed
Gibrat, J., Go, N. (1990). Normal mode analysis of human lysozyme: study of the relative motion of the two domains and characterization of the harmonic motion. Proteins 8, 258279.CrossRefGoogle ScholarPubMed
Glover, I. D., Harris, G. W., Helliwell, J. R. & Moss, D. S. (1991). The variety of X-ray diffuse scattering from macromolecular crystals and its respective components. Acta Cryst. B47, 960968.CrossRefGoogle Scholar
Go, N., Noguti, T. & Nishikawa, T. (1983). Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc. Natl. Acad. Sci. USA 80, 36963700.CrossRefGoogle ScholarPubMed
Guinier, A. (1963). X-Ray Diffraction. San Francisco: Freeman.Google Scholar
Helliwell, J. R., Glover, I. D., Jones, A., Pantos, E. & Moss, D. S. (1986). Protein dynamics: use of computer graphics and protein diffuse scattering recorded with synchrotron X-radiation. Biochem. Soc. Trans. 14, 653655.CrossRefGoogle Scholar
Horiuchi, T. & Go, N. (1991). Projection of Monte Carlo and molecular dynamics trajectories onto the normal mode axes: human lysozyme. Proteins 10, 106116.CrossRefGoogle ScholarPubMed
Ichiye, T. & Karplus, M. (1991). Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins 11, 205217.CrossRefGoogle ScholarPubMed
Jacrot, B., Cusack, S., Dianoux, A. J. & Engelman, D. M. (1982). Inelastic neutron scattering analysis of hexokinase dynamics and its modification on bending of glucose. Nature 300, 8488.CrossRefGoogle Scholar
Janin, J. & Wodak, S. J. (1983). Structural domains in proteins and their role in the dynamics of protein function. Prog. Biophys. Mol. Biol. 42, 2178.CrossRefGoogle ScholarPubMed
Karplus, M., Petsko, G. A. (1990). Molecular dynamics simulations in biology. Nature 347, 631639.CrossRefGoogle ScholarPubMed
Kidera, A. & Go, N. (1992). Normal mode refinement: crystallographic refinement of protein dynamic structure. J. Mol. Biol. 225, 457475.CrossRefGoogle ScholarPubMed
Kolatkar, A. R., Clarage, J. B. & Philipps, G. N. (1992). Diffuse scattering from crystals of yeast initiator tRNA. Rigaku J. 92, 48.Google Scholar
Kolatkar, A. R., Clarage, J. B. & Philipps, G. N. (1994). Analysis of diffuse scattering from yeast initiator tRNA crystals. Acta Cryst. D 50, 210218.CrossRefGoogle ScholarPubMed
Kratky, O. & Pilz, I. (1978). A comparison of X-ray small angle scattering results to crystal structure analysis and other physical techniques in the field of biological macromolecules. Q. Rev. Biophys. 11, 3970.CrossRefGoogle ScholarPubMed
Kuriyan, J. & Weis, W. I. (1991). Rigid protein motion as a model for crystallographic temperature factors. Proc. Natl. Acad. Sci. USA 88, 27732777.CrossRefGoogle Scholar
Levitt, M. (1982). Protein conformation, dynamics and folding by computer simulation. Anna. Rev. Biophys. Bioeng. 11, 251271.CrossRefGoogle ScholarPubMed
Levitt, M., Sander, C. & Stern, P. S. (1983). The normal mode of a protein: native bovine pancreatic trypsin inhibitor. Int. J. Quant. Chem.: Quant. Biol. Symp. 10 181, 423447.Google Scholar
Levitt, M., Sander, C. & Stern, P. S. (1985). Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme. J. Mol. Biol. 181, 423447.CrossRefGoogle Scholar
Levy, R. M. & Keepers, J. W. (1986). Computer simulation of protein dynamics: theory and experiment. Comments Mol. Cell. Biophys. 3, 273294.Google Scholar
Liberti, P. A., Bausch, D. M. & Chu, M. (1981). Hydrogen exchange analysis of ligand-induced conformational changes in Fab. Biochemistry 20, 10121019.CrossRefGoogle ScholarPubMed
Lipscomb, W. N. (1971). Proc. Robert A., Welch Found. Conf. Chem. Res. 15, 140141.Google Scholar
McCammon, J. A., Gelin, B. R., Karplus, M. & cWOLYNES, P. G. (1976). The hingebending mode in lysozyme. Nature 262, 325326.CrossRefGoogle ScholarPubMed
McCammon, J. A., Gelin, B. R. & Karplus, M. (1977). Dynamics of folded proteins. Nature 267, 585590.CrossRefGoogle ScholarPubMed
McCammon, J. A. & Harvey, S. C. (1987). Dynamics of proteins and nucleic acids. Cambridge University Press. 1234.CrossRefGoogle Scholar
Mizuguchi, K., Kidera, A. & Go, N. (1994). Collective motions in proteins investigated by x-ray diffuse scattering. Proteins 18, 3448.CrossRefGoogle ScholarPubMed
Morozov, W. N. & Morozova, T. Y. (1981). Viscoelastic properties of protein crystals: Triclinic crystals of hen egg-white lysozyme in different conditions. Biopolymers 20, 451467.CrossRefGoogle ScholarPubMed
Morozov, W. N. & Morozova, T. Y. (1986). Thermal motion of whole protein molecules in protein solids. J. Theor. Biol. 121, 7388.CrossRefGoogle ScholarPubMed
Morrisett, J. D. (1976). The use of spin labels for studying the structure and function of enzymes. In Spin Labeling (ed. Berliner, L. J.). New York: Academic Press.Google Scholar
Mouawad, L. & Perahia, D. (1993). Diagonalisation in a mixed basis: a method to compute low-frequency normal modes for large macromolecules. Biopolymers 33, 599611.CrossRefGoogle Scholar
Murayama, T. (1978). Dynamical Mechanical Analysis of Polymeric Materials. Amsterdam: Elsevier.Google Scholar
Nienhaus, G. U., Heinz, J., Huenges, E. & Parak, F. (1989 a). Protein crystal dynamics studies by time-resolved analysis of X-ray diffuse scattering. Nature 338, 665666.CrossRefGoogle Scholar
Nienhaus, G. U., Hartmann, F. & Parak, F. (1989 b). Angular dependent Rayleigh scattering of Mössbauer radiation on proteins. Hyperfine Interactions 47, 299310.CrossRefGoogle Scholar
Nishikawa, T. & Go, N. (1987). Normal modes of vibration in bovine pancreatic trypsin inhibitor and its mechanical property. Proteins 2, 308329.CrossRefGoogle ScholarPubMed
Ormos, P., Braunstein, D., Frauenfelder, H., Hong, M. K., Lin, S.-L., Sauke, T. B: & Young, R. D. (1988). Orientation of carbon monoxide and structure-function relationship in carbonmonoxymyoglobin. Proc. Natl. Acad. Sci. U.S.A. 85, 84928496.CrossRefGoogle ScholarPubMed
Parak, F., Frolov, E. N., Mössbauer, R. L. & Goldanskii, V. I. (1981). Dynamics of metmyoglobin crystals investigated by nuclear gamma resonance absorption. J. Mol. Biol. 145, 825833.CrossRefGoogle ScholarPubMed
Phillips, G. N., Fillers, J. P. & Cohen, C. (1986). Tropomyosin crystal structure and muscle regulation. J. Mol. Biol. 192, 111131.CrossRefGoogle ScholarPubMed
Phillips, G. N., Fillers, J. P. & Cohen, C. (1980). Motions of tropomyosin. Biophys. J. 10, 485502.CrossRefGoogle Scholar
Scaringe, R. P. & Comès, R. (1990). X-ray diffuse scattering. Physical Methods in Chemistry, 5, John Wiley & Sons.Google Scholar
Schomaker, V. & Trueblood, K. N. (1968). On the rigid-body motion of molecules in crystals. Acta Cryst. B24, 6376.CrossRefGoogle Scholar
Schurr, J. M. (1976). Relaxation of rotational and internal modes of macromolecules determined by dynamic scattering. Q. Rev. Biophys. 9, 109134.CrossRefGoogle ScholarPubMed
Smith, J. C. (1991). Protein dynamics: comparison of simulations with inelastic neutron scattering experiments. Q. Rev. Biophys. 24, 165.CrossRefGoogle ScholarPubMed
Sternberg, M. J. E., Grace, D. E. P. & Phillips, D. C. (1979). Dynamic information from protein crystallography. J. Mol. Biol. 130, 231253.CrossRefGoogle ScholarPubMed
Tainer, J. A., Getzoff, E. D., Alexander, H., Houghten, R. A., Olson, A. J. & Lerner, R. A. (1984). The reactivity of anti-peptide antibodies is a function of the atomic mobility of sites in a protein. Nature 312, 127134.CrossRefGoogle ScholarPubMed
Tanner, J. J., Smith, P. E. & Hrause, K. L. (1993). Molecular dynamics simulations and rigid body (TLS) analysis of aspartate carbamoyltransferase: evidence for an R state. Proteins Sci. 2, 927935.CrossRefGoogle ScholarPubMed
Vainhstein, B. K. (1981). Modern Crystallography, Vol. 1. Berlin, Heidelberg, New-York: Springer-Verlag.Google Scholar
Wagner, G. (1978). Internal motion in globular proteins. Trends Biochem. Sci. 3, 227230.Google Scholar
Waller, I. (1925). Theortische studien zur interferenz-u. Dispersiontheorie der ‘Rontgenstrahlen’, Uppsala Dissertation.Google Scholar
Walter, J., Steigemann, W., Singh, T. P., Bartunik, H., Bode, W. & Huber, R. (1982). On the disordered activation domain in trypsinogen: Chemical labelling and low temperature crystallography. Acta Cryst B38, 14621472.CrossRefGoogle Scholar
Welberry, T. R. & Butler, B. D. (1994). Interpretation of X-ray diffuse scattering via models of disorder. J. Appl. Cryst. 27, 205231.CrossRefGoogle Scholar
Westhof, E., Altschuh, D., Moras, D., Bloomer, A. C., Mondragon, A., Klug, A. & Van Regenmortel, M. H. V. (1984). Correlation between segmental mobility and the location of antigenic determinance in proteins. Nature 311, 123126.CrossRefGoogle Scholar
Williams, R. J. P. (1993). Protein dynamics studied by NMR. Eur. Biophys. J. 21, 393401.CrossRefGoogle Scholar
thrich, K. (1985). NMR of Proteins and Nucleic Acids. New York: Wiley & Sons.Google Scholar