Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T13:24:20.697Z Has data issue: false hasContentIssue false

Crystal faces and cleavage planes in quartz as templates in biological processes*

Published online by Cambridge University Press:  17 March 2009

Arthur M. Langer
Affiliation:
Environmental Sciences Laboratory, Department of Community Medicine, Mount Sinai School of Medicine, of the City University of New York

Extract

Some species of minerals, when comminuted and aerosolized in the form of respirable-size particulate dusts, are recognized as capable of producing disease in man after their inhalation. Comprehensive listings of such agents are in the current literature (e.g. in Aponte, 1970; Langer & Mackler, 1972; Ehrenreich et al. 1973a, b) and many of these and their effects are well known and receive much attention. Asbestos fibres of all varieties, ampbibole and quartz contaminated talcum powders (see Rohl et al. 1976), fibrous amphiboles and their cleavage fragments which contaminate the ambient environment (e.g., the contamination of Lake Superior with cummingtonite-grunerite, as discussed in Bowes, Langer & Rohl, 1977), have been the subject of recent intensive investigations mostly due to their protential impact to large segments of the general population.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, A. C. (1974). Pathogenic effects of inhaled particles and antigens. Ann. N. Y. Acad. Sci. 221, 299308.CrossRefGoogle ScholarPubMed
Aponte, G. E. (1970). Pneumoconioses: pathologic considerations. In Laboratory Diagnosis of Diseases Caused by Toxic Agents (ed. Sunderman, F. W. and Sunderman, F. W. Jr.), pp. 484495. St Louis: Warren H. Green.Google Scholar
Attygalle, D., King, E. J., Harrison, C. V. & Nagelschmidt, G. (1956). The action of variable amounts of tridymite and tridymite combined with coal on the lungs of rats. Br. J. ind. Med. 13, 4150.Google ScholarPubMed
Bar-Ziv, J. & Goldberg, G. M. (1974). Simple siliceous pneumoconiosis in Negev Bedouins. Archs envir. Hlth. 29, 121126.CrossRefGoogle ScholarPubMed
Beck, E. G., Holuša, R., Jiráková, D., Kyselá, B., Robock, K. & Skoda, V. (1973). On the differing effect of two quartzes in animal and cell tests and their physical semi-conducting properties. Staub. Reinhalt. Luft. 33, 37.Google Scholar
Berg, S. A. (1974). Thoretical determination of cleavage direction. M.A. Thesis, State Univ. N.Y., Buffalo, 86 pp. (Unpub.)Google Scholar
Bergman, I. (1962). Silica powders of respirable size. II. Dissolution rates in dilute hydrofluoric acid. J. appl. Chem. 12, 336341.Google Scholar
Bergman, I. (1963). Silica powders of respirable size. III. Dialysis of quartz powders against dilute sodium hydrofluoric acid. J. appl. Chem. 13, 319323.CrossRefGoogle Scholar
Bergman, I. & Paterson, M. S. (1961). Silica powders of respirable size. I. Preliminary studies of dissolution rates in dilute sodium hydroxide. J. appl. Chem. 11, 369375.Google Scholar
Bergman, I. & Casswell, C. (1962). The disturbed layer on ground and shattered quartz powders of respirable size. Br. J. appl. Phys. 13, 621624.Google Scholar
Bergman, I., Cartwright, J. & Bentley, R. A. (1962). A mechanism for the dissolution of ground quartz powders in dilute hydrofluoric acid: an easily soluble core and its relation to the ‘easily soluble layer.’ Nature, Lond. 196, 248250.Google Scholar
Bloss, F. D. (1957). Anisotropy of fracture in quartz. Am. J. Sci. 255, 214255.CrossRefGoogle Scholar
Bloss, F. D. & Gibbs, G. V. (1963). Cleavage in quartz. Am. Miner., 48, 821838.Google Scholar
Bowes, D. R., Langer, A. M. & Rohl, A. N. (1977). Nature and range of mineral dusts in the environment. Phil. Trans. R. Soc. Lond., 286,593610.Google Scholar
Bragg, L., Claringbull, G. F. & Taylor, W. H. (1965). Crystal Structure of Minerals. Vol. IV. The Crystalline State (ed. Bragg, L.), pp. 8493. London: G. Bell.Google Scholar
Bryson, G. & Bischoff, F. (1967). Silicate-induced neoplasms. Prog. exp. Tumor Res. 9, 77164.Google Scholar
Caplan, A. (1953). Certain unusual radiological appearance in the chest of coal-miners suffering from rheumotoid arthritis. Thorax 8, 2937.Google Scholar
Cartwright, J., Wheatley, J. & Sing, K. S. W. (1958). The determination of the specific surface of different modifications of silica: comparison of results by different methods. J. appl. Chem. 8, 259264.Google Scholar
Christie, J. M., Griggs, D. T. & Carter, N. L. (1964). Experimental evidence of basal slip in quartz. J. Geol. 72, 734756.Google Scholar
Cockburn, A., Barraco, R. A., Reyman, T. A. & Peck, W. H. (1975). Autopsy of an Egyptian mummy. Science, N.Y. 187, 11551160.CrossRefGoogle ScholarPubMed
Dempster, P. B. & Ritchie, P. D. (1952). Surface of finely-ground silica. Nature, Lond. 169, 538539 (with addendum comment by Nagelschmidt, G., Gordon, R. L. and Griffin, O. G., 539–540).CrossRefGoogle ScholarPubMed
Dickinson, S. K. Jr. (1965). Guide to the interpretation of space group symbols. Air Force Cambridge Research Laboratories, Phy. Res. Pr. 98. Office Aerospace Research, USAF, Alexandria, Virginia, 99 pp.Google Scholar
Dowty, E. (1976 a). Crystal structure and crystal growth. I. The influence of internal structure on morphology. Am. Miner. 61, 448459.Google Scholar
Dowty, E. (1976 b). Crystal structure and crystal growth. II. Sector zoning in minerals. Am. Miner. 61, 460469,Google Scholar
Ehrenreich, T., Mackler, A. D., Langer, A. M. & Selikoff, I. J. (1973 a). Identification and characterization of pulmonary dust burden in pneumoconiosis. Ann. Clin. Lab. Sci. 3, 118131.Google Scholar
Ehriinaeich, T., Mackler, A. D., Langer, A. M. & Selikoff, I. J. (1973 b). Les fibres d'amiante dans les poumons humains: leur signification médico-légale dans les maladies de l'environnement Archs. Mal. prof. Med. trav. 34, 189204.Google Scholar
Englebrecht, F. M., Yoganathan, M., King, E. J. & Nagelschmidt, G. (1958). Fibrosis and collagen in rat's lungs produced by etched and unetched free silica dusts. Archs indu. Hlth. 17, 287294.Google Scholar
Faulds, J. S. & Nagelschmidt, G. (1962). The dust in the lungs of haematite miners from Cumberland. Ann. occup. Hyg. 4, 255263.Google Scholar
Ford, W. E. (1957). A Textbook of Mineralogy (Dana). 851 pp. New York: John Wiley.Google Scholar
Frondel, C. (1962). System of Mineralogy. Vol. III. Silica Minerals. New York: John Wiley.Google Scholar
Gardner, L. U. (1938). Experimental pathology: experimental pneumoconioses. In Silicosis and Asbestosis (ed. Lanza, A.), pp. 257345. New York: Oxford University Press.Google Scholar
Giese, R. F. Jr. (1971). Hydroxyl orientation in muscovite as indicated by electrostatic energy calculations. Science, N.Y. 172, 263264.CrossRefGoogle ScholarPubMed
Giese, R. & Dentan, C. (1974). Unpublished data on cleavage models for quartz based on calculated minimum surface electrostatic energies of prominent forms observed in quartz crystals.Google Scholar
Gordon, R. L., Griffin, O. G. & Nagelschmidt, G. (1952). The quantitative determination of quartz by X-ray diffraction. Safety in Mines Research Establishment. Res. Rep. Min. Fuel & Power, no. 52, 25 pp.Google Scholar
Gordon, R. L. & Harris, G. W. (1955) Effect of particle-size on the quantitative determination of quartz by X-ray diffraction. Nature, Lond. no. 69, 25 06, 1135 pp.CrossRefGoogle Scholar
Hammond, C., Moon, C. F. & Smalley, I. J. (1973). High voltage electron microscopy of quartz particles from post-glacial clay soils. J. Mater Sci. 8, 509513.Google Scholar
Harington, J. S. (1963). Some biological actions of silica: their part in the pathogenisis of silicosis. S. Afr. med. J. 20 04, pp. 451456.Google Scholar
Harington, J. S. & Allison, A. C. (1977). Tissue and cellular reaction to particles fibres and aerosols retained after inhalation. In Handbook of Physiology – Reaction to Environmental Agents (ed. Lee, D. H. K.). pp. 263283. American Physiological Society, Washington, D. C.Google Scholar
Hayashi, H. & Oinuma, K. (1964). Rapid method of quantitative mineralogical analysis of the silica minerals from the lungs of the refractory worker. Ind. Health (Jap.) 2, 172180.Google Scholar
Heffernan, P. & Green, A. T. (1928). The method of action of silica dust in the lungs. J. ind Hyg., 10, 272278.Google Scholar
Hobza, P. & Hurych, J. (1978). Quantum chemical study of properties and reactivity of quartz dust. Environ. Res. 15, 432442.Google Scholar
Holt, P. F. (1957). Pneumoconiosis, Industrial Diseases of the Lung Caused by Dust. London: Edward Arnold. 268 pp.Google Scholar
Jones, R. N., Turner-Warwick, M., Ziskind, M. & Well, H. (1976). High prevalence of antinuclear antibodies in sandblasters' silicosis. Am. Rev. resp. Dis. 3, 393395.Google Scholar
King, E. J., Ray, S. C., Harrison, C. V. & Nagelschmidt, G. (1950). The effects of granite on the lungs of rats. Br. J. ind. Med. 7, 3741.Google ScholarPubMed
King, E. J., Monhanty, G. P., Harrison, C. V. & Nagelschmidt, G. (1953 a). The action of different forms of pure silica on the lungs of rats. Br. J. ind. Med. 10, 917.Google Scholar
King, E. J., Monhanty, G. P., Harrison, C. V. & Nagelschmidt, G. (1953 b). The action of flint of variable size injected at constant weight and constant surface into the lungs of rats. Br. J. ind. Med. 10, 7692.Google Scholar
King, E. J., Mohanty, G. P., Harrison, C. V. & Nagelschmidt, G, (1953 c). The effect of modifications of the surface of quartz on its fibrogenic properties in the lungs of rats. Safety in Mines Research Establishment Res. Rep. Min Fuel & Power, no. 80, 28 pp.Google Scholar
King, E. J., Harrison, C. V., Mohanty, G. P. & Nagelschmidt, G. (1955). The effect of various forms of alumina on the lungs of rats. J. Path. Bact. 69, 8193.Google Scholar
King, E. J., Zaidi, S. H. & Nagelschmidt, G. (1956 a). The silica-solubility theory of silicosis. Archs industr. Hlth. 15, 133138.Google Scholar
King, E. J., Maguire, B. A. & Nagelschmidt, G. (1956 b). Further studies of the dust in lungs of coal-miners. Br. J. ind. Med. 13, 923.Google Scholar
King, E. J., Yoganathan, M. & Nagelschmidt, G. (1958). The effect of diamond dust alone and mixed with quartz on the lungs of rats. Br. J. ind. Med. 15, 9295.Google Scholar
King, E. J., Zaidi, S., Harrison, C. V. & Nagelschmidt, G. (1958). The tissue reaction in the lungs of rats after the inhalation of coal dust containing 2% of quartz. Br. J. ind. Med. 15, 172177.Google Scholar
King, E. J., Sivalingam, S., Trevella, W. & Nagelschmidt, G. (1962). The effects of small amounts of quartz in experimental pneumoconiosis. Ann. occup. Hyg. 5, 177182.Google Scholar
Kleinerman, J. (1974). Industrial pulmonary diseases: silicosis, asbestosis, and talc pneumoconiosis. In Textbook of Pulmonary Diseases (ed. Baum, G. L.), pp. 489507. Boston: Little, Brown and Co.Google Scholar
Kriegseis, W., Biederbick, R., Boese, J., Robock, K. & Scharmann, A. (1976). Investigations into the determination of the cytotoxicity of quartzdust by physical method. In Inhaled Particles and Vapours, vol. IV (ed. Walton, W. A.), pp. 345359. B.O.H.S., Edinburgh, 1975. London: Pergamon.Google Scholar
Krinsley, D. H. & Smalley, I. J. (1973). Sand. An. Scient. 60, 286291.Google Scholar
Lancer, A. M. & Mackler, A. D. (1972). Mineral particles and human disease. In The Encyclopedia of Geochemistry and Environmental Sciences, vol. iv (ed. Fairbridge, R. W.), pp. 730739. New York: Van Nostrand Reinhold.Google Scholar
Langer, A. M. & Wolff, M. S. (1978). Asbestos carcinogenesis. In Inorganic and Nutritional Aspects of Cancer (ed. Schrauzer, G. N.), pp. 2955. New York, Plenum.CrossRefGoogle Scholar
Langer, A. M., Wolff, M. S., Rohl, A. N. & Selikoff, I. J. (1978). Variation of properties of chrysotile asbestos subjected to milling. J. Toxicol. Environ. Hlth 4, 173188.CrossRefGoogle ScholarPubMed
Lebouffant, L., Daniel, H. & Umartin, J. C. (1976). The therapeutic action of aluminum compounds on the development of experimental lesions produced by pure quartz on mixed dust. In Inhaled Particles and Vapours, vol. iv (ed. Walton, W. A.), pp. 389401. B.O.H.S., Edinburgh, 1975. London: Pergamon.Google Scholar
Lindstrom, L. (1968). Surface and bond-forming properties of quartz and silicate minerals and their application in mineral processing techniques. Acta polytech. scand. (Chem. Metall.), series no. 75, 149 pp.Google Scholar
Marks, J., Mason, M. A. & Nagelschmidt, G. (1956). A study of dust toxicity using a quantitative tissue culture technique. Br. J. ind. Med. 13, 187191.Google Scholar
Marks, J. & Nagelschmidt, G. (1959). Study of the toxicity of dust with use of the in vitro dehydrogenase technique. Archs ind. Hlth. 20, 383389.Google Scholar
Mason, B. (1958). Principles of Geochemistry, pp. 8688. New York: John Wiley.Google Scholar
Mcfee, D. R. & Tye, R. (1965). Adsorption of proteins on dusts related to the pneumoconioses: selectivity. J. occup. Med. 7, 269275.Google Scholar
Miller, S. D. & Zarkower, A. (1976). Silica-induced alterations of murine lymphocyte immunocompetence and suppression of B lymphocyte immunocompetence: a possible mechanism. J. reticuloendothel. Soc. 19, 4761.Google Scholar
Monitanty, G. P., Roberts, D. C., King, E. J., Harrison, C. V. & Nagelschmidt, G. (1953). The effect of feldspar, slate and quartz on the lungs of rats. J. Path. Bact. 65, 501512.CrossRefGoogle Scholar
Monterra, C. & Low, M. J. D. (1973). Reactive silica: Novel aspects of the chemistry of silica surfaces. Ann. N.Y. Acad. Sci. 220, 133244.Google Scholar
Nagelschmidt, G. (1949). Mineralogical aspects of pneumokoniosis research. Research 2–4, 170175.Google Scholar
Nagelschmidt, G., Nelson, E. S., King, E. J. & Harrison, C. V. (1954). The development of lymph nodes after injection of flint of variable size into the lungs of rats. Br. J. ind. Med. 11, 145150.Google Scholar
Nagelschmidt, G., Nelson, E. S., King, E. J., Attygalle, D. & Yoganathan, M. (1957). The recovery of quartz and other minerals from the lungs of rats. Archs. ind. Hlth 16, 188202.Google Scholar
Nagelschmidt, G. (1960). The relation between lung dust and lung pathology in pneuoconiosis. Bt. J. ind. Med. 17, 247259.Google Scholar
Nagelschmidt, G., Rivers, D., King, E. J. & Trevella, W. (1963). Dust and collagen content of lungs of coal-workers with progressive massive fibrosis. Br. J. industr. Med. 20, 181191.Google Scholar
Nash, T., Allison, A. C. & Harington, J. S. (1966). Physicochemical properties of silica in relation to its toxicity. Nature, Lond. no. 5033, 259261.Google Scholar
Paterson, M. S. & Wheatley, K. (1959). Solubility and heat of wetting of silica powders. J. appl. Chem. 9, 231240.Google Scholar
Pauling, L. (1960). The Nature of the Chemical Bond, pp. 449504. New York: Cornell University Press.Google Scholar
Pernis, B., Vigliani, E. C. & Selikoff, I. J. (1965). Rheumatoid factors in serum of individuals exposed to asbestos. Ann. N. Y. Acad. Sci. 132, 112120.Google Scholar
Reichel, G., Bauer, H. D. & Bruckmann, E. (1976). The action of quartz in the presence of iron hydroxides in the human lung. In Inhaled Particles and Vapours, vol. iv (ed. Walton, W. A.), pp. 403411. B.O.H.S., Edinburgh, 1975. London: Pergamon Press.Google Scholar
Rivers, D., Wise, M. E., King, E. J. & Nagelschmidt, G. (1960). Dust content, radiology, and pathology in simple pneumoconiosis of coal workers. Br. J. ind. Med. 17, 87108.Google Scholar
Rohl, A. N., Langer, A. M., Selikoff, I. J., Tordini, A., Klimentidis, R., Bowes, D. R. & Skinner, D. L. (1976). Consumer talcums and powders: mineral and chemical characterization. J. Toxicol. & Environ. Health 2, 255284.CrossRefGoogle ScholarPubMed
Ross, H. F., King, E. J., Yoganathan, M. & Nagelschmidt, G. (1962). Inhalation experiments with coal dust containing 5 percent, 10 percent, 20 percent and 40 percent quartz: tissue reactions in the lungs of rats. Ann. occup. Hyg. 5, 149161.Google Scholar
Rowsell, E. V., Nagelschmidt, G. & Curran, R. C. (1960). The effects of dusts on peritoneal cells within diffusion chambers. J. Path. Bact. 80, 337344.Google Scholar
Rüttner, J. R. & Isker, K. M. (1956). Die Adsorption von Serumeiweiskörpen an Quartz und andere Mineralien: Beitrag zur Pathogenese der Silikose. Schweiz. med. Wschr. 3, 6367.Google Scholar
Scheel, L. D., Smith, B., Vanriper, J. & Fleisher, E. (1954). Toxicity of silica. II. Characteristics of protein films adsorbed by quartz. Archs ind. Hyg. 9. 2936.Google Scholar
Schlipköter, H. W. (1974) Annual Report 1974, Medical Institute for Air Hygiene and Silicosis Research in Düsseldorf, vol. 7. pp. 415, Essen: W. Giradet.Google Scholar
Summerton, J., Hoenig, S., Butler, C. & Chvapil, M. (1977). The mechanism of hemolysis by silica and its bearing on silicosis. Exp. & Molec. Path. 26 113128.Google Scholar
Suratt, P. M., Winn, W. C. Jr, Brody, A. R., Bolton, W. K. & Giles, R. D. (1977). Acute silicosis in tombstone sandblasters. Am. Rev. resp. Dis. 115, 521529.Google Scholar
Vyskčil, J., Sklenský, B., Nasir, M. & Taˇeva, J. (1973). The effect of polyvinylpyridine-N-oxide on changes of the lungs in rabbits after a short inhalation of coal dust. Pracovni Lék. 25, 134137.Google Scholar
Wagner, M. F. & Wagner, J. C. (1972). Lymphomas in the Wistar rat after intrapleural inoculation of silica. J. natn. Cancer Inst. 49, 8189.Google ScholarPubMed
Wahlstrom, E. E. (1956). Introduction to Theoretical Igneous Petrology, pp. 56, 47–50, 90. New York: John Wiley.Google Scholar
Wheatley, K. (1959). Measurement of the surface area of tridymite. J. appl. Chem. 9, 159162.Google Scholar
Wheatley, R. (1957). Surface properties of silica in relation to silicosis. Research 10, 7677.Google Scholar
Wolfe, R. W. & Giese, R. F. Jr. (1974). The interlayer bonding in one-layer kaolin structures. Clays & Clay Minerals 22, 137140.CrossRefGoogle Scholar
Wolff, M. S. & Langer, A. M. (1978). The molecular basis for mineral interactions in biological systems. (Work in progress.)Google Scholar
Worth, G. & Schiller, E. (1954). Die Pneumokoniosen. 897 pp. Cologne: Staufen-Verlag.Google Scholar
Xipell, J. M., Ham, K. N., Price, C. G. & Thomas, D. P. (1977). Acute silico lipoproteinosis. Thorax 32, 104111.Google Scholar
Zaidi, S. H., King, E. J., Harrison, C. V. & Nagelschmidt, G. (1956). Fibrogenic activity of different forms of free silica. Arch. ind. Hlth 15, 112121.Google Scholar
Ziskind, M., Jones, R. N. & Weill, H. (1976). Silicosis (State-of-the-art). Am. Rev. resp. Dis 115, 643665Google Scholar