Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-23T08:42:02.878Z Has data issue: false hasContentIssue false

Control of muscle contraction

Published online by Cambridge University Press:  17 March 2009

Setsuro Ebashi
Affiliation:
Department of Pharmacology, Faculty of Medicine, University of Tokyo, Tokyo
Makoto Endo
Affiliation:
Department of Pharmacology, Faculty of Medicine, University of Tokyo, Tokyo
Iwao Ohtsuki
Affiliation:
Department of Pharmacology, Faculty of Medicine, University of Tokyo, Tokyo

Extract

As is well known, the memorable discovery of Galvani (1791) was followed by the development of two new fields of science, electrochemistry and electrophysiology. During the course of this development, the most remarkable feature of the original finding, i.e. ‘contraction of muscle induced by a piece of metal’, gradually came to be ignored. As a consequence, the simple question as to how electrical stimulation might induce muscle contraction was left unanswered until the middle of this century, when several physiologists became aware of the crucial nature of the problem and tried to attack it from various directions. This resulted in a marked progress of physiological and morphological studies which were intentionally or unintentionally concerned with the mechanism of the link between excitation, that is the electrical phenomenon at the surface membrane, and the contractile process.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baker, P. F., Blaustein, M. P., Hodgkin, A. L. & Steinhardt, R. A. (1969). The influence of calcium on sodium efflux in squid axons. J. Physiol., Lond. 200, 431–58.CrossRefGoogle ScholarPubMed
Bárány, M. (1967). ATPase activity of myosin correlated with speed of muscle shortening. J. gen. Physiol. 50, no. 6, part 2, 197216.CrossRefGoogle ScholarPubMed
Bendall, I. R. (1953). Further observations on a factor (the ‘Marsh’ factor) effecting relaxation of ATP-shortened muscle-fibre models, and the effect of Ca and Mg ions upon it. J. Physiol., Lond. 121, 232–54.CrossRefGoogle Scholar
Buller, A. J., Eccles, J. C. & Eccles, R. M. (1960). Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses. J. Physiol., Lond. 150, 417–39.CrossRefGoogle ScholarPubMed
Buller, A. I. & Mommaerts, W. F. H. M. (1969). Myofibrillar ATPase as a determining factor for contraction velocity, and its changes upon experimental cross-innervation. J. Physiol., Lond. 201, 46 P.Google ScholarPubMed
Cohen, C. & Longley, W. (1966). Tropomyosin paracrystals formed by divalent cations. Science 152, 794–6.CrossRefGoogle ScholarPubMed
Conway, D. & Sakai, T. (1960). Caffein contracture. Proc. natn. Acad. Sci. U.S.A. 46, 897.CrossRefGoogle ScholarPubMed
Costantin, L. L. (1968). The effect of calcium on contraction and conductance thresholds in frog skeletal muscle. J. Physiol., Lond. 195, 119–32.CrossRefGoogle ScholarPubMed
Davies, R. E., Kushmerick, M. J. & Larson, R. E. (1967). ATP, activation, and the heat of shortening of muscle. Nature, Lond. 214, 148–51.CrossRefGoogle ScholarPubMed
Douglas, W. W. (1968). Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Brit. J. Pharmacol. 34, 451–74.CrossRefGoogle ScholarPubMed
Ebashi, S. & Endo, M. (1968). Calcium ions and muscle contraction. Progr. Biophys. Mol. Biol. 18, 123–83.CrossRefGoogle Scholar
Ebashi, S., Iwakura, H., Nakajima, H., Nakamura, R. & Ooi, Y. (1966). New structural proteins from dog heart and chicken gizzard. Biochem. Z. 345, 201–11.Google Scholar
Ebashi, S., Kodama, A. & Ebashi, F. (1968). Troponin I. Preparation and physiological function. J. Biochem., Tokyo 64, 465–77.CrossRefGoogle ScholarPubMed
Endo, M. (1967). Regulation of contraction–relaxation cycle (in Japanese). Proc. XVII Gen. Ass. Japan Med. Congr. I, 193–7.Google Scholar
Endo, M., Nonomura, Y., Masaki, T., Ohtsuki, I. & Ebashi, S. (1966). Localization of native tropomyosin in relation to striation patterns. J. Biochem., Tokyo 60, 605–8.CrossRefGoogle Scholar
Endo, M., Tanaka, M. & Ebashi, S. (1968). Release of calcium from sarcoplasmic reticulum in skinned fibers of the frog. Proc. XXIV Int. Congr. Physiol. Sci. 7, 126.Google Scholar
Ford, L. E. & Podolsky, R. J. (1968). Force development and calcium movements in skinned muscle fibers. Fedn Proc. 27, 375.Google Scholar
Fujino, M., Yamaguchi, T. & Suzuki, K. (1961). Glycerol effect and the mechanism linking excitation of the plasma membrane with contraction. Nature, Lond. 192, 1159–61.CrossRefGoogle ScholarPubMed
Fujita, K. (1954). Action of adenosine derivatives on muscle activity. II. Glycerol treated muscle and ‘relaxing factor’ (in Japanese). Folia pharmac. jap. 50, 183–92.CrossRefGoogle Scholar
Gage, P. W. & Eisenberg, R. S. (1967). Action potentials without contraction in frog skeletal muscle fibers with disrupted transverse tubules. Science 158, 1702–3.CrossRefGoogle ScholarPubMed
Galvani, L. (1791). Le viribus electricitatis in motu musculari commentarius. Istituto scienze orti liberali Bologna 7, 363418.Google Scholar
Hanson, J. (1968). Recent X-ray diffraction studies of muscle. Q. Rev. Biophys. I, 177216.CrossRefGoogle Scholar
Hasselbach, W. (1964). Relaxing factor and relaxation of muscle. Progr. Biophys. Mol. Biol. 14, 167222.CrossRefGoogle Scholar
Heilbrunn, L. V. & Wiercinski, F. J. (1947). The action of various cations on muscle protoplasm. J. cell. comp. Physiol. 29, 1532.CrossRefGoogle ScholarPubMed
Heistracher, P. & Hunt, C. C. (1969 a). The relation of membrane changes to contraction in twitch muscle fibres. J. Physiol., Lond. 201, 589611.CrossRefGoogle ScholarPubMed
Heistracher, P. & Hunt, C. C. (1969b). Contractile repriming in snake twitch muscle fibres. J. Physiol., Lond. 201, 613–26.CrossRefGoogle ScholarPubMed
Hellam, D. C. & Podolsky, R. J. (1966). The relation between calcium concentration and isometric force in skinned frog muscle fibers. Fedn Proc. 25, 466.Google Scholar
Hellam, D. C. & Podolsky, R. J. (1969). Force measurements in skinned muscle fibres. J. Physiol., Lond. 200, 807–19.CrossRefGoogle ScholarPubMed
Higashi, S. & Ooi, T. (1968). Crystals of tropomyosin and native tropomyosin. J. mol. Biol. 34, 699701.CrossRefGoogle ScholarPubMed
Howell, J. N. (1969). A lesion of the transverse tubule of skeletal muscle. J. Physiol., Lond. 201, 515–33.CrossRefGoogle ScholarPubMed
Huxley, A. F. (1957). Muscle structure and theories of contraction. Progr. Biophys. biophys. Chem. 7, 255318.CrossRefGoogle ScholarPubMed
Huxley, H. E. (1969). The mechanism of muscular contraction. Science 164, 1356–66.CrossRefGoogle ScholarPubMed
Ikemoto, N., Kitagawa, S. & Gergely, J. (1966). Electron microscopic investigation of the actin and myosin. Biochem. Z. 345, 410–26.Google Scholar
Jöbsis, F. F. & O'Connor, M. J. (1966). Calcium release and reabsorption in the sartorius muscle of the toad. Biochem. biophys. Res. Commun. 25, 246–52.CrossRefGoogle ScholarPubMed
Julian, F. J. (1969). Activation in a skeletal muscle contraction model with a modification for insect fibrillar muscle. Biophys. J. 9, 547–70.CrossRefGoogle Scholar
Kamada, T. & Kinosita, H. (1943). Disturbances initiated from naked surface of muscle protoplasm. Jap. J. Zool. 10, 469–93.Google Scholar
Kao, C. Y. & Stanfield, P. R. (1968). Action of some anions on electrical properties and mechanical threshold of frog twitch muscle. J. Physiol., Lond. 198, 291309.CrossRefGoogle ScholarPubMed
Kelly, R. E. & Rice, R. V. (1968). Localization of myosin filaments in smooth muscle. J. cell Biol. 37, 105–16.CrossRefGoogle ScholarPubMed
Laki, K., Maruyama, K. & Kominz, D. R. (1962). Evidence for the interaction between tropomyosin and actin. Archs Biochem. Biophys. 98, 323–30.CrossRefGoogle ScholarPubMed
Lüttgau, H. C. & Oetliker, H. (1968). The action of caffeine on the activation of the contractile mechanism in striated muscle fibres. J. Physiol., Lond. 194, 5174.CrossRefGoogle Scholar
Marsh, B. B. (1952). The effects of adenosine triphosphate on the fibre volume of a muscle homogenate. Biochim. biophys. Acta 9, 247–60.CrossRefGoogle ScholarPubMed
Maruyama, K. (1965). Some physico–chemical properties of β-actinin, ‘actin-factor’, isolated from striated muscle. Biochim. biophys. Acta 102, 542–8.CrossRefGoogle Scholar
Masaki, T., Endo, M. & Ebashi, S. (1967). Localization of 6S component of α-actinin at Z-band. J. Biochem., Tokyo 62, 630–32.CrossRefGoogle ScholarPubMed
Masaki, T., Takaiti, O. & Ebashi, S. (1968). ‘M-substance’, a new protein constituting the M-line of myofibrils. J. Biochem., Tokyo 64, 909–10.CrossRefGoogle ScholarPubMed
Natori, R. (1954). The property and contraction process of isolated myofibrils. Jikeikai med. J. I, 119–26.Google Scholar
Natori, R. (1955). Repeated contraction and conductive contraction observed in isolated myofibrils. Jikeikai med. J. 2, 15.Google Scholar
Nayler, W. G. (1963). Effect of nicotine on cardiac muscle contractions and radiocalcium movement. Am. J. Physiol. 205, 890–6.CrossRefGoogle ScholarPubMed
Niedergerice, R. (1963a). Movements of Ca in frog heart ventricles at rest and during contractures. J. Physiol., Lond. 167, 515–50.CrossRefGoogle Scholar
Niedergerke, R. (1963b). Movements of Ca in beating ventricles of the frog heart. J. Physiol., Lond. 167, 551–80.CrossRefGoogle ScholarPubMed
Niedergerke, R., Page, S. & Talbot, M. S. (1969). Calcium fluxes in frog heart ventricles. Pflügers Arch. ges. Physiol. 306, 357–60.CrossRefGoogle ScholarPubMed
Nonomura, Y. (1968). Myofilaments in smooth muscle of guinea pig's taenia coli. J. cell Biol. 39, 741–5.CrossRefGoogle Scholar
Nonomura, Y., Drabikowski, W. & Ebashi, S. (1968). The localization of troponin in tropomyosin paracrystals. J. Biochem., Tokyo 64, 419–22.CrossRefGoogle ScholarPubMed
Ogawa, Y. (1968). The apparent binding constant of glycoletherdiaminetetraacetic acid for calcium at neutral pH. J. Biochem., Tokyo 64, 255–7.CrossRefGoogle ScholarPubMed
Ogawa, Y. (1969). Some properties of frog's fragmented sarcoplasmic reticulum with particular reference to its response to drugs. J. Biochem., Tokyo (in press).Google Scholar
Ohtsuki, I. (1969). ATP-dependent Ca uptake of brain microsomes. J. Biochem., Tokyo 66, 645–50.Google Scholar
Ohtsuki, I., Masaki, T., Nonomura, Y. & Ebashi, S. (1967). Periodic distribution of troponin along the thin filament. J. Biochem., Tokyo 61, 817–19.CrossRefGoogle Scholar
Oiucand, T. K. (1968). Facilitation of heart muscle contraction and its dependence on external calcium and sodium. J. Physiol., Lond. 196, 311–25.Google Scholar
Peachey, L. D. (1965). The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J. cell Biol. 25, no. 3, part 2, 209–31.CrossRefGoogle ScholarPubMed
Reiter, M. (1964). Electrolytes and myocardial contractility. In Pharmacology of cardiac function, ed. Krayer, O. and Kovaĩikovä, A., pp. 2542. Oxford: Pergamon Press.CrossRefGoogle Scholar
Reuter, H. & Beeler, G. W. Jr. (1969). Calcium current and activation of contraction in ventricular myocardial fibers. Science 163, 399401.CrossRefGoogle ScholarPubMed
Reuter, H. & Seitz, N. (1968). The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J. Physiol., Lond. 195, 451–70.CrossRefGoogle ScholarPubMed
Ridgway, E. B. & Ashley, C. C. (1967). Calcium transients in single muscle fibers. Biochem. biophys. Res. Commun. 29, 229–34.CrossRefGoogle ScholarPubMed
Sakai, T. (1965). The effects of temperature and caffeine on activation of the contractile mechanism in the striated muscle fibres. Jikeikai med. J. 12, 88102.Google Scholar
Sandow, A. (1965). Excitation-contraction coupling in skeletal muscle. Pharmacol. Rev. 17, 265320.Google ScholarPubMed
Schädler, M. (1967). Proportionale Aktivierung von ATP-ase-Aktivität und Kontraktionsspannung durch Calciumionen in isolierten kontraktilen Strukturen verschiedener Muskelarten. Pflügers Arch. ges. Physiol. 7090.CrossRefGoogle Scholar
Szent-Györgyi, A. (1949). Free-energy relations and contraction of actomyosin. Biol. Bull. mar. biol. Lab. Woods Hole 96, 140–61.CrossRefGoogle ScholarPubMed
Szent-Györgyi, A. (1951). Chemistry of muscular contraction, 2nd ed.New York: Academic Press.Google Scholar
Tonomura, Y., Watanabe, S. & Morales, M. (1969). Conformational changes in the molecular control of muscle contraction. Biochemistry, N.Y. 8, 2171–6.CrossRefGoogle ScholarPubMed
Wakabayashi, T. & Ebashi, S. (1968). Reversible change in physical state of troponin induced by calcium ion. J. Biochem., Tokyo 64, 731–2.CrossRefGoogle ScholarPubMed
Weber, A. (1966). Energized calcium transport and relaxing factors. In Current topics in bioenergetics, ed. Sanadi, D. R., pp. 203–54. New York: Academic Press.Google Scholar
Weber, A. (1968). The mechanism of the action of caffeine on sarcoplasmic reticulum. J. gen. Physiol. 52, 760–72.CrossRefGoogle ScholarPubMed
Weber, A. & Herz, R. (1968). The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum. J. gen. Physiol. 52, 750–9.CrossRefGoogle ScholarPubMed
Winegrad, S. (1968). Intracellular calcium movements of frog skeletal muscle during recovery from tetanus. J. gen. Physiol. 51, 6583.CrossRefGoogle ScholarPubMed