Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-23T13:22:54.517Z Has data issue: false hasContentIssue false

Classification of macromolecular assemblies studied as ‘single particles’

Published online by Cambridge University Press:  17 March 2009

Joachim Frank
Affiliation:
Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany, New York 12201-0509, USA and School of Public Health, State University at Albany, New York 12222, USA

Extract

In order to study proteins that do not occur in two- or three-dimensionally ordered form, one may take two different approaches: either search for conditions that induce the formation of crystals, and proceed with the established methods of X-ray or electron crystallography, or attempt to study the molecules in the form of single particles with the EM. Although many proteins have been successfully crystallized, and some general recipes for inducing ordered arrangement have been found (Mannella, 1984; Uzgiris & Kornberg, 1983), there exists a large number of proteins and protein assemblies that have resisted such attempts for a long time. Furthermore, there are macromolecular assemblies, associated with membranes and engaged in switching or gating, whose function is tied to their occurrence in isolated form, and hence are best studied without extraction from the membrane. For these reasons, the single-particle approach to the study of macromolecular structure (Frank et al. 1978, 1981; Radermacher et al. 1987a, b; for recent reviews, see Frank et al. 1985, 1988e; Frank, 1989) has found numerous applications after initial technical and conceptual hurdles were overcome. Although atomic resolution cannot be achieved with this approach for a variety of reasons, a quantitative description of architecture on the quaternary level is nevertheless possible, as exemplified in the 3D studies of ribosomal particles (overviews, see Frank et al. 1988a) and, most recently, the junctional channel complex (Wagenknecht et al. 1989a).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aitkin, M. & Rubin, D. B. (1985). Estimation and hypothesis testing in finite mixture models. J. R. Statist. Soc. B 47, 6775.Google Scholar
Akey, C. W. (1989). Interactions and structure of the nuclear pore complex revealed by cryo-electron microscopy. J. cell Biol. 109, 955970.CrossRefGoogle ScholarPubMed
Anderberg, M. R. (1973). Cluster Analysis for Applications. New York: Academic Press.Google Scholar
Beijbom, L., Larsson, U., Kaveus, U. & Hebert, H. (1988). Structure analysis of fibrinogen by electron microscopy and image processing. J. Ultrastruct. Mol. Struct. Anal. 98, 312319.CrossRefGoogle ScholarPubMed
Benzecri, J. P. (1969). Statistical analysis as a tool to make patterns emerge from data. In Methodologies of Pattern Recognition (ed. Watanabe, S.), pp. 3574. New York: Academic Press.CrossRefGoogle Scholar
Bijlholt, M. M. C., van Heel, M. G. & van Bruggen, E. F. J. (1982). Comparison of 4 × 6-meric haemocyanins from three different arthropods using computer alignment and correspondence analysis. J. molec. Biol. 161, 139153.CrossRefGoogle ScholarPubMed
Boekema, E. J., Berden, J. A. & van Heel, M. G. (1986). Structure of mitochondrial F1-ATPase studied by electron microscopy and image processing. Biochem. biophys. Acta 851, 353360.Google ScholarPubMed
Boekema, E. J. & van Heel, M. (1989). Molecular shape of Lumbricus terrestris erythrocruorin studied by electron microscopy and image analysis. Biochim. biophys. Acta 957, 370379.CrossRefGoogle Scholar
Boice, B. (1973). [Review of exhibits in New York City.] Artforum, 11 1973, pp. 8385.Google Scholar
Boisset, N. (1990). Thesis. Université François-Rabelais, Tour.Google Scholar
Boisset, N., Frank, J., Taveau, J.-C., Billiald, P., Motta, G., Lamy, J., Sizaret, P. Y. & Lamy, J. (1988 a). Intramolecular localization of epitopes within an oligomeric protein by immunoelectron microscopy and image processing. Proteins 3, 161183.CrossRefGoogle ScholarPubMed
Boisset, N., Taveau, J.-C., Barray, M., van Leuven, F., Delain, E. & Lamy, J. N. (1988 b). Image analysis and three-dimensional model of chymotrypsin-transformed human alpha-2 macroglobulin complexed with a monoclonal antibody specific for this configuration. Biol. Cell 64, 4555.CrossRefGoogle Scholar
Boisset, N., Wagenknecht, T., Radermacher, M., Frank, J. & Lamy, J. N. (1989 a). 3D reconstruction of Androctonus australis haemocyanin from tilted EM views. In Invertebrate Dioxygen Carriers (ed. Preaux, G.). Leuven: University of Leuven Press (Belgium) (in the press).Google Scholar
Boisset, N., Taveau, J.-C., Pochon, F., Tardieu, A., Barray, M., Lamy, J. N. & Delain, E. (1989 b). Image processing of proteinase- and methylamine-transformed human alpha-2 macroglobulin. J. biol. Chem. 264, 1204612052.CrossRefGoogle ScholarPubMed
Boisset, N., Taveau, J.-C., Lamy, J., Wagenknecht, T., Radermacher, M. & Frank, J. (1989 c). Three-dimensional reconstruction of the native Androctonus australis haemocyanin from single tilted electron microscopic views (in preparation).CrossRefGoogle Scholar
Boisset, N., Taveau, J.-C. & Lamy, J. N. (1989 d). An approach to the architecture of Scutigera cleoptrata haemocyanin by electron microscopy and image processing. Biol. Cell (in the press).CrossRefGoogle Scholar
Borland, L. & van Heel, M. (1990). Classification of image data in conjugate representation spaces. J. Opt. Soc. Am. (in the press).CrossRefGoogle Scholar
Bretaudiere, J.-P. & Frank, J. (1986). Reconstitution of molecule images analysed by correspondence analysis: a tool for structural interpretation. J. Microsc. 144, 114.CrossRefGoogle ScholarPubMed
Bretaudiere, J.-P., Tapon-Bretaudiere, J. & Stoops, J. K. (1988). Structure of native alpha-2 macroglobulin and its transformation to the protease-bound form. Proc. natn. Acad. Sci. U.S.A. 85, 14371441.CrossRefGoogle Scholar
Bullough, P. & Henderson, R. (1987). Use of spot-scan procedure for recording low-dose micrographs of beam-sensitive specimens. Ultramicroscopy 21, 223230.CrossRefGoogle Scholar
Carazo, J.-M., Wagenknecht, T., Radermacher, M., Mandiyan, V., Boublik, M. & Frank, J. (1988). Three-dimensional structure of 50S Escherichia coli ribosomal subunits depleted of proteins L7/L12. J. molec. Biol. 201, 393404.CrossRefGoogle Scholar
Carazo, J.-M., Wagenknecht, T. & Frank, J. (1989 a). Variations of the three-dimensional structure of the Escherichia coli ribosome in the range of overlap views. Biophys. J. 55, 465477.CrossRefGoogle ScholarPubMed
Carazo, J.-M., Rivera, F. F., Zapata, E. L., Radermacher, M. & Frank, J. (1989 b). Fuzzy-sets-based classification of electron microscopy images of biological macro-molecules with an application to ribosomal particles. J. Microsc. (in the press).CrossRefGoogle Scholar
Cowley, J. M. & Spence, J. C. H. (1981). Convergent beam microdiffraction from small crystals. Ultramicroscopy 6, 359366.CrossRefGoogle Scholar
Crepeau, R. H. & Fram, E. K. (1981). Reconstruction of imperfectly ordered zinc-induced tubulin sheets using cross-correlation and real-space averaging. Ultramicroscopy 6, 718.CrossRefGoogle ScholarPubMed
Crowther, R. A. & Amos, L. A. (1971). Harmonic analysis of electron microscope images with rotational symmetry. J. molec. Biol. 60, 123130.CrossRefGoogle ScholarPubMed
Crowther, R. A., DeRosier, D. J. & Klug, A. (1970). The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. Lond. A 317, 319340.Google Scholar
Diday, E. (1971). La méthode des nuées dynamiques. Rev. Stat. Appl. 19, 1934.Google Scholar
Engelhardt, H., Guckenberger, R., Hegerl, R. & Baumeister, W. (1985). High resolution shadowing of freeze-dried bacterial photosynthetic membranes: multivariate statistical analysis and surface relief reconstruction. Ultramicroscopy 16, 395410.CrossRefGoogle Scholar
Erickson, H. P. & Klug, A. (1971). Measurement and compensation of defocusing and aberrations by Fourier processing of electron micrographs. Phil. Trans. R. Soc. Lond. B 261, 105118.Google Scholar
Foucault, M. (1973). The Order of Things. Vintage Books.Google Scholar
Frank, J. (1982 a). New methods for averaging non-periodic objects and distorted crystals in biologic electron microscopy. Optik 63, 6789.Google Scholar
Frank, J. (1982 b). Differential averaging of single macromolecule images using multivariate statistical classification. Proc. 40th Ann. Meeting EMSA (ed. Bailey, G. W.), pp. 706709. Baton Rouge: Claitor's Publishing Division.Google Scholar
Frank, J. (1984). The role of multivariate statistical analysis in solving the architecture of the Limulus polyphemus molecule. Ultramicroscopy 13, 153164.CrossRefGoogle Scholar
Frank, J. (1989). Image analysis of single macromolecules. Electron Microsc. Rev. 2, 5374.CrossRefGoogle ScholarPubMed
Frank, J. & van Heel, M. (1982 a). Correspondence analysis of aligned images of biological particles. J. molec. Biol. 161, 134137.CrossRefGoogle ScholarPubMed
Frank, J. & van Heel, M. (1982 b). Averaging techniques and correspondence analysis. In Proc. 10th Int. Congr. Electron Microsc., vol. 1, pp. 107114.Google Scholar
Frank, J., Goldfarb, W., Eisenberg, D. & Baker, T. S. (1978). Reconstruction of glutamine synthetase using computer averaging. Ultramicroscopy 3, 283290.CrossRefGoogle ScholarPubMed
Frank, J., Verschoor, A. & Boublik, M. (1981). Computer averaging of electron micrographs of 40S ribosomal subunits. Science 214, 13531355.CrossRefGoogle ScholarPubMed
Frank, J., Verschoor, A. & Boublik, M. (1982). Multivariate statistical analysis of ribosome electron micrographs. L and R lateral views of the 40S subunit from HeLa cells. J. molec. Biol. 161, 107137.CrossRefGoogle Scholar
Frank, J., Verschoor, A. & Wagenknecht, T. (1985). Computer Processing of Electron Microscope Images of Single Macromolecules. In New Methodologies in Studies of Protein Configuration (ed. Wu, T. T.), pp. 3689. New York: Van Nostrand Reinold.Google Scholar
Frank, J., Radermacher, M., Wagenknecht, T. & Verschoor, A. (1986). A new method for three-dimensional reconstruction of single macromolecules using low-dose electron micrographs. Ann. New York Acad. Sci. 483, 7787.CrossRefGoogle ScholarPubMed
Frank, J., Verschoor, A., Wagenknecht, T., Radermacher, M. & Carazo, J.-M. (1988 a). A new non-crystallographic image-processing technique reveals the architecture of ribosomes. Trends Biochem. Sci. 13, 123127.CrossRefGoogle ScholarPubMed
Frank, J., Bretaudiere, J.-P., Carazo, J.-M., Verschoor, A. & Wagenknecht, T. (1988 b). Classification of images of biomolecular assemblies: a study of ribosomes and ribosomal subunits of Escherichia coli. J. Microsc. 150, 99115.CrossRefGoogle ScholarPubMed
Frank, J., Chiu, W. & Degn, L. (1988 c). The characterization of structural variations within a crystal field. Ultramicroscopy 26, 345360.CrossRefGoogle ScholarPubMed
Frank, J., Carazo, J.-M. & Radermacher, M. (1988 d). Refinement of the random-conical reconstruction technique using multivariate statistical analysis (MSA) and classification. Eur. J. Cell Biol. 48, 143146.Google Scholar
Frank, J., Radermacher, M., Wagenknecht, T. & Verschoor, A. (1988 e). Studying ribosome structure by electron microscopy and computer-image processing. Methods in Enzymology 164, 335.CrossRefGoogle ScholarPubMed
Frank, J., Verschoor, A., Radermacher, M. & Wagenknecht, T. (1989 a). Morphologies of eubacterial and eukaryotic ribosomes as determined by 3-D electron microscopy. In Ribosomes (ed. Hill, W.). New York: Springer-Verlag (in the press).Google Scholar
Frank, J., Chiu, W. & Henderson, R. (1989 b) (in preparation).Google Scholar
Fukunaga, K. (1972). Introduction to Statistical Pattern Recognition. New York: Academic Press.Google Scholar
Furcinitti, P. S., van Oostrum, J. & Burnett, R. M. (1989). Adenovirus polypeptide IX revealed as capsid cement by difference images from electron microscopy and crystallography. EMBO J. 8, 35633570.CrossRefGoogle ScholarPubMed
Gelfand, M. S. & Goncharov, A. B. (1989). Spatial rotational alignment of identical particles in the case of (almost) coaxial projections. Ultramicroscopy 27, 301306.CrossRefGoogle ScholarPubMed
Gogol, E. P., Lucken, U., Bork, T. & Capaldi, R. A. (1989). Molecular architecture of the E. coli F1 ATPase. Biochemistry 28, 47094716.CrossRefGoogle Scholar
Goncharov, A. B. & Gelfand, M. S. (1988). Determination of mutual orientation of identical particles from their projections by the moments method. Ultramicroscopy 25, 317328.CrossRefGoogle Scholar
Goncharov, A. B., Vainshtein, B. K., Ryskin, A. I. & Vagin, A. A. (1988). Three-dimensional reconstruction of arbitrarily oriented identical particles from their electron photomicrographs. Sov. Phys. Crystallogr. 32, 504509.Google Scholar
Harauz, G., Boekema, E. J. & van Heel, M. (1988). Statistical image analysis of electron micrographs of ribosomal subunits. Methods in Enzymology 164, 3549.CrossRefGoogle ScholarPubMed
Harauz, G., Stoeffler-Meilicke, M. & van Heel, M. (1987). Characteristic views of prokaryotic 50S ribosomal subunits. J. molec. Evol. 26, 347357.CrossRefGoogle ScholarPubMed
Henderson, R., Baldwin, J. M., Downing, K. H., Lepault, J. & Zemlin, F. (1986). Structure of purple membrane from Halobacterium halobiwn: recording, measurement and evaluation of electron micrographs at 3·5 A resolution. Ultramicroscopy 19, 147178.CrossRefGoogle Scholar
Kessel, M., Radermacher, M. & Frank, J. (1985). The structure of the stalk surface layer of a brine pond microorganism: correlation averaging applied to a double layered lattice structure. J. Microscopy 139, 6374.CrossRefGoogle ScholarPubMed
Klug, A. & Berger, J. F. (1964). An optical method for the analysis of periodicities in electron micrographs and some observations on the mechanics of negative staining. J. molec. Biol. 10, 565569.CrossRefGoogle Scholar
Kunath, W. & Sack-Kongehl, H. (1989). Circular harmonic averaging of noisy single molecule images. Ultramicroscopy 27, 171184.CrossRefGoogle ScholarPubMed
Lamy, J., Lamy, J., Billiald, P., Sizaret, P.-Y., Cave, G., Frank, J. & Motta, G. (1985). Approach to the direct intramolecular localization of antigenic determinants in Androctonus australis haemocyanin with monoclonal antibodies by molecular immunoelectron microscopy. Biochemistry 24, 55325542.CrossRefGoogle Scholar
Lebart, L., Maurineau, A. & Warwick, K. M. (1984). Multivariate Descriptive Statistical Analysis. New York: John Wiley & Sons.Google Scholar
Leszczynski, K., Penczek, P. & Grochulski, W. (1985). Sugeno's fuzzy measure and fuzzy clustering. Fuzzy Sets and Systems 15, 147158.CrossRefGoogle Scholar
Mannella, C. A. (1984). Phospho-lipase induced crystallization of channels in mitochondrial outer membranes. Science 224, 165166.CrossRefGoogle Scholar
Mannella, C. A. & Frank, J. (1984). Negative staining characteristics of arrays of mitochondrial pore protein: use of correspondence analysis to classify different staining patterns. Ultramicroscopy 13, 93102.CrossRefGoogle ScholarPubMed
Mezzich, J. E. & Solomon, H. (1980). Taxonomy and Behavioral Science. London: Academic Press.Google Scholar
Ottensmeyer, F. P., Andrew, J. W., Bazett-Jones, D. P., Chan, A. S. K. & Hewitt, J. (1977). Signal-to-noise enhancement in dark field electron micrographs of vasopressin: filtering of arrays of images in reciprocal space. J. Microscopy 109, 259268.CrossRefGoogle ScholarPubMed
Penczek, P., Srivastava, S. & Frank, J. (1990). (in preparation).Google Scholar
Pujari, M. & Frank, J. (1990). Proc. 12th Intl. Congr. Electron Microsc., in the press.Google Scholar
Radermacher, M. (1988). Three-dimensional reconstruction of single particles from random and nonrandom tilt series. J. Electr. Microsc. Techn. 9, 359394.CrossRefGoogle ScholarPubMed
Radermacher, M. & Frank, J. (1984). Representation of objects reconstructed in 3D by surfaces of equal density. J. Microscopy 136, 7785.CrossRefGoogle Scholar
Radermacher, M. & Frank, J. (1985). Use of nonlinear mapping in multivariate image analysis of molecule projections. Ultramicroscopy 17, 117126. Erratum (1986) Ultramicroscopy 19, 75.CrossRefGoogle ScholarPubMed
Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, J. (1987 a). Three-dimensional structure of the large subunit from Escherichia coli. EMBO J. 6, 11071114.CrossRefGoogle ScholarPubMed
Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, J. (1987 b). Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J. Microscopy 146, 113136.CrossRefGoogle Scholar
Redner, R. A. & Walker, H. F. (1984). Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev. 26, 195239.CrossRefGoogle Scholar
Rosenfeld, A. & Kak, A. C. (1982). Digital Picture Processing. Academic Press.Google Scholar
Saxton, W. O. (1980). Matching and averaging over fragmented lattices. In Electron Microscopy at Molecular Dimensions (ed. Baumeister, W. and Vogell, W.), pp. 245255. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Saxton, W. O. & Baumeister, W. (1982). The correlation averaging of a regularly arranged bacterial cell envelope protein. J. Microscopy 127, 127138.CrossRefGoogle ScholarPubMed
Steinkilberg, M. & Schramm, H. (1980). Eine verbesserte Drehkorrelations-methode fuer die Strukturbestimmung biologischer Makromoleküle durch Mittelung elektronenmikroskopischer Bilder. Hoppe-Seyler's Z. Physiol. Chem. 361, 13631369.CrossRefGoogle Scholar
Steven, A. C., Roberts, C. R., Hay, J., Bisher, M. E., Pun, T. & Trus, B. L. (1987). Hexavalent capsomers of herpes simplex virus type 2: symmetry, shape dimensions, and oligomeric status. J. Virology 57, 578584.CrossRefGoogle Scholar
Thomas, D., Flifla, M. J., Escoffier, B., Barray, M. & Delain, E. (1988). Image processing of electron micrographs of human alpha-2-macroglobulin half-molecules induced by Cd. Biol. Cell 64, 3944.CrossRefGoogle Scholar
Unser, M. & Eden, M. (1989). Weighted averaging of a set of noisy images for maximum signal-to-noise ratio. IEEE Trans. Acoust. Speech Sign. Proc. (submitted).Google Scholar
Unser, M., Trus, B. L. & Steven, A. C. (1989). Normalization procedures and factorial representations for classification of correlation-aligned images: a comparative study. Ultramicroscopy 30, 299310.CrossRefGoogle ScholarPubMed
Unwin, P. N. T. & Henderson, R. (1975). Molecular structure determination by electron microscopy of unstained crystalline specimens. J. molec. Biol. 94, 425440.CrossRefGoogle ScholarPubMed
Uzgiris, E. E. & Kornberg, R. D. (1983). Two-dimensional crystallization technique for imaging macromolecules, with application to antigen-antibody-complement complexes. Nature 301, 14.CrossRefGoogle ScholarPubMed
Vainshtein, B. K. & Goncharov, A. B. (1986). Determination of the spatial orientation of arbitrarily arranged identical particles of an unknown structure from their projections. In Proc. XI Int. Cong. Electron Microsc. Kyoto vol. 1, pp. 459460.Google Scholar
van Heel, M. (1984). Multivariate statistical classification of noisy images (randomly oriented biological macromolecules). Ultramicroscopy 13, 165184.CrossRefGoogle ScholarPubMed
van Heel, M. (1985). Finding the characteristic views of macromolecules in extremely noisy electron micrographs. In Pattern Recognition in Practice, vol. 11 (ed. Gelsema, E. S. and Kanal, L. N.). Amsterdam: North Holland Publ. Co.Google Scholar
van Heel, M. (1987). Angular reconstitution: a posteriori assignment of projection directions for 3D reconstruction. Ultramicroscopy 21, 111124.CrossRefGoogle Scholar
van Heel, M. (1989). Classification of very large electron microscopical image data sets. Optik 82, 114126.Google Scholar
van Heel, M., Bretaudiere, J.-P. & Frank, J. (1982). Classification and multireference alignment of images of macromolecules. Proc. 10th Intl. Cong. Electron Microsc., Hamburg, vol. 1, pp. 563564.Google Scholar
van Heel, M. & Frank, J. (1981). Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6, 187194.Google ScholarPubMed
van Heel, M. & Harauz, G. (1988). Biological macromolecules explored by pattern recognition. In Image and Signal Processing in Electron Microscopy (ed. Hawkes, P. W., Saxton, W. O., Ottensmeyer, F. P. and Rosenfeld, A.), pp. 295301. Scanning Microscopy Suppl. 2. Chicago: Scanning Microscopy International.Google Scholar
van Heel, M. & Keegstra, W. (1981). IMAGIC: a fast flexible and friendly image analysis software system. Ultramicroscopy 7, 113130.CrossRefGoogle Scholar
van Heel, M. & Stoeffler-Meilicke, M. (1985). Characteristic views of E. coli and B. stearothermophilus 30S ribosomal subunits in the electron microscope. EMBO J. 4, 23892395.CrossRefGoogle Scholar
van Oostrum, J., Smith, P. R., Mohraz, M. & Burnett, R. M. (1987). The structure of the adenovirus capsid. III. Hexon packing determined from electron micrographs of capsid fragments. J. molec. Biol. 198, 7389.CrossRefGoogle ScholarPubMed
Verschoor, A. (1989). Thesis. State University of New York at Albany.Google Scholar
Verschoor, A. & Frank, J. (1989). The mammalian ribosome shows strong three-dimensional structural homology to the eubacterial ribosome. J. molec. Biol. (in the press).Google Scholar
Verschoor, A., Frank, J. & Boublik, M. (1985). Investigation of the 50S ribosomal subunit by electron microscopy and image analysis. J. Ultrastruct. Res. 92, 180189.CrossRefGoogle Scholar
Verschoor, A., Frank, J., Radermacher, M., Wagenknecht, T. & Boublik, M. (1984). Three-dimensional reconstruction of the 30S ribosomal subunit from randomly oriented particles. J. molec. Biol. 178, 677698.CrossRefGoogle Scholar
Verschoor, A., Frank, J., Wagenknecht, T. & Boublik, M. (1986). Computer-averaged views of the 70S monosome from Escherichia coli. J. molec. Biol. 187, 581590.CrossRefGoogle Scholar
Verschoor, A., Zhang, N.-Y., Wagenknecht, T., Obrig, T., Radermacher, M. & Frank, J. (1989). Three-dimensional reconstruction of mammalian 40S ribosomal subunit. J. molec. Biol. 209, 115126.CrossRefGoogle Scholar
Wagenknecht, T., Grassucci, R. & Frank, J. (1988). Electron microscopy and computer image averaging of ice-embedded large ribosomal subunits from Escherichia coli. J. molec. Biol. 199, 137147.CrossRefGoogle ScholarPubMed
Wagenknecht, T., Grassucci, R., Frank, J., Saito, A., Inui, M. & Fleischer, S. (1989 a). Three-dimensional architecture of the calcium channel/foot structure of sarcoplasmic reticulum. Nature 338, 167170.CrossRefGoogle ScholarPubMed
Wagenknecht, T., Carazo, J.-M., Radermacher, M. & Frank, J. (1989 b). Three-dimensional reconstruction of the ribosome from Escherichia coli. Biophys. J. 55, 455464.CrossRefGoogle ScholarPubMed
Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Am. Statist. Assoc. J. 58, 236244.CrossRefGoogle Scholar
Wong, M. A. (1982). A hybrid clustering method for identifying high-density clusters. Am. Statist. Assoc. J. 77, 841847.CrossRefGoogle Scholar
Woodcock, C. L. F. & Frank, J. (1984). Nucleosome mass distribution using image averaging. J. Ultrastruct. Res. 89, 295302.CrossRefGoogle ScholarPubMed
Young, T. Y. & Fu, K.-S. (ed.) (1986). Handbook of Pattern Recognition and Image Processing. London: Academic Press.Google Scholar