Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-03T05:17:01.139Z Has data issue: false hasContentIssue false

Biomolecular electrostatics and solvation: a computational perspective

Published online by Cambridge University Press:  07 December 2012

Pengyu Ren
Affiliation:
Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
Jaehun Chun
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352, USA
Dennis G. Thomas
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352, USA
Michael J. Schnieders
Affiliation:
Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
Marcelo Marucho
Affiliation:
Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX 78249, USA
Jiajing Zhang
Affiliation:
Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
Nathan A. Baker*
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352, USA
*
*Author for correspondence: Nathan A. Baker, Pacific Northwest National Laboratory, PO Box 999, MSID K7-29, Richland, WA 99352, USA. Tel.: +1-509-375-3997; Email: [email protected]

Abstract

An understanding of molecular interactions is essential for insight into biological systems at the molecular scale. Among the various components of molecular interactions, electrostatics are of special importance because of their long-range nature and their influence on polar or charged molecules, including water, aqueous ions, proteins, nucleic acids, carbohydrates, and membrane lipids. In particular, robust models of electrostatic interactions are essential for understanding the solvation properties of biomolecules and the effects of solvation upon biomolecular folding, binding, enzyme catalysis, and dynamics. Electrostatics, therefore, are of central importance to understanding biomolecular structure and modeling interactions within and among biological molecules. This review discusses the solvation of biomolecules with a computational biophysics view toward describing the phenomenon. While our main focus lies on the computational aspect of the models, we provide an overview of the basic elements of biomolecular solvation (e.g. solvent structure, polarization, ion binding, and non-polar behavior) in order to provide a background to understand the different types of solvation models.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

11. References

Aaqvist, J. (1990). Ion–water interaction potentials derived from free energy perturbation simulations. Journal of Physical Chemistry 94, 80218024.CrossRefGoogle Scholar
Adams, P. L., Stahley, M. R., Kosek, A. B., Wang, J. M. & Strobel, S. A. (2004). Crystal structure of a self-splicing group I intron with both exons. Nature 430, 4550.CrossRefGoogle Scholar
Alejandre, J. & Hansen, J. (2007). Ions in water: from ion clustering to crystal nucleation. Physical Review E 76, 061505.CrossRefGoogle ScholarPubMed
Alexov, E., Mehler, E. L., Baker, N. M., Baptista, A., Huang, Y., Milletti, F., Erik Nielsen, J., Farrell, D., Carstensen, T., Olsson, M. H. M., Shen, J. K., Warwicker, J., Williams, S. & Word, J. M. (2011). Progress in the prediction of pK a values in proteins. Proteins: Structure, Function, and Bioinformatics 79, 32603275.CrossRefGoogle ScholarPubMed
Allen, T. W., Kuyucak, S. & Chung, S.-H. (2000). Molecular dynamics estimates of ion diffusion in model hydrophobic and KcsA potassium channels. Biophysical Chemistry 86, 114.CrossRefGoogle ScholarPubMed
Allinger, N. L. (1976). Calculation of molecular structure and energy by force-field methods. In Advances in Physical Organic Chemistry, vol. 13 (eds. Gold, V. & Bethell, D.), pp. 182. Academic Press, San Diego, CA.Google Scholar
Allison, S. (2001). Boundary element modeling of biomolecular transport. Biophysical Chemistry 93, 197213.CrossRefGoogle ScholarPubMed
Alper, H. & Levy, R. M. (1993). Dielectric and thermodynamic response of a generalized reaction field model for liquid state simulations. Journal of Chemical Physics 99, 98479852.CrossRefGoogle Scholar
Altman, M. D., Bardhan, J. P., White, J. K. & Tidor, B. (2009). Accurate solution of multi-region continuum biomolecule electrostatic problems using the linearized Poisson–Boltzmann equation with curved boundary elements. Journal of Computational Chemistry 30, 132153.CrossRefGoogle ScholarPubMed
Anandakrishnan, R., Daga, M. & Onufriev, A. (2011). An n log n generalized Born approximation. Journal of Chemical Theory and Computation 7, 544559.CrossRefGoogle Scholar
Anderson, C. F. & Record, M. T. (1990). Ion distributions around DNA and other cylindrical polyions: theoretical descriptions and physical implications. Annual Review of Biophysics and Biophysical Chemistry 19, 423463.CrossRefGoogle ScholarPubMed
Anderson, C. F. & Record, M. T. (1995). Salt-nucleic acid interactions. Annual Review of Physical Chemistry 46, 657700.CrossRefGoogle ScholarPubMed
Angelini, T., Golestanian, R., Coridan, R., Butler, J., Beraud, A., Krisch, M., Sinn, H., Schweizer, K. & Wong, G. (2006). Counterions between charged polymers exhibit liquid-like organization and dynamics. Proceedings of the National Academy of Sciences of the United States of America 103, 79627967.CrossRefGoogle ScholarPubMed
Angelini, T., Liang, H., Wriggers, W. & Wong, G. (2003). Like-charge attraction between polyelectrolytes induced by counterion charge density waves. Proceedings of the National Academy of Sciences of the United States of America 100, 86348637.CrossRefGoogle ScholarPubMed
Ansell, S., Barnes, A. C., Mason, P. E., Neilson, G. W. & Ramos, S. (2006). X-ray and neutron scattering studies of the hydration structure of alkali ions in concentrated aqueous solutions. Biophysical Chemistry 124, 171179.CrossRefGoogle ScholarPubMed
Antosiewicz, J. (2008). Protonation free energy levels in complex molecular systems. Biopolymers 89, 262269.CrossRefGoogle ScholarPubMed
Antosiewicz, J., Briggs, J., Elcock, A., Gilson, M. & Mccammon, A. (1996a). Computing ionization states of proteins with a detailed charge model. Journal of Computational Chemistry 17, 16331644.3.0.CO;2-M>CrossRefGoogle Scholar
Antosiewicz, J., Mccammon, J. A. & Gilson, M. K. (1996b). The determinants of pK as in proteins. Biochemistry 35, 78197833.CrossRefGoogle ScholarPubMed
Applequist, J. (1983). Cartesian polytensors. Journal of Mathematical Physics 24, 736741.CrossRefGoogle Scholar
Applequist, J. (1984). Fundamental relationships in the theory of electric multipole moments and multipole polarizabilities in static fields. Chemical Physics 85, 279290.CrossRefGoogle Scholar
Applequist, J. (1985). A multipole interaction theory of electric polarization of atomic and molecular assemblies. Journal of Chemical Physics 83, 809826.CrossRefGoogle Scholar
Applequist, J. (1989). Traceless Cartesian tensor forms for spherical harmonic-functions – new theorems and applications to electrostatics of dielectric media. Journal of Physics A (Mathematical and General) 22, 43034330.CrossRefGoogle Scholar
Applequist, J. (1993). Atom charge transfer in molecular polarizabilities: application of the Olson–Sundberg model to aliphatic and aromatic hydrocarbons. Journal of Physical Chemistry 97, 60166023.CrossRefGoogle Scholar
Applequist, J., Carl, J. R. & Fung, K.-K. (1972). An atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities. Journal of the American Chemical Society 94, 29522960.CrossRefGoogle Scholar
Aqvist, J. & Warshel, A. (1989). Energetics of ion permeation through membrane channels. Solvation of Na+ by gramicidin A. Biophysical Journal 56, 171182.CrossRefGoogle Scholar
Arai, S., Chatake, T., Ohhara, T., Kurihara, K., Tanaka, I., Suzuki, N., Fujimoto, Z., Mizuno, H. & Niimura, N. (2005). Complicated water orientations in the minor groove of the B-DNA decamer d(CCATTAATGG)2 observed by neutron diffraction measurements. Nucleic Acids Research 33, 30173024.CrossRefGoogle ScholarPubMed
Arakawa, T. & Timasheff, S. (1984). Mechanism of protein salting in and salting out by divalent cation salts: balance between hydration and salt binding. Biochemistry 23, 59125923.CrossRefGoogle ScholarPubMed
Aroti, A., Leontidis, E., Dubois, M. & Zemb, T. (2007). Effects of monovalent anions of the Hofmeister series on DPPC lipid bilayers part I: swelling and in-plane equations of state. Biophysical Journal 93, 15801590.CrossRefGoogle ScholarPubMed
Aroti, A., Leontidis, E., Maltseva, E. & Brezesinski, G. (2004). Effects of Hofmeister anions on DPPC Langmuir monolayers at the air-water interface. Journal of Physical Chemistry B 108, 1523815245.CrossRefGoogle Scholar
Ashbaugh, H. (2009). Entropy crossover from molecular to macroscopic cavity hydration. Chemical Physics Letters 477, 109111.CrossRefGoogle Scholar
Ashbaugh, H. & Paulaitis, M. (1998). A molecular/continuum thermodynamic model of hydration. Journal of Physical Chemistry B 102, 50295032.CrossRefGoogle Scholar
Ashbaugh, H. & Pratt, L. (2006). Colloquium: scaled particle theory and the length scales of hydrophobicity. Reviews of Modern Physics 78, 159178.CrossRefGoogle Scholar
Ashbaugh, H. & Truskett, T. (2011). Putting the squeeze on cavities in liquids: quantifying pressure effects on solvation using simulations and scaled-particle theory. Journal of Chemical Physics 134, 014507.CrossRefGoogle ScholarPubMed
Asthagiri, D., Pratt, L., Paulaitis, M. & Rempe, S. (2004). Hydration structure and free energy of biomolecularly specific aqueous dications, including Zn2+ and first transition row metals. Journal of the American Chemical Society 126, 12851289.CrossRefGoogle ScholarPubMed
Åstrand, P. O., Linse, P. & Karlström, G. (1995). Molecular dynamics study of water adopting a potential function with explicit atomic dipole moments and anisotropic polarizabilities. Chemical Physics 191, 195202.CrossRefGoogle Scholar
Attard, P. (2002). Thermodynamics and Statistical Mechanics: Equilibrium by Entropy Maximisation. San Diego, CA: Academic Press.Google Scholar
Auffinger, P., Cheatham, T. & Vaiana, A. (2007). Spontaneous formation of KCl aggregates in biomolecular simulations: a force field issue? Journal of Chemical Theory and Computation 3, 18511859.CrossRefGoogle ScholarPubMed
Auffinger, P. & Hashem, Y. (2007). Nucleic acid solvation: from outside to insight. Current Opinion in Structural Biology 17, 325333.CrossRefGoogle ScholarPubMed
Auffinger, P. & Westhof, E. (2000a). RNA solvation: a molecular dynamics simulation perspective. Biopolymers 56, 266274.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Auffinger, P. & Westhof, E. (2000b). Water and ion binding around RNA and DNA (C,G) oligomers1. Journal of Molecular Biology 300, 11131131.CrossRefGoogle Scholar
Auffinger, P. & Westhof, E. (2001). Water and ion binding around r(UpA)12 and d(TpA)12 oligomers – comparison with RNA and DNA (CpG)12 duplexes1. Journal of Molecular Biology 305, 10571072.CrossRefGoogle Scholar
Azam, S. S., Hofer, T. S., Randolf, B. R. & Rode, B. M. (2009). Hydration of sodium(I) and potassium(I) revisited: a comparative QM/MM and QMCF MD simulation study of weakly hydrated ions. Journal of Physical Chemistry A 113, 18271834.CrossRefGoogle Scholar
Azuara, C., Orland, H., Bon, M., Koehl, P. & Delarue, M. (2008). Incorporating dipolar solvents with variable density in Poisson–Boltzmann electrostatics. Biophysics Journal 95, 55875605.CrossRefGoogle ScholarPubMed
Bader, R. F. W. (1990). Atoms in Molecules – A Quantum Theory. Oxford: Oxford University Press.CrossRefGoogle Scholar
Baer, M. & Mundy, C. (2011). Toward an understanding of the specific ion effect using density functional theory. Journal of Physical Chemistry Letters 2, 10881093.CrossRefGoogle Scholar
Bajaj, C. (2003). Dynamic maintenance and visualization of molecular surfaces. Discrete Applied Mathematics 127, 2351.CrossRefGoogle Scholar
Bajaj, C., Chen, S.-C. & Rand, A. (2011). An efficient higher-order fast multipole boundary element solution for Poisson–Boltzmann-based molecular electrostatics. SIAM Journal on Scientific Computing 33, 826.CrossRefGoogle ScholarPubMed
Baker, C. M., Lopes, P. E., Zhu, X., Roux, B. & Mackerell, A. D. Jr. (2010). Accurate calculation of hydration free energies using pair-specific Lennard–Jones parameters in the CHARMM drude polarizable force field. Journal of Chemical Theory and Computation 6, 11811198.CrossRefGoogle ScholarPubMed
Baker, N. (2005a). Biomolecular applications of Poisson–Boltzmann methods. Reviews in Computational Chemistry 21, 349379.CrossRefGoogle Scholar
Baker, N. (2005b). Improving implicit solvent simulations: a Poisson-centric view. Current Opinion in Structural Biology 15, 137143.CrossRefGoogle ScholarPubMed
Baker, N., Bashford, D. & Case, D. (2006). Implicit solvent electrostatics in biomolecular simulation. In New Algorithms for Macromolecular Simulation, vol. 49 (eds. Barth, T., Griebel, M., Keyes, D., Nieminen, R., Roose, D., Schlick, T., Leimkuhler, B., Chipot, C., Elber, R., Laaksonen, A., Mark, A., Schütte, C. & Skeel, R.), pp. 263295. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Baker, N., Holst, M. & Wang, F. (2000). Adaptive multilevel finite element solution of the Poisson–Boltzmann equation II. Refinement at solvent-accessible surfaces in biomolecular systems. Journal of Computational Chemistry 21, 13431352.3.0.CO;2-K>CrossRefGoogle Scholar
Baker, N., Hünenberger, P. & Mccammon, A. (1999). Polarization around an ion in a dielectric continuum with truncated electrostatic interactions. Journal of Chemical Physics 110, 1067910692.CrossRefGoogle Scholar
Baker, N. A. (2004). Poisson–Boltzmann Methods for Biomolecular Electrostatics, vol. 383, pp. 94118. Amsterdam: Elsevier.Google ScholarPubMed
Baker, N. A., Sept, D., Holst, M. J. & Mccammon, J. A. (2001a). The adaptive multilevel finite element solution of the Poisson–Boltzmann equation on massively parallel computers. IBM Journal of Research and Development 45, 427438.CrossRefGoogle Scholar
Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & Mccammon, J. A. (2001b). Electrostatics of nanosystems: application to microtubules and the ribosome. Proceedings of the National Academy of Sciences of the United States of America 98, 1003710041.CrossRefGoogle ScholarPubMed
Baldwin, R. L. (1996). How Hofmeister ion interactions affect protein stability. Biophysical Journal 71, 20562063.CrossRefGoogle ScholarPubMed
Ballin, J., Shkel, I. & Record, T. (2004). Interactions of the KWK6 cationic peptide with short nucleic acid oligomers: demonstration of large Coulombic end effects on binding at 0.1–0.2 M salt. Nucleic Acids Research 32, 32713281.CrossRefGoogle Scholar
Banavali, N., Im, W. & Roux, B. (2002). Electrostatic free energy calculations using the generalized solvent boundary potential method. Journal of Chemical Physics 117, 73817388.CrossRefGoogle Scholar
Bank, R. & Holst, M. (2003). A new paradigm for parallel adaptive meshing algorithms. SIAM Review 45, 291323.CrossRefGoogle Scholar
Baran, K., Chimenti, M., Schlessman, J., Fitch, C., Herbst, K. & Garcia-Moreno, B. (2008). Electrostatic effects in a network of polar and ionizable groups in staphylococcal nuclease. Journal of Molecular Biology 379, 10451062.CrossRefGoogle Scholar
Bardhan, J. (2011). Nonlocal continuum electrostatic theory predicts surprisingly small energetic penalties for charge burial in proteins. Journal of Chemical Physics 135, 104113.CrossRefGoogle ScholarPubMed
Barducci, A., Bonomi, M. & Parrinello, M. (2011). Metadynamics. Wiley Interdisciplinary Reviews: Computational Molecular Science 1, 826843.Google Scholar
Barillari, C., Taylor, J., Viner, R. & Essex, J. W. (2007). Classification of water molecules in protein binding sites. Journal of the American Chemical Society 129, 25772587.CrossRefGoogle ScholarPubMed
Basdevant, N., Borgis, D. & Ha-Duong, T. (2004). A semi-implicit solvent model for the simulation of peptides and proteins. Journal of Computational Chemistry 25, 10151029.CrossRefGoogle ScholarPubMed
Basdevant, N., Borgis, D. & Ha-Duong, T. (2007). A coarse-grained protein–protein potential derived from an all-atom force field. The Journal of Physical Chemistry B 111, 93909399.CrossRefGoogle ScholarPubMed
Basdevant, N., Ha-Duong, T. & Borgis, D. (2006). Particle-based implicit solvent model for biosimulations: application to proteins and nucleic acids hydration. Journal of Chemical Theory and Computation 2, 16461656.CrossRefGoogle ScholarPubMed
Bashford, D. (1997). An Object-Oriented Programming Suite for Electrostatic Effects in Biological Molecules an Experience Report on the MEAD Project Scientific Computing in Object-Oriented Parallel Environments, vol. 1343 (eds. Ishikawa, Y., Oldehoeft, R., Reynders, J. & Tholburn, M.), pp. 233240. Berlin/Heidelberg: Springer.Google Scholar
Bashford, D. & Case, D. A. (2000). Generalized born models of macromolecular solvation effects. Annual Review of Physical Chemistry 51, 129152.CrossRefGoogle ScholarPubMed
Bashford, D. & Karplus, M. (1990). pK a's of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry 29, 1021910225.CrossRefGoogle ScholarPubMed
Basilevsky, M. & Parsons, D. (1998). Nonlocal continuum solvation model with exponential susceptibility kernels. Journal of Chemical Physics 108, 91079113.CrossRefGoogle Scholar
Bastos, M., Castro, V., Mrevlishvili, G. & Teixeira, J. (2004). Hydration of ds-DNA and ss-DNA by neutron quasielastic scattering. Biophysical Journal 86, 38223827.CrossRefGoogle ScholarPubMed
Bauer, B. A., Lucas, T. R., Meninger, D. J. & Patel, S. (2011). Water permeation through DMPC lipid bilayers using polarizable charge equilibration force fields. Chemical Physics Letters 508, 289294.CrossRefGoogle ScholarPubMed
Bauer, B. A. & Patel, S. (2009). Properties of water along the liquid–vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model. The Journal of Chemical Physics 131, 084709.CrossRefGoogle ScholarPubMed
Bayly, C., Cieplak, P., Cornell, W. & Kollman, P. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. The Journal of Physical Chemistry 97, 1026910280.CrossRefGoogle Scholar
Beglov, D. & Roux, B. (1994). Finite representation of an infinite bulk system: solvent boundary potential for computer simulations. Journal of Chemical Physics 100, 90509063.CrossRefGoogle Scholar
Beglov, D. & Roux, B. (1996). Solvation of complex molecules in a polar liquid: an integral equation theory. Journal of Chemical Physics 104, 86788689.CrossRefGoogle Scholar
Beglov, D. & Roux, B. (1997). An integral equation to describe the solvation of polar molecules in liquid water. Journal of Physical Chemistry B 101, 78217826.CrossRefGoogle Scholar
Ben-Amotz, D. (2005). Global thermodynamics of hydrophobic cavitation, dewetting, and hydration. Journal of Chemical Physics 123, 184504.CrossRefGoogle ScholarPubMed
Ben-Naim, A. (1997). Solvation and solubility of globular proteins. Pure and Applied Chemistry 69, 22392244.CrossRefGoogle Scholar
Ben-Naim, A. (2006). Molecular Theory of Solutions. Oxford: Oxford University Press.CrossRefGoogle Scholar
Ben-Yaakov, D., Andelman, D., Harries, D. & Podgornik, R. (2009). Beyond standard Poisson–Boltzmann theory: ion-specific interactions in aqueous solutions. Journal of Physics: Condensed Matter 21, 424106.Google ScholarPubMed
Ben-Yaakov, D., Andelman, D., Podgornik, R. & Harries, D. (2011). Ion-specific hydration effects: extending the Poisson–Boltzmann theory. Current Opinion in Colloid and Interface Science 16, 542550.CrossRefGoogle Scholar
Benanti, E. L. & Chivers, P. T. (2007). The N-terminal arm of the Helicobacter pylori Ni2+-dependent transcription factor NikR is required for specific DNA binding. Journal of Biological chemistry 282, 2036520375.CrossRefGoogle ScholarPubMed
Berendsen, H. J. C., Grigera, J. R. & Straatsma, T. P. (1987). The missing term in effective pair potentials. Journal of Physical Chemistry 91, 62696271.CrossRefGoogle Scholar
Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F. & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In Intermolecular Forces (ed. Pullmann, B.), pp. 331342. Dordrecht: D. Reidel Publishing Company.CrossRefGoogle Scholar
Berkowitz, M. & Vácha, R. (2012). Aqueous solutions at the interface with phospholipid bilayers. Accounts of Chemical Research 45, 7482.CrossRefGoogle ScholarPubMed
Bernal, J. (1933). A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. Journal of Chemical Physics 1, 515.CrossRefGoogle Scholar
Bernardo, D. N., Ding, Y., Krogh-Jespersen, K. & Levy, R. M. (1994). An anisotropic polarizable water model: incorporation of all-atom polarizabilities into molecular mechanics force fields. Journal of Physical Chemistry 98, 41804187.CrossRefGoogle Scholar
Berne, B., Weeks, J. & Zhou, R. (2009). Dewetting and hydrophobic interaction in physical and biological systems. Annual Review of Physical Chemistry 60, 85103.CrossRefGoogle ScholarPubMed
Bertini, I., Del Bianco, C., Gelis, I., Katsaros, N., Luchinat, C., Parigi, G., Peana, M., Provenzani, A. & Zoroddu, M. A. (2004). Experimentally exploring the conformational space sampled by domain reorientation in calmodulin. Proceedings of the National Academy of Sciences of the United States of America 101, 68416846.CrossRefGoogle ScholarPubMed
Besteman, K., Zevenbergen, M. A. G., Heering, H. A. & Lemay, S. G. (2004). Direct observation of charge inversion by multivalent ions as a universal electrostatic phenomenon. Physical Review Letters 93, 170802.CrossRefGoogle ScholarPubMed
Besteman, K., Zevenbergen, M. A. G. & Lemay, S. G. (2005). Charge inversion by multivalent ions: dependence on dielectric constant and surface-charge density. Physical Review E 72, 061501.CrossRefGoogle ScholarPubMed
Bharadwaj, R., Windemuth, A., Sridharan, S., Honig, B. & Nicholls, A. (1995). The fast multipole boundary element method for molecular electrostatics: an optimal approach for large systems. Journal of Computational Chemistry 16, 898913.CrossRefGoogle Scholar
Billeter, M. (1996). Hydration and DNA recognition by homeodomains. Cell 85, 10571065.CrossRefGoogle ScholarPubMed
Birge, R. R. (1980). Calculation of molecular polarizabilities using an anisotropic atom point dipole interaction model which includes the effect of electron repulsion. Journal of Chemical Physics 72, 53125319.CrossRefGoogle Scholar
Bombarda, E. & Ullmann, M. M. (2010). pH-dependent pK a values in proteins – A theoretical analysis of protonation energies with practical consequences for enzymatic reactions. Journal of Physical Chemistry B 114, 19942003.CrossRefGoogle ScholarPubMed
Bone, S. (2006). Dielectric studies of water clusters in cyclodextrins: relevance to the transition between slow and fast forms of thrombin. Journal of Physical Chemistry B 110, 2060920614.CrossRefGoogle Scholar
Bone, S. (2008). Structural flexibility in hydrated proteins. Journal of Physical Chemistry B 112, 1007110075.CrossRefGoogle ScholarPubMed
Bonvin, A., Sunnerhagen, M., Otting, G. & Van Gunsteren, W. (1998). Water molecules in DNA recognition II: a molecular dynamics view of the structure and hydration of the trp operator1. Journal of Molecular Biology 282, 859873.CrossRefGoogle Scholar
Bordner, A. J. & Huber, G. A. (2003). Boundary element solution of the linear Poisson–Boltzmann equation and a multipole method for the rapid calculation of forces on macromolecules in solution. Journal of Computational Chemistry. 24, 353367.CrossRefGoogle Scholar
Born, M. (1920). Volume and heat of hydration of ions. Zeitschrift fur Physik 1, 4548.CrossRefGoogle Scholar
Borukhov, I., Andelman, D. & Orland, H. (1997). Steric effects in electrolytes: a modified Poisson–Boltzmann equation. Physical Review Letters 79, 435438.CrossRefGoogle Scholar
Borukhov, I., Andelman, D. & Orland, H. (2000). Adsorption of large ions from an electrolyte solution: a modified Poisson–Boltzmann equation. Electrochimica Acta 46, 221229.CrossRefGoogle Scholar
Boschitsch, A. & Fenley, M. (2004). Hybrid boundary element and finite difference method for solving the nonlinear Poisson–Boltzmann equation. Journal of Computational Chemistry 25, 935955.CrossRefGoogle ScholarPubMed
Boschitsch, A., Fenley, M. & Zhou, H.-X. (2002). Fast boundary element method for the linear Poisson–Boltzmann equation. Journal of Physical Chemistry B 106, 27412754.CrossRefGoogle Scholar
Bosio, L., Chen, S. H. & Teixeira, J. (1983). Isochoric temperature differential of the X-ray structure factor and structural rearrangements in low-temperature heavy water. Physical Review A 27, 1468.CrossRefGoogle Scholar
Boström, M., Kunz, W. & Ninham, B. W. (2005a). Hofmeister effects in surface tension of aqueous electrolyte solution. Langmuir: the ACS Journal of Surfaces and Colloids 21, 26192623.CrossRefGoogle ScholarPubMed
Boström, M. & Ninham, B. W. (2004). Contributions from dispersion and born self-free energies to the solvation energies of salt solutions. Journal of Physical Chemistry B 108, 1259312595.CrossRefGoogle Scholar
Boström, M. & Ninham, B. W. (2005). Energy of an ion crossing a low dielectric membrane: the role of dispersion self-free energy. Biophysical Chemistry 114, 95101.CrossRefGoogle Scholar
Boström, M., Tavares, F. W., Bratko, D. & Ninham, B. W. (2005b). Specific ion effects in solutions of globular proteins: comparison between analytical models and simulation. Journal of Physical Chemistry B 109, 2448924494.CrossRefGoogle ScholarPubMed
Boström, M., Williams, D. R. M. & Ninham, B. W. (2003a). Specific ion effects: why the properties of lysozyme in salt solutions follow a hofmeister series. Biophysics Journal 85, 686694.CrossRefGoogle ScholarPubMed
Boström, M., Williams, D. R. M., Stewart, P. R. & Ninham, B. W. (2003b). Hofmeister effects in membrane biology: the role of ionic dispersion potentials. Physical Review E 68, 041902.CrossRefGoogle ScholarPubMed
Bottcher, C. J. F. (1952). Theory of Electrostatic Polarisation. Amsterdam: Elsevier.Google Scholar
Bradley, D. F., Lifson, S. & Honig, B. (1964). Theory of optical and other properties of biopolymers: applicability and elimination of the first-neighbor and dipole-dipole approximations. In Electronic Aspects of Biochemistry. New York: Academic Press.Google Scholar
Bradley, M., Chivers, P. & Baker, N. (2008). Molecular dynamics simulation of the Escherichia coli NikR protein: equilibrium conformational fluctuations reveal interdomain allosteric communication pathways. Journal of Molecular Biology 378, 11551173.CrossRefGoogle ScholarPubMed
Brdarski, S., Astrand, P.-O. & Karlstrom, G. (2000). The inclusion of electron correlation in intermolecular potentials: applications to the formamide dimer and liquid formamide. Theoretical Chemistry Accounts 105, 714.CrossRefGoogle Scholar
Breneman, C. & Wiberg, K. (1990). Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. Journal of Computational Chemistry 11, 361373.CrossRefGoogle Scholar
Brobjer, J. T. & Murrell, J. N. (1982). A method for calculating the electrostatic energy between small polar molecules. The multipole-fitted point-charge method. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 78, 18531870.CrossRefGoogle Scholar
Brooks, B. R., Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R. W., Post, C. B., Pu, J. Z., Schaefer, M., Tidor, B., Venable, R. M., Woodcock, H. L., Wu, X., Yang, W., York, D. M. & Karplus, M. (2009). CHARMM: the biomolecular simulation program. Journal of Computational Chemistry 30, 15451614.CrossRefGoogle ScholarPubMed
Brooks, C. (1985). Structural and energetic effects of truncating long ranged interactions in ionic and polar fluids. Journal of Chemical Physics 83, 5897.CrossRefGoogle Scholar
Brooks, C. L. (1987). The influence of long-range force truncation on the thermodynamics of aqueous ionic solutions. Journal of Chemical Physics 86, 51565162.CrossRefGoogle Scholar
Brown, R. & Case, D. (2006). Second derivatives in generalized Born theory. Journal of Computational Chemistry 27, 16621675.CrossRefGoogle ScholarPubMed
Bryce, R. A., Vincent, M. A., Malcolm, N. O. J., Hillier, I. H. & Burton, N. A. (1998). Cooperative effects in the structuring of fluoride water clusters: ab initio hybrid quantum mechanical/molecular mechanical model incorporating polarizable fluctuating charge solvent. Journal of Chemical Physics 109, 30773085.CrossRefGoogle Scholar
Bucher, D., Raugei, S., Guidoni, L., Dal Peraro, M., Rothlisberger, U., Carloni, P. & Klein, M. L. (2006). Polarization effects and charge transfer in the KcsA potassium channel. Biophysical Chemistry 124, 292301.CrossRefGoogle ScholarPubMed
Buckingham, A. D. (1967). Permanent and induced molecular moments and long-range intermolecular forces. Advances in Chemical Physics 12, 107142.Google Scholar
Burley, D. M., Hutson, V. C. L. & Outhwaite, C. W. (1974). A treatment of the volume and fluctuation term in Poisson's equation in the Debye–Huckel theory of strong electrolyte solutions. Molecular Physics 27, 225236.CrossRefGoogle Scholar
Burnham, C. J. & Xantheas, S. S. (2002). Development of Transferable interaction models for water. I. prominent features of the water dimer potential energy surface. Journal of Chemical Physics 116, 14791492.CrossRefGoogle Scholar
Burykin, A., Kato, M. & Warshel, A. (2003). Exploring the origin of the ion selectivity of the KcsA potassium channel. Proteins: Structure, Function, and Bioinformatics 52, 412426.CrossRefGoogle ScholarPubMed
Butler, J., Angelini, T., Tang, J. & Wong, G. (2003). Ion multivalence and like-charge polyelectrolyte attraction. Physical Review Letters 91, 028301.CrossRefGoogle ScholarPubMed
Cai, W., Deng, S. & Jacobs, D. (2007). Extending the fast multipole method to charges inside or outside a dielectric sphere. Journal of Computational Physics 223, 846864.CrossRefGoogle Scholar
Calimet, N. & Simonson, T. (2006). Cys(x)His(y)–Zn2+ interactions: possibilities and limitations of a simple pairwise force field. Journal of Molecular Graphics and Modelling 24, 404411.CrossRefGoogle ScholarPubMed
Carnie, S. L. & Torrie, G. M. (2007). The statistical mechanics of the electrical double layer. In Advances in Chemical Physics, pp. 141253. Hoboken, NJ: John Wiley and Sons Inc.Google Scholar
Carrington, P., Chivers, P., Al-Mjeni, F., Sauer, R. & Maroney, M. (2003). Nickel coordination is regulated by the DNA-bound state of NikR. Nature Structural Biology 10(2), 126130.CrossRefGoogle ScholarPubMed
Carstensen, T., Farrell, D., Huang, Y., Baker, N. A. & Nielsen, J. E. (2011). On the development of protein pK(a) calculation algorithms. Proteins-Structure Function and Bioinformatics 79, 32873298.CrossRefGoogle ScholarPubMed
Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B. & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry 26, 16681688.CrossRefGoogle ScholarPubMed
Castañeda, C., Fitch, C., Majumdar, A., Khangulov, V., Schlessman, J. & García-Moreno, B. (2009). Molecular determinants of the pK a values of Asp and Glu residues in staphylococcal nuclease. Proteins 77, 570588.CrossRefGoogle ScholarPubMed
Cate, J. H., Gooding, A. R., Podell, E., Zhou, K., Golden, B. L., Kundrot, C. E., Cech, T. R. & Doudna, J. A. (1996). Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 16781685.CrossRefGoogle ScholarPubMed
Cerutti, D., Baker, N. & Mccammon, A. (2007). Solvent reaction field potential inside an uncharged globular protein: a bridge between implicit and explicit solvent models? Journal of Chemical Physics 127, 15510.CrossRefGoogle ScholarPubMed
Chandler, D. (1978). Structures of molecular liquids. Annual Review of Physical Chemistry 29, 441471.CrossRefGoogle Scholar
Chandler, D. (2005). Interfaces and the driving force of hydrophobic assembly. Nature 437, 640647.CrossRefGoogle ScholarPubMed
Chandler, D., Mccoy, J. D. & Singer, S. J. (1986). Density functional theory of nonuniform polyatomic systems. I. General formulation. Journal of Chemical Physics 85, 59715976.CrossRefGoogle Scholar
Chang, T.-M. & Dang, L. (2006). Recent advances in molecular simulations of ion solvation at liquid interfaces. Chemical Reviews 106, 13051322.CrossRefGoogle ScholarPubMed
Charles, H. B. (1976). Efficient estimation of free energy differences from Monte Carlo data. Journal of Computational Physics 22, 245268.Google Scholar
Chaturvedi, U. C. & Shrivastava, R. (2005). Interaction of viral proteins with metal ions: role in maintaining the structure and functions of viruses. FEMS Immunology and Medical Microbiology 43, 105114.CrossRefGoogle ScholarPubMed
Chaudhry, J., Bond, S. & Olson, L. (2011). Finite element approximation to a finite-size modified Poisson–Boltzmann equation. Journal of Scientific Computing 47, 347364.CrossRefGoogle Scholar
Chen, A., Draper, D. & Pappu, R. (2009a). Molecular simulation studies of monovalent counterion-mediated interactions in a model RNA kissing loop. Journal of Molecular Biology 390, 805819.CrossRefGoogle Scholar
Chen, A., Marucho, M., Baker, N. & Pappu, R. (2009b). Simulations of RNA Interactions with Monovalent Ions, vol. 469, pp. 411432. Amsterdam: Elsevier.Google ScholarPubMed
Chen, A. & Pappu, R. (2007a). Parameters of monovalent ions in the AMBER-99 forcefield: assessment of inaccuracies and proposed improvements. Journal of Physical Chemistry B 111, 1188411887.CrossRefGoogle ScholarPubMed
Chen, A. & Pappu, R. (2007b). Quantitative characterization of ion pairing and cluster formation in strong 1:1 electrolytes. Journal of Physical Chemistry B 111, 64696478.CrossRefGoogle Scholar
Chen, D., Chen, Z., Chen, C., Geng, W. & Wei, G.-W. (2011a). MIBPB: a software package for electrostatic analysis. Journal of Computational Chemistry 32, 756770.CrossRefGoogle ScholarPubMed
Chen, J. (2010). Effective approximation of molecular volume using atom-centered dielectric functions in generalized born models. Journal of Chemical Theory and Computation 6, 27902803.CrossRefGoogle ScholarPubMed
Chen, J., Im, W. & Brooks, C. (2006). Balancing solvation and intramolecular interactions: toward a consistent generalized Born force field. Journal of the American Chemical Society 128, 37283736.CrossRefGoogle Scholar
Chen, L., Holst, M. & Xu, J. (2007a). The finite element approximation of the nonlinear Poisson–Boltzmann equation. SIAM Journal on Numerical Analysis 45, 2298.CrossRefGoogle Scholar
Chen, S.-W. & Honig, B. (1997). Monovalent and divalent salt effects on electrostatic free energies defined by the nonlinear Poisson–Boltzmann equation: application to DNA binding reactions. Journal of Physical Chemistry B 101, 91139118.CrossRefGoogle Scholar
Chen, X., Yang, T., Kataoka, S. & Cremer, P. (2007b). Specific ion effects on interfacial water structure near macromolecules. Journal of the American Chemical Society 129, 1227212279.CrossRefGoogle ScholarPubMed
Chen, Y.-G. & Weeks, J. (2006). Local molecular field theory for effective attractions between like charged objects in systems with strong Coulomb interactions. Proceedings of the National Academy of Sciences of the United States of America 103, 75607565.CrossRefGoogle ScholarPubMed
Chen, Z., Baker, N. & Wei, G. (2011b). Differential geometry based solvation model II: lagrangian formulation. Journal of Mathematical Biology 63, 11391200.CrossRefGoogle ScholarPubMed
Chen, Z., Baker, N. & Wei, G. W. (2010). Differential geometry based solvation model I: Eulerian formulation. Journal of Computational Physics 229, 82318258.CrossRefGoogle ScholarPubMed
Chessari, G., Hunter, C. A., Low, C. M. R., Packer, M. J., Vinter, J. G. & Zonta, C. (2002). An evaluation of force-field treatments of aromatic interactions. Chemistry – A European Journal 8, 28602867.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Chimenti, M. S., Castañeda, C. A., Majumdar, A. & García-Moreno, E. B. (2011). Structural origins of high apparent dielectric constants experienced by ionizable groups in the hydrophobic core of a protein. Journal of Molecular Biology 405, 361377.CrossRefGoogle ScholarPubMed
Chivers, P. T. & Sauer, R. T. (2000). Regulation of high affinity nickel uptake in bacteria. Ni2+-dependent interaction of NIKR with wild-type and mutant operator sites. Journal of Biological Chemistry 275, 1973519741.CrossRefGoogle ScholarPubMed
Chong, S.-H. & Hirata, F. (1998). Interaction-site-model description of collective excitations in classical molecular fluids. Physical Review E 57, 16911701.CrossRefGoogle Scholar
Chothia, C. (1974). Hydrophobic bonding and accessible surface area in proteins. Nature 248, 338339.CrossRefGoogle ScholarPubMed
Choudhury, N. & Pettitt, B. M. (2007). The dewetting transition and the hydrophobic effect. Journal of the American Chemical Society 129, 48474852.CrossRefGoogle ScholarPubMed
Chu, V., Bai, Y., Lipfert, J., Herschlag, D. & Doniach, S. (2007). Evaluation of ion binding to DNA duplexes using a size-modified Poisson–Boltzmann theory. Biophysical Journal 93, 32023209.CrossRefGoogle ScholarPubMed
Chuev, G. & Fedorov, M. (2004). Wavelet algorithm for solving integral equations of molecular liquids. A test for the reference interaction site model. Journal of Computational Chemistry 25, 13691377.CrossRefGoogle ScholarPubMed
Cieplak, P., Dupradeau, F. Y., Duan, Y. & Wang, J. M. (2009). Polarization effects in molecular mechanical force fields. Journal of Physics-Condensed Matter 21, 333101333121.CrossRefGoogle ScholarPubMed
Cisneros, G. A., Tholander, S. N. I., Parisel, O., Darden, T. A., Elking, D., Perera, L. & Piquemal, J. P. (2008). Simple formulas for improved point-charge electrostatics in classical force fields and hybrid quantum mechanical/molecular mechanical embedding. International Journal of Quantum Chemistry 108, 19051912.CrossRefGoogle ScholarPubMed
Claessens, M., Ferrario, M. & Ryckaert, J. P. (1983). The structure of liquid benzene. Molecular Physics 50, 217227.CrossRefGoogle Scholar
Clark, M., Meshkat, S. & Wiseman, J. (2009). Grand canonical free-energy calculations of protein-ligand binding. Journal of Chemical Information and Modeling 49, 934943.CrossRefGoogle ScholarPubMed
Clarke, R. & Lüpfert, C. (1999). Influence of anions and cations on the dipole potential of phosphatidylcholine vesicles: a basis for the hofmeister effect. Biophysics Journal 76, 26142624.CrossRefGoogle ScholarPubMed
Clough, S., Beers, Y., Klein, G. & Rothman, L. (1973). Dipole moment of water from Stark measurements of H2O, HDO, and D2O. Journal of Chemical Physics 59, 2254.CrossRefGoogle Scholar
Coalson, R., Walsh, A., Duncan, A. & Tal, N. (1995). Statistical mechanics of a Coulomb gas with finite size particles: a lattice field theory approach. Journal of Chemical Physics 102, 45844594.CrossRefGoogle Scholar
Coalson, R. D. & Duncan, A. (1992). Systematic ionic screening theory of macroions. Journal of Chemical Physics 97, 56535653.CrossRefGoogle Scholar
Collins, K. D. (1995). Sticky ions in biological systems. Proceedings of the National Academy of Sciences of the United States of America 92, 55535557.CrossRefGoogle ScholarPubMed
Conn, G. L., Gittis, A. G., Lattman, E. E., Misra, V. K. & Draper, D. E. (2002). A compact RNA tertiary structure contains a buried backbone–K+ complex. Journal of Molecular Biology 318, 963973.CrossRefGoogle ScholarPubMed
Connolly, M. L. (1983). Solvent-accessible surfaces of proteins and nucleic acids. Science 221, 709713.CrossRefGoogle ScholarPubMed
Connolly, M. L. (1985). Computation of molecular volume. Journal of the American Chemical Society 107, 11181124.CrossRefGoogle Scholar
Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W. & Kollman, P. A. (1995). A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (Vol. 117, Pg 5179, 1995). Journal of the American Chemical Society 118, 23092309.CrossRefGoogle Scholar
Cortis, C. & Friesner, R. (1997a). An automatic three-dimensional finite element mesh generation system for the Poisson–Boltzmann equation. Journal of Computational Chemistry 18, 15701590.3.0.CO;2-O>CrossRefGoogle Scholar
Cortis, C. & Friesner, R. (1997b). Numerical solution of the Poisson–Boltzmann equation using tetrahedral finite-element meshes. Journal of Computational Chemistry 18, 15911608.3.0.CO;2-M>CrossRefGoogle Scholar
Courtenay, E. S., Capp, M. W. & Record, M. T. (2001). Thermodynamics of interactions of urea and guanidinium salts with protein surface: relationship between solute effects on protein processes and changes in water-accessible surface area. Protein Science 10, 24852497.CrossRefGoogle ScholarPubMed
Cox, S. R. & Williams, D. E. (1981). Representation of the molecular electrostatic potential by a net atomic charge model. Journal of Computational Chemistry 2, 304323.CrossRefGoogle Scholar
Cramer, C. & Truhlar, D. (2008). A universal approach to solvation modeling. Accounts of Chemical Research 41, 760768.CrossRefGoogle ScholarPubMed
Cramer, C. J. & Truhlar, D. G. (1999). Implicit solvation models: equilibria, structure, spectra, and dynamics. Chemical Reviews 99, 21612200.CrossRefGoogle ScholarPubMed
Cramer, C. J. & Truhlar, D. G. (2001). Solvation thermodynamics and the treatment of equilibrium and nonequilibrium solvation effects by models based on collective solvent coordinates. In Free Energy Calculations in Rational Drug Design (eds. Rami Reddy, M. & Erion, M. D.). New York: Kluwer.Google Scholar
Cukier, R. I. & Zhang, J. J. (1997). Simulation of proton transfer reaction rates: the role of solvent electronic polarization. Journal of Physical Chemistry B 101, 71807190.CrossRefGoogle Scholar
Curutchet, C., Orozco, M., Luque, F. J., Mennucci, B. & Tomasi, J. (2006). Dispersion and repulsion contributions to the solvation free energy: comparison of quantum mechanical and classical approaches in the polarizable continuum model. Journal of Computational Chemistry 27, 17691780.CrossRefGoogle Scholar
Damjanović, A., García-Moreno, B., Lattman, E. & García, A. (2005a). Molecular dynamics study of water penetration in staphylococcal nuclease. Proteins 60, 433449.CrossRefGoogle ScholarPubMed
Damjanovic, A., Garciamorenoe, B., Lattman, E. & Garcia, A. (2005b). Molecular dynamics study of hydration of the protein interior. Computer Physics Communications 169, 126129.CrossRefGoogle Scholar
Damjanović, A., Schlessman, J., Fitch, C., García, A. & García-Moreno, E. B. (2007). Role of flexibility and polarity as determinants of the hydration of internal cavities and pockets in proteins. Biophysical Journal 93, 27912804.CrossRefGoogle ScholarPubMed
Dang, L. X. (1992). Development of nonadditive intermolecular potentials using molecular dynamics: Solvation of Li+ and F? ions in polarizable water. Journal of Chemical Physics 96, 69706977.CrossRefGoogle Scholar
Dang, L. X. & Chang, T.-M. (2001). Molecular mechanism of ion binding to the liquid/vapor interface of water. The Journal of Physical Chemistry B 106, 235238.CrossRefGoogle Scholar
Dang, L. X., Rice, J. E., Caldwell, J. & Kollman, P. A. (1991). Ion solvation in polarizable water: molecular dynamics simulations. Journal of the American Chemical Society 113, 24812486.CrossRefGoogle Scholar
Darden, T., York, D. & Pedersen, L. (1993). Particle mesh Ewald: an N [center-dot] log(N) method for Ewald sums in large systems. Journal of Chemical Physics 98, 1008910092.CrossRefGoogle Scholar
Davis, M. & Mccammon, A. (1990). Electrostatics in biomolecular structure and dynamics. Chemical Reviews 90, 509521.CrossRefGoogle Scholar
Davis, M. E. (1994). The inducible multipole solvation model: a new model for solvation effects on solute electrostatics. Journal of Chemical Physics 100, 51495159.CrossRefGoogle Scholar
Davis, M. E. & Mccammon, J. A. (1989). Solving the finite difference linearized Poisson–Boltzmann equation: a comparison of relaxation and conjugate gradient methods. Journal of Computational Chemistry 10, 386391.CrossRefGoogle Scholar
Della Valle, R. G., Venuti, E., Brillante, A. & Girlando, A. (2008). Do computed crystal structures of nonpolar molecules depend on the electrostatic interactions? The case of tetracene. Journal of Physical Chemistry A 112, 10851089.CrossRefGoogle ScholarPubMed
Deng, S. & Cai, W. (2007). Extending the fast multipole method for charges inside a dielectric sphere in an ionic solvent: high-order image approximations for reaction fields. Journal of Computational Physics 227, 12461266.CrossRefGoogle Scholar
Deng, Y. & Roux, B. (2008). Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations. Journal of Chemical Physics 128, 115103115103.CrossRefGoogle ScholarPubMed
Denisov, V., Schlessman, J., García-Moreno, E. B. & Halle, B. (2004). Stabilization of internal charges in a protein: water penetration or conformational change? Biophysical Journal 87, 39823994.CrossRefGoogle ScholarPubMed
Di Cera, E. (2006). A structural perspective on enzymes activated by monovalent cations. Journal of Biological Chemistry 281, 13051308.CrossRefGoogle ScholarPubMed
Dill, K., Truskett, T., Vlachy, V. & Hribar-Lee, B. (2005). Modeling water, the hydrophobic effect, and ion solvation. Annual Review of Biophysics and Biomolecular Structure 34, 173199.CrossRefGoogle ScholarPubMed
Ding, F. & Dokholyan, N. (2008). Dynamical roles of metal ions and the disulfide bond in Cu, Zn superoxide dismutase folding and aggregation. Proceedings of the National Academy of Sciences of the United States of America 105, 1969619701.CrossRefGoogle ScholarPubMed
Dinur, U. & Hagler, A. T. (1995). Geometry-dependent atomic charges: methodology and application to alkanes, aldehydes, ketones, and amides. Journal of Computational Chemistry 16, 154170.CrossRefGoogle Scholar
Dixon, R. W. & Kollman, P. A. (1997). Advancing beyond the atom-centered model in additive and nonadditive molecular mechanics. Journal of Computational Chemistry 18, 16321646.3.0.CO;2-S>CrossRefGoogle Scholar
Dominy, B. & Brooks, C. (1999). Development of a generalized Born model parametrization for proteins and nucleic acids. Journal of Physical Chemistry B 103, 37653773.CrossRefGoogle Scholar
Donchev, A. G. (2006). Ab initio quantum force field for simulations of nanostructures. Physical Review B 74, 235401.CrossRefGoogle Scholar
Donchev, A. G., Ozrin, V. D., Subbotin, M. V., Tarasov, O. V. & Tarasov, V. I. (2005). A quantum mechanical polarizable force field for biomolecular interactions. Proceedings of the National Academy of Sciences of the United States of America 102, 78297834.CrossRefGoogle ScholarPubMed
Dong, F., Olsen, B. & Baker, N. (2008). Computational Methods for Biomolecular Electrostatics, vol. 84, pp. 843870. Amsterdam: Elsevier.Google ScholarPubMed
Dong, F., Vijayakumar, M. & Zhou, H.-X. (2003). Comparison of calculation and experiment implicates significant electrostatic contributions to the binding stability of Barnase and Barstar. Biophysical Journal 85, 4960.CrossRefGoogle Scholar
Doxey, A. C., Yaish, M. W., Griffith, M. & Mcconkey, B. J. (2006). Ordered surface carbons distinguish antifreeze proteins and their ice-binding regions. Nature Biotechnology 24, 852855.CrossRefGoogle ScholarPubMed
Draper, D. (2008). RNA folding: thermodynamic and molecular descriptions of the roles of ions⋆. Biophysical Journal 95, 54895495.CrossRefGoogle ScholarPubMed
Draper, D. E., Grilley, D. & Soto, A. M. (2005). Ions and RNA folding. Annual Review of Biophysics and Biomolecular Structure 34, 221243.CrossRefGoogle ScholarPubMed
Drew, H. R., Samson, S. & Dickerson, R. E. (1982). Structure of a B-DNA dodecamer at 16 K. Proceedings of the National Academy of Sciences of the United States of America 79, 40404044.CrossRefGoogle ScholarPubMed
Drozdov, A., Grossfield, A. & Pappu, R. (2004). Role of solvent in determining conformational preferences of alanine dipeptide in water. Journal of the American Chemical Society 126, 25742581.CrossRefGoogle ScholarPubMed
Du, Q.-S., Liu, P.-J. & Huang, R.-B. (2008). Localization and visualization of excess chemical potential in statistical mechanical integral equation theory 3D-HNC-RISM. Journal of Molecular Graphics and Modelling 26, 10141019.CrossRefGoogle ScholarPubMed
Du, Q., Beglov, D. & Roux, B. (2000). Solvation free energy of polar and nonpolar molecules in water: an extended interaction site integral equation theory in three dimensions. Journal of Physical Chemistry B 104, 796805.CrossRefGoogle Scholar
Dykstra, C. E. (1988). Intermolecular electrical interaction: a key ingredient in hydrogen bonding. Accounts of Chemical Research 21, 355361.CrossRefGoogle Scholar
Dykstra, C. E. (1993). Electrostatic interaction potentials in molecular force fields. Chemical Reviews 93, 23392353.CrossRefGoogle Scholar
Dykstra, C. E. (2001). Intermolecular electrical response. Journal of Molecular Structure: THEOCHEM 573, 6371.CrossRefGoogle Scholar
Dyshlovenko, P. E. (2002). Adaptive numerical method for Poisson–Boltzmann equation and its application. Computer Physics Communications 147, 335338.CrossRefGoogle Scholar
Dzubiella, J. & Hansen, J. P. (2004). Competition of hydrophobic and Coulombic interactions between nanosized solutes. Journal of Chemical Physics 121, 55145530.CrossRefGoogle ScholarPubMed
Dzubiella, J., Swanson, J. M. J. & Mccammon, J. A. (2006a). Coupling hydrophobicity, dispersion, and electrostatics in continuum solvent models. Physical Review Letters 96, 087802.CrossRefGoogle ScholarPubMed
Dzubiella, J., Swanson, J. M. J. & Mccammon, J. A. (2006b). Coupling nonpolar and polar solvation free energies in implicit solvent models. Journal of Chemical Physics 124, 084905.CrossRefGoogle ScholarPubMed
Eisenberg, D. & Mclachlan, A. D. (1986). Solvation energy in protein folding and binding. Nature 319, 199203.CrossRefGoogle ScholarPubMed
Elcock, A., Sept, D. & Mccammon, A. (2001). Computer simulation of protein–protein interactions. Journal of Physical Chemistry B 105, 15041518.CrossRefGoogle Scholar
Engkvist, O., Åstrand, P.-O. & Karlström, G. (1996). Intermolecular potential for the 1,2-dimethoxyethane–water complex. Journal of Physical Chemistry 100, 69506957.CrossRefGoogle Scholar
England, J. L., Pande, V. S. & Haran, G. (2008). Chemical denaturants inhibit the onset of dewetting. Journal of the American Chemical Society 130, 1185411855.CrossRefGoogle ScholarPubMed
Ensign, D. & Webb, L. (2011). Factors determining electrostatic fields in molecular dynamics simulations of the ras/effector interface. Proteins-Structure Function and Bioinformatics 79, 35113524.CrossRefGoogle ScholarPubMed
Evans, T. I. A., Hell, J. W. & Shea, M. A. (2011). Thermodynamic linkage between calmodulin domains binding calcium and contiguous sites in the C-terminal tail of CaV1.2. Biophysical Chemistry 159, 172187.CrossRefGoogle Scholar
Ewell, J., Gibb, B. C. & Rick, S. W. (2008). Water inside a hydrophobic cavitand molecule. Journal of Physical Chemistry B 112, 1027210279.CrossRefGoogle ScholarPubMed
Faerman, C. H. & Price, S. L. (1990). A transferable distributed multipole model for the electrostatic interactions of peptides and amides. Journal of the American Chemical Society 112, 49154926.CrossRefGoogle Scholar
Feig, M. & Brooks, C. (2004). Recent advances in the development and application of implicit solvent models in biomolecule simulations. Current Opinion in Structural Biology 14, 217224.CrossRefGoogle ScholarPubMed
Feig, M., Onufriev, A., Lee, M., Im, W., Case, D. & Brooks, C. (2004). Performance comparison of generalized Born and Poisson methods in the calculation of electrostatic solvation energies for protein structures. Journal of Computational Chemistry 25, 265284.CrossRefGoogle ScholarPubMed
Feig, M., Tanizaki, S. & Sayadi, M. (2008). Chapter 6 implicit solvent simulations of biomolecules in cellular environments. Annual Reports in Computational Chemistry 4, 107121.CrossRefGoogle Scholar
Felder, C. E. & Applequist, J. (1981). Energies of solute molecules from an atom charge-dipole interaction model with a surrounding dielectric: application to Gibbs energies of proton transfer between carboxylic acids in water. Journal of Chemical Physics 75, 23902398.CrossRefGoogle Scholar
Fenimore, P. W., Frauenfelder, H., Mcmahon, B. H. & Young, R. D. (2004). Bulk-solvent and hydration-shell fluctuations, similar to alpha- and beta-fluctuations in glasses, control protein motions and functions. Proceedings of the National Academy of Sciences of the United States of America 101, 1440814413.CrossRefGoogle ScholarPubMed
Fenley, A. T., Gordon, J. C. & Onufriev, A. (2008). An analytical approach to computing biomolecular electrostatic potential. I. Derivation and analysis. Journal of Chemical Physics 129,075102.CrossRefGoogle ScholarPubMed
Feynman, R. P. (1939). Forces in molecules. Physical Review 56, 340343.CrossRefGoogle Scholar
Fischer, S. & Verma, C. (1999). Binding of buried structural water increases the flexibility of proteins. Proceedings of the National Academy of Sciences of the United States of America 96, 96139615.CrossRefGoogle ScholarPubMed
Fitzkee, N. & García-Moreno, E. B. (2008). Electrostatic effects in unfolded staphylococcal nuclease. Protein Science 17, 216227.CrossRefGoogle ScholarPubMed
Fixman, M. (1979). The Poisson–Boltzmann equation and its application to polyelectrolytes. Journal of Chemical Physics 70, 4995–4146.CrossRefGoogle Scholar
Flanagan, M., Ackers, G., Matthew, J., Hanania, G. & Gurd, F. (1981). Electrostatic contributions to the energetics of dimer–tetramer assembly in human hemoglobin: pH dependence and effect of specifically bound chloride ions. Biochemistry 20, 74397449.CrossRefGoogle Scholar
Fletcher, N. H. (1970). The Chemical Physics of Ice. New York: Cambridge University Press.CrossRefGoogle Scholar
Florián, J. & Warshel, A. (1997). Langevin dipoles model for ab initio calculations of chemical processes in solution: parametrization and application to hydration free energies of neutral and ionic solutes and conformational analysis in aqueous solution. Journal of Physical Chemistry B 101, 55835595.CrossRefGoogle Scholar
Floris, F. & Tomasi, J. (1989). Evaluation of the dispersion contribution to the solvation energy a simple computational model in the continuum approximation. Journal of Computational Chemistry 10, 616627.CrossRefGoogle Scholar
Floris, F. M., Tomasi, J. & Ahuir, P. (1991). Dispersion and repulsion contributions to the solvation energy: refinements to a simple computational model in the continuum approximation. Journal of Computational Chemistry 12, 784791.CrossRefGoogle Scholar
Fogolari, F., Brigo, A. & Molinari, H. (2002). The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology. Journal of Molecular Recognition : JMR 15, 377392.CrossRefGoogle ScholarPubMed
Fowler, P. W. & Buckingham, A. D. (1983). The long range model of intermolecular forces. Molecular Physics 50, 13491361.CrossRefGoogle Scholar
Fowler, P. W. & Buckingham, A. D. (1991). Central or distributed multipole moments? Electrostatic models of aromatic dimers. Chemical Physics Letters 176, 1118.CrossRefGoogle Scholar
Frank, H. S. & Evans, M. W. (1945). Free volume and entropy in condensed systems III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. Journal of Chemical Physics 13, 507.CrossRefGoogle Scholar
Freedman, H. & Truong, T. N. (2004). Coupled reference interaction site model/simulation approach for thermochemistry of solvation: theory and prospects. Journal of Chemical Physics 121, 21872198.CrossRefGoogle ScholarPubMed
Freitag, M. A., Gordon, M. S., Jensen, J. H. & Stevens, W. J. (2000). Evaluation of charge penetration between distributed multipolar expansions. Journal of Chemical Physics 112, 73007306.CrossRefGoogle Scholar
Fried, M. G., Stickle, D. F., Smirnakis, K. V., Adams, C., Macdonald, D. & Lu, P. (2002). Role of hydration in the binding of lac repressor to DNA. Journal of Biological Chemistry 277, 5067650682.CrossRefGoogle ScholarPubMed
Friedman, H. L. (1975). Image approximation to the reaction field. Molecular Physics 29, 15331543.CrossRefGoogle Scholar
Friedman, R. (2000). Ions and the protein surface revisited: extensive molecular dynamics simulations and analysis of protein structures in alkali-chloride solutions. Journal of Physical Chemistry B 28, 234242.Google Scholar
Friesner, R. A. (2005). Ab initio quantum chemistry: methodology and applications. Proceedings of the National Academy of Sciences of the United States of America 102, 66486653.CrossRefGoogle ScholarPubMed
Friesner, R. A. & Guallar, V. (2005). Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. Annual Review of Physical Chemistry 56, 389427.CrossRefGoogle ScholarPubMed
Frolov, A., Ratkova, E., Palmer, D. & Fedorov, M. (2011). Hydration thermodynamics using the reference interaction site model: speed or accuracy? Journal of Physical Chemistry B 115, 60116022.CrossRefGoogle ScholarPubMed
Fukuma, T., Higgins, M. & Jarvis, S. (2007). Direct imaging of individual intrinsic hydration layers on lipid bilayers at Angstrom resolution. Biophysical Journal 92, 36033609.CrossRefGoogle ScholarPubMed
Fuxreiter, M., Mezei, M., Simon, I. & Osman, R. (2005). Interfacial water as a ‘hydration fingerprint’ in the noncognate complex of BamHI. Biophysical Journal 89, 903911.CrossRefGoogle ScholarPubMed
Gagliardi, L., Lindh, R. & Karlström, G. (2004). Local properties of quantum chemical systems: The LoProp approach. Journal of Chemical Physics 121, 44944500.CrossRefGoogle ScholarPubMed
Gallicchio, E., Kubo, M. M. & Levy, R. M. (2000). Enthalpy-entropy and cavity decomposition of alkane hydration free energies: numerical results and implications for theories of hydrophobic solvation. Journal of Physical Chemistry B 104, 62716285.CrossRefGoogle Scholar
Gallicchio, E. & Levy, R. (2004). AGBNP: an analytic implicit solvent model suitable for molecular dynamics simulations and high-resolution modeling. Journal of Computational Chemistry 25, 479499.CrossRefGoogle ScholarPubMed
Gallicchio, E., Paris, K. & Levy, R. (2009). The AGBNP2 implicit solvation model. Journal of Chemical Theory and Computation 5, 25442564.CrossRefGoogle ScholarPubMed
Gallicchio, E., Zhang, L. Y. & Levy, R. (2002). The SGB/NP hydration free energy model based on the surface generalized born solvent reaction field and novel nonpolar hydration free energy estimators. Journal of Computational Chemistry 23, 517529.CrossRefGoogle ScholarPubMed
García-García, C. & Draper, D. (2003). Electrostatic interactions in a peptide–RNA complex. Journal of Molecular Biology 331, 7588.CrossRefGoogle Scholar
Garcia-Viloca, M., Gao, J., Karplus, M. & Truhlar, D. G. (2004). How enzymes work: analysis by modern rate theory and computer simulations. Science 303, 186195.CrossRefGoogle ScholarPubMed
Garde, S., Hummer, G., García, A. E., Paulaitis, M. E. & Pratt, L. R. (1996). Origin of entropy convergence in hydrophobic hydration and protein folding. Physical Review Letters 77, 4966.CrossRefGoogle ScholarPubMed
Gavryushov, S. (2008). Electrostatics of B-DNA in NaCl and CaCl2 solutions: ion size, interionic correlation, and solvent dielectric saturation effects. The Journal of Physical Chemistry B 112, 89558965.CrossRefGoogle ScholarPubMed
Gavryushov, S. (2009). Mediating role of multivalent cations in DNA electrostatics: an epsilon-modified Poisson–Boltzmann study of B-DNA–B-DNA interactions in mixture of NaCl and MgCl2 solutions. Journal of Physical Chemistry B 113, 21602169.CrossRefGoogle ScholarPubMed
Geng, W. & Wei, G. W. (2011). Multiscale molecular dynamics using the matched interface and boundary method. Journal of Computational Physics 230, 435457.CrossRefGoogle ScholarPubMed
Georgescu, R., Alexov, E. & Gunner, M. (2002). Combining conformational flexibility and continuum electrostatics for calculating pK as in proteins. Biophysical Journal 83, 17311748.CrossRefGoogle ScholarPubMed
Gillespie, D., Nonner, W. & Eisenberg, R. (2002). Coupling Poisson–Nernst–Planck and density functional theory to calculate ion flux. Journal of Physics: Condensed Matter 14, 1212912145.Google Scholar
Gilson, M., Davis, M., Luty, B. & Mccammon, A. (1993). Computation of electrostatic forces on solvated molecules using the Poisson–Boltzmann equation. Journal of Physical Chemistry 97, 35913600.CrossRefGoogle Scholar
Gilson, M. K. (1995). Theory of electrostatic interactions in macromolecules. Current Opinion in Structural Biology 5, 216223.CrossRefGoogle ScholarPubMed
Gilson, M. K. & Honig, B. (1988). Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis. Proteins 4, 718.CrossRefGoogle ScholarPubMed
Gilson, M. K. & Honig, B. H. (1987). Calculation of electrostatic potentials in an enzyme active site. Nature 330, 8486.CrossRefGoogle Scholar
Goel, T., Patra, C., Ghosh, S. & Mukherjee, T. (2008). Molecular solvent model of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory. Journal of Chemical Physics 129, 154707.CrossRefGoogle ScholarPubMed
Gohara, D. & Di Cera, E. (2011). Allostery in trypsin-like proteases suggests new therapeutic strategies. Trends in Biotechnology 29, 577585.CrossRefGoogle ScholarPubMed
Grant, A., Pickup, B. & Nicholls, A. (2001). A smooth permittivity function for Poisson–Boltzmann solvation methods. Journal of Computational Chemistry 22, 608640.CrossRefGoogle Scholar
Grant, J. A. & Pickup, B. T. (1995). A Gaussian description of molecular shape. Journal of Physical Chemistry 99, 35033510.CrossRefGoogle Scholar
Grant, J. A., Pickup, B. T., Sykes, M. J., Kitchen, C. A. & Nicholls, A. (2007). The Gaussian generalized Born model: application to small molecules. Physical Chemistry Chemical Physics 9, 49134922.CrossRefGoogle ScholarPubMed
Gresh, N. (1997). Inter- and intramolecular interactions. Inception and refinements of the SIBFA, molecular mechanics (SMM) procedure, a separable, polarizable methodology grounded on ab initio SCF/MP2 computations. Examples of applications to molecular recognition problems. Journal De Chimie Physique et de Physico-Chimie Biologique 94, 13651416.CrossRefGoogle Scholar
Grilley, D., Misra, V., Caliskan, G. & Draper, D. (2007). Importance of partially unfolded conformations for Mg(2+)-induced folding of RNA tertiary structure: structural models and free energies of Mg2+ interactions. Biochemistry 46, 1026610278.CrossRefGoogle ScholarPubMed
Grilley, D., Soto, A. M. & Draper, D. (2006). Mg2+–RNA interaction free energies and their relationship to the folding of RNA tertiary structures. Proceedings of the National Academy of Sciences of the United States of America 103, 1400314008.CrossRefGoogle Scholar
Grochowski, P. & Trylska, J. (2008). Continuum molecular electrostatics, salt effects, and counterion binding–a review of the Poisson–Boltzmann theory and its modifications. Biopolymers 89, 93113.CrossRefGoogle ScholarPubMed
Grossfield, A., Ren, P. & Ponder, J. (2003). Ion solvation thermodynamics from simulation with a polarizable force field. Journal of the American Chemical Society 125, 1567115682.CrossRefGoogle ScholarPubMed
Grycuk, T. (2003). Deficiency of the Coulomb-field approximation in the generalized Born model: an improved formula for Born radii evaluation. Journal of Chemical Physics 119, 48174826.CrossRefGoogle Scholar
Gu, W., Rahi, S. & Helms, V. (2004). Solvation free energies and transfer free energies for amino acids from hydrophobic solution to water solution from a very simple residue model. Journal of Physical Chemistry B 108, 58065814.CrossRefGoogle Scholar
Guillot, B. (2002). A reappraisal of what we have learnt during three decades of computer simulations on water. Journal of Molecular Liquids 101, 219260.CrossRefGoogle Scholar
Guinto, E. R. & Di Cera, E. (1996). Large heat capacity change in a protein-monovalent cation interaction. Biochemistry 35, 88008804.CrossRefGoogle Scholar
Gurau, M., Lim, S.-M., Castellana, E., Albertorio, F., Kataoka, S. & Cremer, P. (2004). On the mechanism of the Hofmeister effect. Journal of the American Chemical Society 126, 1052210523.CrossRefGoogle ScholarPubMed
Ha-Duong, T., Basdevant, N. & Borgis, D. (2009). A polarizable coarse-grained water model for coarse-grained proteins simulations. Chemical Physics Letters 468, 7982.CrossRefGoogle Scholar
Haduong, T., Phan, S., Marchi, M. & Borgis, D. (2002). Electrostatics on particles: phenomenological and orientational density functional theory approach. Journal of Chemical Physics 117, 541556.CrossRefGoogle Scholar
Hagberg, D., Karlstrom, G., Roos, B. O. & Gagliardi, L. (2005). The coordination of uranyl in water: a combined quantum chemical and molecular simulation study. Journal of the American Chemical Society 127, 1425014256.CrossRefGoogle Scholar
Halgren, T. A. (1992). The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters. Journal of the American Chemical Society 114, 78277843.CrossRefGoogle Scholar
Halgren, T. A. & Damm, W. (2001). Polarizable force fields. Current Opinion in Structural Biology 11, 236242.CrossRefGoogle ScholarPubMed
Hamelberg, D. & Mccammon, J. A. (2004). Standard free energy of releasing a localized water molecule from the binding pockets of proteins: double-decoupling method. Journal of the American Chemical Society 126, 76837689.CrossRefGoogle ScholarPubMed
Hansen, J. P. & Mcdonald, I. R. (2000). Theory of Simple Liquids. New York, NY: Academic Press.Google Scholar
Harano, Y., Imai, T., Kovalenko, A., Kinoshita, M. & Hirata, F. (2001). Theoretical study for partial molar volume of amino acids and polypeptides by the three-dimensional reference interaction site model. Journal of Chemical Physics 114, 95069511.CrossRefGoogle Scholar
Harder, E., Anisimov, V. M., Whitfield, T., Mackerell, A. D. Jr. & Roux, B. (2008). Understanding the dielectric properties of liquid amides from a polarizable force field. Journal of Physical Chemistry B 112, 35093521.CrossRefGoogle ScholarPubMed
Harder, E. & Roux, B. (2008). On the origin of the electrostatic potential difference at a liquid–vacuum interface. Journal of Chemical Physics 129, 234706234706.CrossRefGoogle Scholar
Harms, M. J., Castañeda, C. A., Schlessman, J. L., Sue, G. R., Isom, D. G., Cannon, B. R. & García-Moreno, E. B. (2009). The pKa values of acidic and basic residues buried at the same internal location in a protein are governed by different factors. Journal of Molecular Biology 389, 3447.CrossRefGoogle Scholar
Harms, M. J., Schlessman, J. L., Chimenti, M. S., Sue, G. R., Damjanović, A. & García-Moreno, B. (2008). A buried lysine that titrates with a normal pK a: role of conformational flexibility at the protein–water interface as a determinant of pK a values. Protein Science 17, 833845.CrossRefGoogle ScholarPubMed
Harries, D. & Rosgen, J. (2008). A practical guide on how osmolytes modulate macromolecular properties. Methods in Cell Biology 84, 679735.CrossRefGoogle ScholarPubMed
Hedstrom, L., Szilagyi, L. & Rutter, W. J. (1992). Converting trypsin to chymotrypsin: the role of surface loops. Science 255, 12491253.CrossRefGoogle ScholarPubMed
Hirata, F. (2003). Molecular Theory of Solvation. Boston, MA: Kluwer Academic Publishers.Google Scholar
Hirschfelder, J. O., Curtiss, C. F. & Bird, R. B. (1954). Molecular Theory of Gases and Liquids. New York: Wiley.Google Scholar
Hofmeister, F. (1888). Zur Lehre von der Wirkung der Salze. II. Archives of Experimental Pathology and Pharmakology 24, 247260.CrossRefGoogle Scholar
Holm, C., Kekicheff, P. & Podgornik, R. (2001). Electrostatic Effects in Soft Matter and Biophysics; NATO Science Series. Dordrecht, Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
Holst, M. (2001). Adaptive numerical treatment of elliptic systems on manifolds. Advances in Computational Mathematics 15, 139191.CrossRefGoogle Scholar
Holst, M., Baker, N. & Wang, F. (2000). Adaptive multilevel finite element solution of the Poisson–Boltzmann equation I. Algorithms and examples. Journal of Computational Chemistry 21, 13191342.3.0.CO;2-8>CrossRefGoogle Scholar
Holst, M. & Saied, F. (1993). Multigrid solution of the Poisson–Boltzmann equation. Journal of Computational Chemistry 14, 105113.CrossRefGoogle Scholar
Holst, M. J. & Saied, F. (1995). Numerical solution of the nonlinear Poisson–Boltzmann equation: developing more robust and efficient methods. Journal of Computational Chemistry 16, 337364.CrossRefGoogle Scholar
Holt, A. & Karlström, G. (2008). An intramolecular induction correction model of the molecular dipole moment. Journal of Computational Chemistry 29, 10841091.CrossRefGoogle ScholarPubMed
Holt, A. & Karlström, G. (2009). Improvement of the NEMO potential by inclusion of intramolecular polarization. International Journal of Quantum Chemistry 109, 12551266.CrossRefGoogle Scholar
Hong, J., Capp, M. W., Anderson, C. F., Saecker, R. M., Felitsky, D. J., Anderson, M. W. & Record, M. T. Jr. (2004). Preferential interactions of glycine betaine and of urea with DNA: implications for DNA hydration and for effects of these solutes on DNA stability. Biochemistry 43, 1474414758.CrossRefGoogle ScholarPubMed
Honig, B. & Nicholls, A. (1995). Classical electrostatics in biology and chemistry. Science 268, 11441149.CrossRefGoogle ScholarPubMed
Honig, B. H., Hubbell, W. L. & Flewelling, R. F. (1986). Electrostatic interactions in membranes and proteins. Annual Review of Biophysics and Biophysical Chemistry 15, 163193.CrossRefGoogle ScholarPubMed
Horn, H. W., Swope, W. C., Pitera, J. W., Madura, J. D., Dick, T. J., Hura, G. L. & Head-Gordon, T. (2004). Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. Journal of Chemical Physics 120, 96659678.CrossRefGoogle ScholarPubMed
Howard, J. J., Perkyns, J. S., Choudhury, N. & Pettitt, B. M. (2008). An integral equation study of the hydrophobic interaction between graphene plates. Journal of Chemical Theory and Computation 4, 19281939.CrossRefGoogle ScholarPubMed
Hribar, B., Southall, N. T., Vlachy, V. & Dill, K. A. (2002). How ions affect the structure of water. Journal of the American Chemical Society 124, 1230212311.CrossRefGoogle ScholarPubMed
Hu, H. & Yang, W. (2008). Free energies of chemical reactions in solution and in enzymes with ab initio quantum mechanics/molecular mechanics methods. Annual Review of Physical Chemistry 59, 573601.CrossRefGoogle ScholarPubMed
Hu, W. & Webb, L. (2000). Direct measurement of the membrane dipole field in bicelles using vibrational stark effect spectroscopy. Journal of Physical Chemistry Letters 2, 19251930.CrossRefGoogle Scholar
Huang, D., Geissler, P. & Chandler, D. (2001). Scaling of hydrophobic solvation free energies†. Journal of Physical Chemistry B 105, 67046709.CrossRefGoogle Scholar
Huang, D. M. & Chandler, D. (2002). The hydrophobic effect and the influence of solute-solvent attractions. Journal of Physical Chemistry B 106, 20472053.CrossRefGoogle Scholar
Hummer, G. (1999). Hydrophobic force field as a molecular alternative to surface-area models. Journal of the American Chemical Society 121, 62996305.CrossRefGoogle Scholar
Hummer, G. & Garde, S. (1998). Cavity expulsion and weak dewetting of hydrophobic solutes in water. Physical Review Letters 80(19), 41934196.CrossRefGoogle Scholar
Hummer, G., Garde, S., García, A. E., Pohorille, A. & Pratt, L. R. (1996). An information theory model of hydrophobic interactions. Proceedings of the National Academy of Sciences of the United States of America 93, 89518955.CrossRefGoogle ScholarPubMed
Hummer, G., Garde, S., Garcia, A. E. & Pratt, L. R. (2000). New perspectives on hydrophobic effects. Chemical Physics 258, 349370.CrossRefGoogle Scholar
Hünenberger, P. H. & Gunsteren, W. F. V. (1998). Alternative schemes for the inclusion of a reaction-field correction into molecular dynamics simulations: Influence on the simulated energetic, structural, and dielectric properties of liquid water. Journal of Chemical Physics 108, 61176134.CrossRefGoogle Scholar
Ichikawa, K., Kameda, Y., Yamaguchi, T., Wakita, H. & Misawa, M. (1991). Neutron-diffraction investigation of the intramolecular structure of a water molecule in the liquid phase at high temperatures. Molecular Physics 73, 7986.CrossRefGoogle Scholar
Ikura, T., Urakubo, Y. & Ito, N. (2004). Water-mediated interaction at a protein-protein interface. Chemical Physics 307, 111119.CrossRefGoogle Scholar
Illingworth, C. J. & Domene, C. (2009). Many-body effects and simulations of potassium channels. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 465, 17011716.CrossRefGoogle Scholar
Im, W. (1998). Continuum solvation model: computation of electrostatic forces from numerical solutions to the Poisson–Boltzmann equation. Computer Physics Communications 111, 5975.CrossRefGoogle Scholar
Im, W., Berneche, S. & Roux, B. (2001). Generalized solvent boundary potential for computer simulations. Journal of Chemical Physics 114, 29242937.CrossRefGoogle Scholar
Im, W., Feig, M. & Brooks, C. L. III (2003a). An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins. Biophysical Journal 85, 29002918.CrossRefGoogle Scholar
Im, W., Lee, M. S. & Brooks, C. L. III, (2003b). Generalized born model with a simple smoothing function. Journal of Computational Chemistry 24, 16911702.CrossRefGoogle ScholarPubMed
Imai, T., Harano, Y., Kovalenko, A. & Hirata, F. (2001). Theoretical study for volume changes associated with the helix–coil transition of peptides. Biopolymers 59, 512519.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Imai, T., Hiraoka, R., Kovalenko, A. & Hirata, F. (2005). Water molecules in a protein cavity detected by a statistical–mechanical theory. Journal of the American Chemical Society 127, 1533415335.CrossRefGoogle Scholar
Imai, T., Hiraoka, R., Kovalenko, A. & Hirata, F. (2007a). Locating missing water molecules in protein cavities by the three-dimensional reference interaction site model theory of molecular solvation. Proteins 66, 804813.CrossRefGoogle ScholarPubMed
Imai, T., Hiraoka, R., Seto, T., Kovalenko, A. & Hirata, F. (2007b). Three-dimensional distribution function theory for the prediction of protein-ligand binding sites and affinities: application to the binding of noble gases to hen egg-white lysozyme in aqueous solution. Journal of Physical Chemistry B 111, 1158511591.CrossRefGoogle Scholar
Imai, T., Kovalenko, A. & Hirata, F. (2004). Solvation thermodynamics of protein studied by the 3D-RISM theory. Chemical Physics Letters 395, 16.CrossRefGoogle Scholar
Imai, T., Miyashita, N., Sugita, Y., Kovalenko, A., Hirata, F. & Kidera, A. (2000). Functionality mapping on internal surfaces of multidrug transporter AcrB based on molecular theory of solvation: implications for drug efflux pathway. Journal of Physical Chemistry B 134, 16417.Google Scholar
Isom, D. G., Cannon, B. R., Castañeda, C. A., Robinson, A. & García-Moreno, E. B. (2008). High tolerance for ionizable residues in the hydrophobic interior of proteins. Proceedings of the National Academy of Sciences of the United States of America 105, 1778417788.CrossRefGoogle ScholarPubMed
Isom, D. G., Castañeda, C. A., Cannon, B. R. & García-Moreno, E. B. (2011). Large shifts in pK a values of lysine residues buried inside a protein. Proceedings of the National Academy of Sciences of the United States of America 108, 52605265.CrossRefGoogle ScholarPubMed
Isom, D. G., Castañeda, C. A., Cannon, B. R., Velu, P. D., García-Moreno, E. B. & García, M. (2010). Charges in the hydrophobic interior of proteins. Proceedings of the National Academy of Sciences of the United States of America 107, 1609616100.CrossRefGoogle ScholarPubMed
Jackson, J. D. (1975). Classical Electrodynamics. New York: John Wiley and Sons.Google Scholar
Jakalian, A., Bush, B. L., Jack, D. B. & Bayly, C. I. (2000). Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. Journal of Computational Chemistry 21, 132146.3.0.CO;2-P>CrossRefGoogle Scholar
Jakalian, A., Jack, D. B. & Bayly, C. I. (2002). Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. Journal of Computational Chemistry 23, 16231641.CrossRefGoogle ScholarPubMed
Jancovici, B. (2006). A van der Waals free energy in electrolytes revisited. European Physical Journal E: Soft Matter 19, 14.CrossRefGoogle Scholar
Jedlovszky, P. (2001). Thermodynamic and structural properties of liquid water around the temperature of maximum density in a wide range of pressures: a computer simulation study with a polarizable potential model. Journal of Chemical Physics 115, 3750.CrossRefGoogle Scholar
Jedlovszky, P. & Vallauri, R. (1999). Temperature dependence of thermodynamic properties of a polarizable potential model of water. Molecular Physics 97, 11571163.CrossRefGoogle Scholar
Jho, Y., Kanduč, M., Naji, A., Podgornik, R., Kim, M. & Pincus, P. (2008). Strong-coupling electrostatics in the presence of dielectric inhomogeneities. Physical Review Letters 101, 188101.CrossRefGoogle ScholarPubMed
Jiang, W., Hardy, D. J., Phillips, J. C., Mackerell, A. D. Jr., Schulten, K. & Roux, B. (2011). High-performance scalable molecular dynamics simulations of a polarizable force field based on classical Drude oscillators in NAMD. Journal of Physical Chemistry Letters 2, 8792.CrossRefGoogle ScholarPubMed
Jiao, D., Golubkov, P. A., Darden, T. A. & Ren, P. (2008). Calculation of protein-ligand binding free energy by using a polarizable potential. Proceedings of the National Academy of Sciences of the United States of America 105, 62906295.CrossRefGoogle ScholarPubMed
Jiao, D., King, C., Grossfield, A., Darden, T. A. & Ren, P. (2006). Simulation of Ca2+ and Mg2+ solvation using polarizable atomic multipole potential. Journal of Physical Chemistry B 110, 1855318559.CrossRefGoogle ScholarPubMed
Jiao, D., Zhang, J., Duke, R. E., Li, G., Schnieders, M. J. & Ren, P. (2009). Trypsin-ligand binding free energies from explicit and implicit solvent simulations with polarizable potential. Journal of Computational Chemistry 30, 17011711.CrossRefGoogle ScholarPubMed
Jorgensen, W. (1985). Monte Carlo simulation of differences in free energies of hydration. The Journal of Chemical Physics 83, 3050.CrossRefGoogle Scholar
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics 79, 926.CrossRefGoogle Scholar
Jorgensen, W. L. & Swenson, C. J. (1985). Optimized intermolecular potential functions for amides and peptides. Structure and properties of liquid amides. Journal of the American Chemical Society 107, 569578.CrossRefGoogle Scholar
Jorgensen, W. L., Ulmschneider, J. P. & Rives, J. T. (2004). Free energies of hydration from a generalized Born model and an all-atom force field. Journal of Physical Chemistry B 108, 1626416270.CrossRefGoogle Scholar
Jorov, A., Zhorov, B. S. & Yang, D. S. C. (2004). Theoretical study of interaction of winter flounder antifreeze protein with ice. Protein Science 13, 15241537.CrossRefGoogle ScholarPubMed
Joubert, L. & Popelier, P. L. A. (2002). Improved convergence of the ‘atoms in molecules’ multipole expansion of electrostatic interaction. Molecular Physics 100, 33573365.CrossRefGoogle Scholar
Joung, I. S. & Cheatham, T. E. (2008). Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. Journal of Physical Chemistry B 112, 90209041.CrossRefGoogle ScholarPubMed
Juffer, A., Botta, E., Vankeulen, B., Vanderploeg, A. & Berendsen, H. (1991). The electric potential of a macromolecule in a solvent: a fundamental approach. Journal of Computational Physics 97, 144171.CrossRefGoogle Scholar
Kamerlin, S. C. L., Haranczyk, M. & Warshel, A. (2009) Progress in ab Initio QM/MM free-energy simulations of electrostatic energies in proteins: accelerated QM/MM studies of pK a, redox reactions and solvation free energies. Journal of Physical Chemistry B 113, 12531272.CrossRefGoogle ScholarPubMed
Kaminski, G., Friesner, R. A., Rives, J. T. & Jorgensen, W. L. (2001). Evaluation and reparameterization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. Journal of Physical Chemistry B 105, 64746487.CrossRefGoogle Scholar
Kaminski, G. A., Stern, H. A., Berne, B. J., Friesner, R. A., Cao, Y. X., Murphy, R. B., Zhou, R. & Halgren, T. A. (2002). Development of a polarizable force field for proteins via ab initio quantum chemistry: First generation model and gas phase tests. Journal of Computational Chemistry 23, 15151531.CrossRefGoogle ScholarPubMed
Kanduč, M., Trulsson, M., Naji, A., Burak, Y., Forsman, J. & Podgornik, R. (2008). Weak- and strong-coupling electrostatic interactions between asymmetrically charged planar surfaces. Physical Review E 78, 22702270.CrossRefGoogle ScholarPubMed
Karp, D. A., Gittis, A. G., Stahley, M. R., Fitch, C. A., Stites, W. E. & Garcia-Moreno, E. B. (2007). High apparent dielectric constant Inside a protein reflects structural reorganization coupled to the ionization of an internal Asp. Biophysical Journal 92, 20412053.CrossRefGoogle Scholar
Karp, D. A., Stahley, M. R. & García-Moreno, B. (2010). Conformational consequences of ionization of Lys, Asp, and Glu buried at position 66 in staphylococcal nuclease. Biochemistry 49, 41384146.CrossRefGoogle ScholarPubMed
Kauzmann, W. (1959). Some factors in the interpretation of protein denaturation. Advances in Protein Chemistry 14, 163.CrossRefGoogle ScholarPubMed
Khandogin, J. & Brooks, C. L. (2006). Toward the accurate first-principles prediction of ionization equilibria in proteins. Biochemistry 45, 93639373.CrossRefGoogle ScholarPubMed
Kielland, J. (1937). Individual activity coefficients of ions in aqueous solutions. Journal of the American Chemical Society 59, 16751678.CrossRefGoogle Scholar
Kim, Y. W. & Sung, W. (2005). Charge inversion on membranes induced by multivalent-counterion fluctuations. Journal of Physics: Condensed Matter 17, S2943S2949.Google Scholar
Kim, Y. W., Yi, J. & Pincus, P. A. (2008). Attractions between like-charged surfaces with dumbbell-shaped counterions. Physical Review Letters 101, 208305.CrossRefGoogle ScholarPubMed
Kimel, S. (1964). Intermolecular potential in solid methane. I. Cohesive energy and crystal structure. Journal of Chemical Physics 40, 3351.CrossRefGoogle Scholar
Kinoshita, M., Okamoto, Y. & Hirata, F. (1999). Analysis on conformational stability of C-peptide of ribonuclease A in water using the reference interaction site model theory and Monte Carlo simulated annealing. Journal of Chemical Physics 110, 40904100.CrossRefGoogle Scholar
Kirkwood, J. (1934). Theory of solutions of molecules containing widely separated charges with special application to zwitterions. Journal of Chemical Physics 2, 351361.CrossRefGoogle Scholar
Kirkwood, J. (1938). The electrostatic influence of substituents on the dissociation constants of organic acids. I. Journal of Chemical Physics 6, 506.CrossRefGoogle Scholar
Kiyota, Y., Hiraoka, R., Yoshida, N., Maruyama, Y., Imai, T. & Hirata, F. (2009). Theoretical study of CO escaping pathway in myoglobin with the 3D-RISM theory. Journal of the American Chemical Society 131, 38523853.CrossRefGoogle ScholarPubMed
Kiyota, Y., Yoshida, N. & Hirata, F. (2011). A new approach for investigating the molecular recognition of protein: toward structure-based drug design based on the 3D-RISM theory. Journal of Chemical Theory and Computation 7, 38033815.CrossRefGoogle ScholarPubMed
Klapper, I., Hagstrom, R., Fine, R., Sharp, K. & Honig, B. (1986). Focusing of electric fields in the active site of Cu-Zn superoxide dismutase: effects of ionic strength and amino-acid modification. Proteins 1, 4759.CrossRefGoogle ScholarPubMed
Klopper, W., Van Duijneveldt-Van De Rijdt, J. G. C. M. & Van Duijneveldt, F. B. (2000). Computational determination of equilibrium geometry and dissociation energy of the water dimer. Physical Chemistry Chemical Physics 2, 22272234.CrossRefGoogle Scholar
Kollman, P., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. & Cheatham, T. (2000). Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Accounts of Chemical Research 33, 889897.CrossRefGoogle ScholarPubMed
Kong, X. & Brooks, C. L. III (1996). Lambda-dynamics: a new approach to free energy calculations. Journal of Chemical Physics 105, 24142423.CrossRefGoogle Scholar
Kong, Y. (1997). Calculation of the reaction field due to off-center point multipoles. Journal of Chemical Physics 107, 481.CrossRefGoogle Scholar
Kovalenko, A. & Hirata, F. (1998). Three-dimensional density profiles of water in contact with a solute of arbitrary shape: a RISM approach. Chemical Physics Letters 290, 237244.CrossRefGoogle Scholar
Kovalenko, A. & Hirata, F. (1999). Potential of mean force between two molecular ions in a polar molecular solvent: a study by the three-dimensional reference interaction site model. Journal of Physical Chemistry B 103, 79427957.CrossRefGoogle Scholar
Kovalenko, A. & Hirata, F. (2000a). Hydration free energy of hydrophobic solutes studied by a reference interaction site model with a repulsive bridge correction and a thermodynamic perturbation method. Journal of Chemical Physics 113, 27932793.CrossRefGoogle Scholar
Kovalenko, A. & Hirata, F. (2000b). Potentials of mean force of simple ions in ambient aqueous solution. I. Three-dimensional reference interaction site model approach. Journal of Chemical Physics 112, 1039110391.CrossRefGoogle Scholar
Kovalenko, A. & Hirata, F. (2000c). Potentials of mean force of simple ions in ambient aqueous solution. II. Solvation structure from the three-dimensional reference interaction site model approach, and comparison with simulations. Journal of Chemical Physics 112, 1040310403.CrossRefGoogle Scholar
Kozlov, A. G. & Lohman, T. M. (1998). Calorimetric studies of E. coli SSB protein-single-stranded DNA interactions. Effects of monovalent salts on binding enthalpy. Journal of Molecular Biology 278, 9991014.CrossRefGoogle ScholarPubMed
Kraayenhof, R. (1996). Monovalent cations differentially affect membrane surface properties and membrane curvature, as revealed by fluorescent probes and dynamic light scattering. Biochimica et Biophysica Acta–Biomembranes 1282, 293302.CrossRefGoogle ScholarPubMed
Krem, M. & Di Cera, E. (1998). Conserved water molecules in the specificity pocket of serine proteases and the molecular mechanism of Na+ binding. Proteins: Structure, Function, and Genetics 30, 3442.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Kuhn, L. A., Siani, M. A., Pique, M. E., Fisher, C. L., Getzoff, E. D. & Tainer, J. A. (1992). The interdependence of protein surface topography and bound water molecules revealed by surface accessibility and fractal density measures. Journal of Molecular Biology 228, 1322.CrossRefGoogle ScholarPubMed
Kumar, R., Wang, F. F., Jenness, G. R. & Jordan, K. D. (2010). A second generation distributed point polarizable water model. Journal of Chemical Physics 132, 014309.CrossRefGoogle ScholarPubMed
Labute, P. (2008). The generalized Born/volume integral implicit solvent model: estimation of the free energy of hydration using London dispersion instead of atomic surface area. Journal of Computational Chemistry 94, 31373149.Google Scholar
Laio, A. & Parrinello, M. (2002). Escaping free-energy minima. Proceedings of the National Academy of Sciences of the United States of America 99, 1256212566.CrossRefGoogle ScholarPubMed
Lamm, G. (2003). Reviews in Computational Chemistry; The Poisson–Boltzmann Equation, pp. 147366. New York, NY: John Wiley and Sons Inc.Google Scholar
Lamm, G. & Pack, G. (2010). Counterion condensation and shape within Poisson–Boltzmann theory. Biopolymers 93, 619639.CrossRefGoogle ScholarPubMed
Lamoureux, G., Mackerell, A. D. & Roux, B. (2003). A simple polarizable model of water based on classical Drude oscillators. Journal of Chemical Physics 119, 51855197.CrossRefGoogle Scholar
Lamoureux, G. & Roux, B. (2006). Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field. Journal of Physical Chemistry B 110, 33083322.CrossRefGoogle ScholarPubMed
Landau, L. D., Lifshitz, E. M. & Pitaevskii, L. P. (1982). Electrodynamics of Continous Media; Landau and Lifshitz Course of Theoretical Physics. Oxford: Butterworth-Heinenann.Google Scholar
Lau, K. F., Alper, H. E., Thacher, T. S. & Stouch, T. R. (1994). Effects of switching functions on the behavior of liquid water in molecular dynamics simulations. Journal of Physical Chemistry 98, 87858792.CrossRefGoogle Scholar
Laurents, D., Huyghues-Despointes, B., Bruix, M., Thurlkill, R., Schell, D., Newsom, S., Grimsley, G., Shaw, K., Treviño, S., Rico, M., Briggs, J., Antosiewicz, J., Scholtz, M. & Pace, N. (2003). Charge-charge interactions are key determinants of the pK values of ionizable groups in ribonuclease Sa (pI = 3.5) and a basic variant (pI = 10.2). Journal of Molecular Biology 325, 10771092.CrossRefGoogle Scholar
Lazaridis, T. & Karplus, M. (1999). Effective energy function for proteins in solution. Proteins: Structure, Function, and Bioinformatics 35, 133152.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Leach, A. R. (2001). Molecular Modelling: Principles and Applications. Harlow, England; New York: Prentice Hall.Google Scholar
Lee, M. S., Salsbury, F. R. Jr. & Brooks, C. L. III (2002). Novel generalized Born methods. Journal of Chemical Physics 116, 1060610614.CrossRefGoogle Scholar
Lee, M. S., Salsbury, F. R. & Olson, M. A. (2004). An efficient hybrid explicit/implicit solvent method for biomolecular simulations. Journal of Computational Chemistry 25, 19671978.CrossRefGoogle ScholarPubMed
Leipply, D. & Draper, D. (2000). Effects of Mg2+ on the free energy landscape for folding a purine Riboswitch RNA. Biochemistry 50, 27902799.CrossRefGoogle Scholar
Leontidis, E., Aroti, A., Belloni, L., Dubois, M. & Zemb, T. (2007). Effects of monovalent anions of the Hofmeister series on DPPC lipid bilayers Part II: modeling the perpendicular and lateral equation-of-state. Biophysical Journal 93, 15911607.CrossRefGoogle ScholarPubMed
Levy, R. M., Zhang, L. Y., Gallicchio, E. & Felts, A. K. (2003). On the nonpolar hydration free energy of proteins: surface area and continuum solvent models for the solute–solvent interaction energy. Journal of the American Chemical Society 125, 95239530.CrossRefGoogle ScholarPubMed
Li, H., Hains, A. W., Everts, J. E., Robertson, A. D. & Jensen, J. H. (2002). The prediction of protein pKa's using QM/MM: the pK a of lysine 55 in turkey ovomucoid third domain. Journal of Physical Chemistry B 106, 34863494.CrossRefGoogle Scholar
Li, H., Robertson, A. D. & Jensen, J. H. (2004). The determinants of carboxyl pK a values in turkey ovomucoid third domain. Proteins 55, 689704.CrossRefGoogle ScholarPubMed
Li, H., Robertson, A. D. & Jensen, J. H. (2005). Very fast empirical prediction and rationalization of protein pK a values. Proteins 61, 704721.CrossRefGoogle ScholarPubMed
Li, J., Hawkins, G. D., Cramer, C. J. & Truhlar, D. G. (1998a). Universal reaction field model based on ab initio Hartree–Fock theory. Chemical Physics Letters 288, 293298.CrossRefGoogle Scholar
Li, J., Zhu, T., Cramer, C. J. & Truhlar, D. G. (1998b). New class IV charge model for extracting accurate partial charges from wave functions. Journal of Physical Chemistry A 102, 18201831.CrossRefGoogle Scholar
Li, W., Zhang, J., Wang, J. & Wang, W. (2008). Metal-coupled folding of Cys2His2 zinc-finger. Journal of the American Chemical Society 130, 892900.CrossRefGoogle ScholarPubMed
Li, X., Li, J., Eleftheriou, M. & Zhou, R. (2006). Hydration and dewetting near fluorinated superhydrophobic plates. Journal of the American Chemical Society 128, 1243912447.CrossRefGoogle ScholarPubMed
Licata, V. J. & Allewell, N. M. (1997). Functionally linked hydration changes in Escherichia coli aspartate transcarbamylase and its catalytic subunit. Biochemistry 36, 1016110167.CrossRefGoogle ScholarPubMed
Lifson, S. (1968). Consistent force field for calculations of conformations, vibrational spectra, and enthalpies of cycloalkane and n-Alkane molecules. Journal of Chemical Physics 49, 5116.CrossRefGoogle Scholar
Lin, H. & Truhlar, D. (2007). QM/MM: what have we learned, where are we, and where do we go from here? Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta) 117, 185199.CrossRefGoogle Scholar
Lindell, I. V. (1992). Electrostatic image theory for the dielectric sphere. Radio Science 27, 18.CrossRefGoogle Scholar
Linse, P. (1984). Thermodynamic and structural aspects of liquid and solid benzene. Monte Carlo study. Journal of the American Chemical Society 106, 54255430.CrossRefGoogle Scholar
Liu, K., Jia, Z., Chen, G., Tung, C. & Liu, R. (2005). Systematic size study of an insect antifreeze protein and its interaction with ice. Biophysical Journal 88, 953958.CrossRefGoogle ScholarPubMed
Lopes, P. E. M., Lamoureux, G., Roux, B. & Mackerell, A. D. (2007). Polarizable empirical force field for aromatic compounds based on the classical drude oscillator. Journal of Physical Chemistry B 111, 28732885.CrossRefGoogle ScholarPubMed
Lopes, P. E. M., Roux, B. & Mackerell, A. D. (2009). Molecular modeling and dynamics studies with explicit inclusion of electronic polarizability: theory and applications. Theoretical Chemistry Accounts 124, 1128.CrossRefGoogle ScholarPubMed
Lu, B., Cheng, X., Huang, J. & Mccammon, A. (2010). AFMPB: an adaptive fast multipole Poisson–Boltzmann solver for calculating electrostatics in biomolecular systems. Computer Physics Communications 181, 11501160.CrossRefGoogle ScholarPubMed
Luan, B. & Aksimentiev, A. (2010). Electric and electrophoretic inversion of the DNA charge in multivalent electrolytes. Soft Matter 6, 243246.CrossRefGoogle ScholarPubMed
Lubchenko, V., Wolynes, P. G. & Frauenfelder, H. (2005). Mosaic energy landscapes of liquids and the control of protein conformational dynamics by glass-forming solvents. Journal of Physical Chemistry B 109, 74887499.CrossRefGoogle ScholarPubMed
Lucent, D., Vishal, V. & Pande, V. S. (2007). Protein folding under confinement: a role for solvent. Proceedings of the National Academy of Sciences of the United States of America 104, 1043010434.CrossRefGoogle ScholarPubMed
Lum, K., Chandler, D. & Weeks, J. D. (1999). Hydrophobicity at small and large length scales. Journal of Physical Chemistry B 103, 45704577.CrossRefGoogle Scholar
Lund, M., Jungwirth, P. & Woodward, C. E. (2008a). Ion specific protein assembly and hydrophobic surface forces. Physical Review Letters 100, 258105258109.CrossRefGoogle ScholarPubMed
Lund, M., Vacha, R. & Jungwirth, P. (2008b). Specific ion binding to macromolecules: effects of hydrophobicity and ion pairing. Langmuir 27, 33873391.CrossRefGoogle Scholar
Luo, R., David, L. & Gilson, M. (2002). Accelerated Poisson–Boltzmann calculations for static and dynamic systems. Journal of Computational Chemistry 23, 12441253.CrossRefGoogle ScholarPubMed
Luzhkov, V. B. & Åqvist, J. (2000). A computational study of ion binding and protonation states in the KcsA potassium channel. Biochimica et Biophysica Acta (BBA) – Protein Structure and Molecular Enzymology 1481, 360370.CrossRefGoogle ScholarPubMed
Lynden-Bell, R. & Rasaiah, J. C. (1997). From hydrophobic to hydrophilic behaviour: a simulation study of solvation entropy and free energy of simple solutes. Journal of Chemical Physics 107, 1981.CrossRefGoogle Scholar
Maccallum, J. L., Moghaddam, M. S., Chan, H. S. & Tieleman, D. P. (2007). Hydrophobic association of alpha-helices, steric dewetting, and enthalpic barriers to protein folding. Proceedings of the National Academy of Sciences of the United States of America 104, 62066210.CrossRefGoogle ScholarPubMed
Mackerell, A. D., Bashford, D., Dunbrack, R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-Mccarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, W. E., Roux, B., Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., Wiórkiewicz-Kuczera, J., Yin, D. & Karplus, M. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins†. Journal of Physical Chemistry B 102, 35863616.CrossRefGoogle ScholarPubMed
Madan, B. & Sharp, K. (2001). Heat capacity changes accompanying hydrophobic and ionic solvation: a Monte-Carlo and random network model study. Bhupinder Madan and Kim Sharp: 1996, volume 100. Journal of Physical Chemistry B, 105, 2256.CrossRefGoogle Scholar
Madura, J. D., Briggs, J. M., Wade, R. C., Davis, M. E., Luty, B. A., Ilin, A., Antosiewicz, J., Gilson, M. K., Bagheri, B., Scott, L. R. & Mccammon, J. A. (1995). Electrostatics and diffusion of molecules in solution – simulations with the University of Houston Brownian Dynamics program. Computer Physics Communications 91, 5795.CrossRefGoogle Scholar
Mahoney, M. W. & Jorgensen, W. L. (2000). A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. Journal of Chemical Physics 112, 89108910.CrossRefGoogle Scholar
Marcus, R. A. (1956). Electrostatic Free Energy and Other Properties of States Having Nonequilibrium Polarization. Journal of Chemical Physics 24, 979989.CrossRefGoogle Scholar
Marcus, R. A. & Sutin, N. (1985). Electron transfers in chemistry and biology. Biochimica et Biophysica Acta 811, 265322.CrossRefGoogle Scholar
Marcus, Y. (2006). Ionic volumes in solution. Biophysical Chemistry 124, 200207.CrossRefGoogle ScholarPubMed
Marenich, A. V., Cramer, C. J. & Truhlar, D. G. (2008). Perspective on foundations of solvation modeling: the electrostatic contribution to the free energy of solvation. Journal of Chemical Theory and Computation 4, 877887.CrossRefGoogle Scholar
Marincola, F. C., Denisov, V. P. & Halle, B. (2004). Competitive Na+ and Rb+ binding in the minor groove of DNA. Journal of the American Chemical Society 126, 67396750.CrossRefGoogle Scholar
Martick, M., Lee, T.-S., York, D. M. & Scott, W. G. (2008). Solvent structure and hammerhead ribozyme catalysis. Chemistry and Biology 15, 332342.CrossRefGoogle ScholarPubMed
Martin-Molina, A., Calero, C., Faraudo, J., Quesada-Perez, M., Travesset, A. & Hidalgo-Alvarez, R. (2009). The hydrophobic effect as a driving force for charge inversion in colloids. Soft Matter.CrossRefGoogle Scholar
Martin, D., Friesen, A. & Matyushov, D. (2011). Electric field inside a “Rossky cavity”' in uniformly polarized water. Journal of Chemical Physics 135, 084514.CrossRefGoogle ScholarPubMed
Martin, F. & Zipse, H. (2005). Charge distribution in the water molecule: a comparison of methods. Journal of Computational Chemistry 26, 97105.CrossRefGoogle ScholarPubMed
Marucho, M., Kelley, C. T. & Pettitt, B. M. (2008). Solutions of the optimized closure integral equation theory: heteronuclear polyatomic fluids. Journal of Chemical Theory and Computation 4, 385396.CrossRefGoogle ScholarPubMed
Marucho, M. & Pettitt, B. M. (2007). Optimized theory for simple and molecular fluids. Journal of Chemical Physics 126, 124107.CrossRefGoogle ScholarPubMed
Maruyama, Y., Yoshida, N. & Hirata, F. (2010). Revisiting the salt-induced conformational change of DNA with 3D-RISM theory. Journal of Physical Chemistry B 114, 64646471.CrossRefGoogle ScholarPubMed
Masamura, M. (2000). Error of atomic charges derived from electrostatic potential. Structural Chemistry 11, 4145.CrossRefGoogle Scholar
Mascagni, M. & Simonov, N. (2004). Monte Carlo methods for calculating some physical properties of large molecules. SIAM Journal on Scientific Computing 26, 339.CrossRefGoogle Scholar
Massova, I. & Kollman, P. A. (2000). Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspectives in Drug Discovery and Design 18, 113135.CrossRefGoogle Scholar
Mauro, S. A. & Koudelka, G. B. (2004). Monovalent cations regulate DNA sequence recognition by 434 repressor. Journal of Molecular Biology 340, 445457.CrossRefGoogle Scholar
Mccammon, J. A., Gelin, B. R. & Karplus, M. (1977). Dynamics of folded proteins. Nature 267, 585590.CrossRefGoogle ScholarPubMed
Mclaughlin, S. (1989). The electrostatic properties of membranes. Annual Review of Biophysics and Biophysical Chemistry 18, 113136.CrossRefGoogle ScholarPubMed
Mehler, E. & Guarnieri, F. (1999). A self-consistent, microenvironment modulated screened Coulomb potential approximation to calculate pH-dependent electrostatic effects in proteins. Biophysical Journal 77, 322.CrossRefGoogle ScholarPubMed
Merzel, F. & Smith, J. C. (2002). Is the first hydration shell of lysozyme of higher density than bulk water? Proceedings of the National Academy of Sciences of the United States of America 99, 53785383.CrossRefGoogle ScholarPubMed
Micu, A. M., Bagheri, B., Ilin, A. V., Scott, L. R. & Pettitt, B. M. (1997). Numerical considerations in the computation of the electrostatic free energy of interaction within the Poisson–Boltzmann theory. Journal of Computational Physics 136, 263271.CrossRefGoogle Scholar
Mikulecky, P. J. & Feig, A. L. (2006). Heat capacity changes associated with nucleic acid folding. Biopolymers 82, 3858.CrossRefGoogle ScholarPubMed
Misra, V. K. & Draper, D. E. (1999). The interpretation of Mg(2+) binding isotherms for nucleic acids using Poisson–Boltzmann theory. Journal of Molecular Biology 294, 11351147.CrossRefGoogle ScholarPubMed
Misra, V. K. & Draper, D. E. (2000). Mg(2+) binding to tRNA revisited: the nonlinear Poisson–Boltzmann model. Journal of Molecular Biology 299, 813825.CrossRefGoogle ScholarPubMed
Misra, V. K. & Draper, D. E. (2001). A thermodynamic framework for Mg2+ binding to RNA. Proceedings of the National Academy of Sciences of the United States of America 98, 1245612461.CrossRefGoogle ScholarPubMed
Misra, V. K. & Draper, D. E. (2002). The linkage between magnesium binding and RNA folding. Journal of Molecular Biology 317, 507521.CrossRefGoogle ScholarPubMed
Misra, V. K., Shiman, R. & Draper, D. E. (2003). A thermodynamic framework for the magnesium-dependent folding of RNA. Biopolymers 69, 118136.CrossRefGoogle ScholarPubMed
Mitra, R., Zhang, Z. & Alexov, E. (2011). In silico modeling of pH-optimum of protein-protein binding. Proteins 79, 925936.CrossRefGoogle ScholarPubMed
Miyata, T. & Hirata, F. (2008). Combination of molecular dynamics method and 3D-RISM theory for conformational sampling of large flexible molecules in solution. Journal of Computational Chemistry 29, 871882.CrossRefGoogle ScholarPubMed
Mizuno, K., Oda, K., Maeda, S., Shindo, Y. & Okumura, A. (1995). 1H-NMR study on water structure in halogenoalcohol–water mixtures. Journal of Physical Chemistry 99, 30563059.CrossRefGoogle Scholar
Mobley, D. L., Barber, A. E., Fennell, C. J. & Dill, K. A. (2008). Charge asymmetries in hydration of polar solutes. Journal of Physical Chemistry B 112, 24052414.CrossRefGoogle ScholarPubMed
Momany, F. A. (1978). Determination of partial atomic charges from ab initio molecular electrostatic potentials – application to formamide, methanol, and formic acid. Journal of Physical Chemistry 82, 592601.CrossRefGoogle Scholar
Mongan, J., Simmerling, C., Mccammon, A., Case, D. & Onufriev, A. (2007). Generalized Born model with a simple, robust molecular volume correction. Journal of Chemical Theory and Computation 3, 156169.CrossRefGoogle ScholarPubMed
Moore Plummer, P. & Chen, T. S. (1987). Investigation of structure and stability of small clusters: molecular dynamics studies of water pentamers. Journal of Chemical Physics 86, 7149.CrossRefGoogle Scholar
Mori, M., Erickson, M. & Yue, D. (2004). Functional stoichiometry and local enrichment of calmodulin interacting with Ca2+ channels. Science 304, 432435.CrossRefGoogle ScholarPubMed
Moser, C. C., Keske, J. M., Warncke, K., Farid, R. S. & Dutton, P. S. (1992). Nature of biological electron-transfer. Nature 355, 796802.CrossRefGoogle ScholarPubMed
Mukherjee, A. K. (2004). The attraction between like-charged macroions—the crucial roles of macroion geometry and charge distribution. Journal of Physics: Condensed Matter 16, 29072930.Google Scholar
Nada, H. (2003). An intermolecular potential model for the simulation of ice and water near the melting point: a six-site model of H2O. Journal of Chemical Physics 118, 7401.CrossRefGoogle Scholar
Nayal, M. & Di Cera, E. (1996). Valence screening of water in protein crystals reveals potential Na + binding sites. Journal of Molecular Biology 256, 228234.CrossRefGoogle ScholarPubMed
Netz, R. R. & Naji, A. (2004). Attraction of like-charged macroions in the strong-coupling limit. European Physical Journal E: Soft Matter and Biological Physics 13, 4359.Google Scholar
Neumann, C. (1883). Hydrodynamische Untersuchungen: Nebst Einem Anhange über die Probleme der Elektrostatik und der Magnetischen Induction. Leipzig: B. G. Teubner.Google Scholar
Nguyen, T. T., Grosberg, A. Y. & Shlovskii, B. I. (2000). Screening of a charged particle by multivalent counterions in salty water: strong charge inversion. Journal of Chemical Physics 113, 11101125.CrossRefGoogle Scholar
Ni, H., Anderson, C. F. & Record, M. T. (1999). Quantifying the thermodynamic consequences of cation (M2+, M+) accumulation and Anion (X−) Exclusion in mixed salt solutions of polyanionic DNA using Monte Carlo and Poisson–Boltzmann calculations of Ion-polyion preferential interaction coefficients. Journal of Physical Chemistry B 103, 34893504.CrossRefGoogle Scholar
Nicholls, A. & Honig, B. (1991). A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson–Boltzmann equation. Journal of Computational Chemistry 12, 435445.CrossRefGoogle Scholar
Nicol, M. F. (1974). Solvent effects on electronic spectra. Applied Spectroscopy Reviews 8, 183227.CrossRefGoogle Scholar
Nielsen, J., Gunner, M. R. & Bertrand García-Moreno, E. (2011). The pK a cooperative: a collaborative effort to advance structure-based calculations of pKa values and electrostatic effects in proteins. Proteins-Structure Function and Bioinformatics 79, 32493259.CrossRefGoogle ScholarPubMed
Nielsen, J. E. (2009). Analysing enzymatic pH activity profiles and protein titration curves using structure-based pKa calculations and titration curve fitting. In Methods in Enzymology, vol. 454 (eds. Michael, L. J. & Ludwig, B.), pp. 233258. Academic Press, New York.Google Scholar
Nielsen, J. E. (2009). Chapter 9. Analyzing enzymatic ph activity profiles and protein titration curves using structure-based pK a calculations and titration curve fitting, vol. 454, pp. 233258.Google Scholar
Nielsen, J. E. & Mccammon, J. A. (2003). On the evaluation and optimization of protein X-ray structures for pKa calculations. Protein Science 12, 313326.CrossRefGoogle ScholarPubMed
Nielsen, J. E. & Vriend, G. (2001). Optimizing the hydrogen-bond network in Poisson–Boltzmann equation-based pK(a) calculations. Proteins – Structure Function and Genetics 43, 403412.CrossRefGoogle ScholarPubMed
Nightingale, E. R. (1959). Phenomenological theory of ion solvation. effective radii of hydrated ions. Journal of Physical Chemistry 63, 13811387.CrossRefGoogle Scholar
Nina, M., Im, W. & Roux, B. (1999). Optimized atomic radii for protein continuum electrostatics solvation forces. Biophysical Chemistry 78, 8996.CrossRefGoogle ScholarPubMed
Ninham, B. W. & Yaminsky, V. (1997). Ion binding and ion specificity: the Hofmeister effect and Onsager and Lifshitz theories. Langmuir 13, 20972108.CrossRefGoogle Scholar
Nishiyama, K., Yamaguchi, T. & Hirata, F. (2009). Solvation dynamics in polar solvents studied by means of RISM/mode-coupling theory. Journal of Physical Chemistry B 113, 28002804.CrossRefGoogle ScholarPubMed
Niu, W., Chen, Z., Bush-Pelc, L. A., Bah, A., Gandhi, P. S. & Di Cera, E. (2009). Mutant N143P reveals how Na+ activates thrombin. Journal of Biological Chemistry 284, 3617536185.CrossRefGoogle ScholarPubMed
Norris, W. T. (1995). Charge images in a dielectric sphere. IEE Proceedings–Science, Measurement and Technology 142, 142150.CrossRefGoogle Scholar
Noskov, S. Y., Im, W. & Roux, B. (2004). Ion permeation through the alpha-hemolysin channel: theoretical studies based on Brownian dynamics and Poisson–Nernst–Plank electrodiffusion theory. Biophysical Journal 87, 22992309.CrossRefGoogle ScholarPubMed
Nymand, T. M. & Linse, P. (2000). Ewald summation and reaction field methods for potentials with atomic charges, dipoles, and polarizabilities. Journal of Chemical Physics 112, 61526160.CrossRefGoogle Scholar
Okur, A., Wickstrom, L., Layten, M., Geney, R., Song, K., Hornak, V. & Simmerling, C. (2006). Improved efficiency of replica exchange simulations through use of a hybrid explicit/implicit solvation model. Journal of Chemical Theory and Computation 2, 420433.CrossRefGoogle ScholarPubMed
Okur, A., Wickstrom, L. & Simmerling, C. (2008). Evaluation of salt bridge structure and energetics in peptides using explicit, implicit, and hybrid solvation models. Journal of Chemical Theory and Computation 4, 488498.CrossRefGoogle ScholarPubMed
Olmsted, M. C., Anderson, C. F. & Record, M. T. (1991). Importance of oligoelectrolyte end effects for the thermodynamics of conformational transitions of nucleic acid oligomers: a grand canonical Monte Carlo analysis. Biopolymers 31, 15931604.CrossRefGoogle ScholarPubMed
Onsager, L. (1936). Electric moments of molecules in liquids. Journal of the American Chemical Society 58, 14861493.CrossRefGoogle Scholar
Onufriev, A., Bashford, D. & Case, D. (2000). Modification of the generalized Born model suitable for macromolecules. The Journal of Physical Chemistry B 104, 37123720.CrossRefGoogle Scholar
Onufriev, A., Case, D. A. & Bashford, D. (2002). Effective Born radii in the generalized Born approximation: the importance of being perfect. Journal of Computational Chemistry 23, 12971304.CrossRefGoogle ScholarPubMed
Orttung, W. H. (1978). Extension of the Kirkwood-Westheimer model of substituent effects to general shapes, charges, and polarizabilities. Application to the substituted bicyclo[2.2.2]octanes. Journal of the American Chemical Society 100, 43694375.CrossRefGoogle Scholar
Osapay, K., Young, W. S., Bashford, D., Brooks, C. L. III & Case, D. A. (1996). Dielectric continuum models for hydration effects on peptide conformational transitions. Journal of Physical Chemistry 100, 26982705.CrossRefGoogle Scholar
Overman, L. B. & Lohman, T. M. (1994). Linkage of pH, anion and cation effects in protein-nucleic acid equilibria. Journal of Molecular Biology 236, 165178.CrossRefGoogle ScholarPubMed
Page, M. J., Bleackley, M. R., Wong, S., Macgillivray, R. T. A. & Di Cera, E. (2006). Conversion of trypsin into a Na(+)-activated enzyme. Biochemistry 45, 29872993.CrossRefGoogle ScholarPubMed
Paliwal, A., Asthagiri, D., Pratt, L. R., Ashbaugh, H. S. & Paulaitis, M. E. (2006). An analysis of molecular packing and chemical association in liquid water using quasichemical theory. Journal of Chemical Physics 124, 224502.CrossRefGoogle ScholarPubMed
Palmo, K., Mannfors, B., Mirkin, N. G. & Krimm, S. (2006). Inclusion of charge and polarizability fluxes provides needed physical accuracy in molecular mechanics force fields. Chemical Physics Letters 429, 628632.CrossRefGoogle Scholar
Papazyan, A. & Warshel, A. (1997). Continuum and dipole-lattice models of solvation. Journal of Physical Chemistry B 101, 1125411264.CrossRefGoogle Scholar
Papazyan, A. & Warshel, A. (1998). Effect of solvent discreteness on solvation. Journal of Physical Chemistry B 102, 53485357.CrossRefGoogle Scholar
Parsegian, V. A., Rand, R. P. & Rau, D. C. (2000). Osmotic stress, crowding, preferential hydration, and binding: a comparison of perspectives. Proceedings of the National Academy of Sciences of the United States of America 97, 39873992.CrossRefGoogle Scholar
Parsegian, V. A. & Rau, D. C. (1984). Water near intracellular surfaces. Journal of Cell Biology 99, 196200.CrossRefGoogle ScholarPubMed
Parsons, D., Boström, M., Nostro, P. & Ninham, B. (2011). Hofmeister effects: interplay of hydration, nonelectrostatic potentials, and ion size. Physical Chemistry and Chemical Physics 13, 1235212367.CrossRefGoogle ScholarPubMed
Parsons, D. F., Boström, M., Maceina, T. J., Salis, A. & Ninham, B. W. (2010). Why direct or reversed Hofmeister series? Interplay of hydration, non-electrostatic potentials, and ion size. Langmuir: the ACS Journal of Surfaces and Colloids 26, 33233328.CrossRefGoogle ScholarPubMed
Patel, S. & Brooks, C. L. (2004). CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations. Journal of Computational Chemistry 25, 116.CrossRefGoogle ScholarPubMed
Patel, S., Davis, J. E. & Bauer, B. A. (2009). Exploring ion permeation energetics in gramicidin A using polarizable charge equilibration force fields. Journal of the American Chemical Society 131, 1389013891.CrossRefGoogle ScholarPubMed
Patel, S., Mackerell, A. D. & Brooks, C. L. (2004). CHARMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model. Journal of Computational Chemistry 25, 15041514.CrossRefGoogle ScholarPubMed
Patra, M. & Karttunen, M. (2004). Systematic comparison of force fields for microscopic simulations of NaCl in aqueous solutions: Diffusion, free energy of hydration, and structural properties. Journal of Computational Chemistry 25, 678689.CrossRefGoogle ScholarPubMed
Pegram, L. M. & Record, M. T. (2006). Partitioning of atmospherically relevant ions between bulk water and the water/vapor interface. Proceedings of the National Academy of Sciences of the United States of America 103, 1427814281.CrossRefGoogle ScholarPubMed
Pegram, L. M. & Record, M. T. (2007). Hofmeister salt effects on surface tension arise from partitioning of anions and cations between bulk water and the air–water interface. The Journal of Physical Chemistry B 111, 54115417.CrossRefGoogle ScholarPubMed
Pegram, L. M. & Record, M. T. (2008). Thermodynamic origin of Hofmeister ion effects. Journal of Physical Chemistry B 112, 94289436.CrossRefGoogle ScholarPubMed
Pegram, L. M., Wendorff, T., Erdmann, R., Shkel, I., Bellissimo, D., Felitsky, D. J. & Record, M. T. (2010). Why Hofmeister effects of many salts favor protein folding but not DNA helix formation. Proceedings of the National Academy of Sciences of the United States of America 107, 77167721.CrossRefGoogle Scholar
Perkyns, J. & Pettitt, B. M. (1994). Integral equation approaches to structure and thermodynamics of aqueous salt solutions. Biophysical Chemistry 51, 129146.CrossRefGoogle ScholarPubMed
Perkyns, J. & Pettitt, B. M. (1992). A site–site theory for finite concentration saline solutions. Journal of Chemical Physics 97, 76567656.CrossRefGoogle Scholar
Perkyns, J. & Pettitt, B. M. (1996). Dependence of hydration free energy on solute size. Journal of Physical Chemistry 100, 13231329.CrossRefGoogle Scholar
Perkyns, J. S. & Pettitt, B. M. (1995). Peptide conformations are restricted by solution stability. Journal of Physical Chemistry 99, 12.CrossRefGoogle Scholar
Petrache, H. I., Zemb, T., Belloni, L. & Parsegian, V. A. (2006). Salt screening and specific ion adsorption determine neutral-lipid membrane interactions. Proceedings of the National Academy of Sciences of the United States of America 103, 79827987.CrossRefGoogle ScholarPubMed
Petrone, P. M. & Garcia, A. E. (2004). MHC-peptide binding is assisted by bound water molecules. Journal of Molecular Biology 338, 419435.CrossRefGoogle ScholarPubMed
Pietronave, S., Arcesi, L., D'Arrigo, C. & Perico, A. (2008). Attraction between like-charged polyelectrolytes in the extended condensation theory†. Journal of Physical Chemistry B 112, 1599115998.CrossRefGoogle ScholarPubMed
Pincus, D. L., Hyeon, C. & Thirumalai, D. (2008). Effects of trimethylamine N-Oxide (TMAO) and crowding agents on the stability of RNA hairpins. Journal of the American Chemical Society 130, 73647372.CrossRefGoogle ScholarPubMed
Piquemal, J.-P., Williams-Hubbard, B., Fey, N., Deeth, R. J., Gresh, N. & Giessner-Prettre, C. (2003). Inclusion of the ligand field contribution in a polarizable molecular mechanics: SIBFA-LF. Journal of Computational Chemistry 24, 19631970.CrossRefGoogle Scholar
Pitera, J. W. & Van Gunsteren, W. F. (2001). The importance of solute-solvent van der Waals interactions with interior atoms of biopolymers. Journal of the American Chemical Society 123, 31633164.CrossRefGoogle Scholar
Podgornik, R. & Dobnikar, J. (2001). Casimir and pseudo-Casimir interactions in confined polyelectrolytes. Journal of Chemical Physics 115, 19511959.CrossRefGoogle Scholar
Ponder, J. W. & Case, D. A. (2003). Force fields for protein simulations. Advances in Protein Chemistry 66, 2785.CrossRefGoogle ScholarPubMed
Popelier, P. L. A., Joubert, L. & Kosov, D. S. (2001). Convergence of the electrostatic interaction based on topological atoms. Journal of Physical Chemistry A 105, 82548261.CrossRefGoogle Scholar
Postma, J. P. M., Berendsen, H. J. C. & Haak, J. R. (1982). Thermodynamics of cavity formation in water. A molecular dynamics study. Faraday Symposia of the Chemical Society 17, 5567.CrossRefGoogle Scholar
Prabhu, N. & Sharp, K. (2006). Protein-solvent interactions. Chemical Reviews 106, 16161623.CrossRefGoogle ScholarPubMed
Pratt, L. R. (2002). Molecular theory of hydrophobic effects: ‘She is too mean to have her name repeated.’. Annual Review of Physical Chemistry 53, 409436.CrossRefGoogle ScholarPubMed
Pratt, L. R. & Chandler, D. (1977). Theory of the hydrophobic effect. Journal of Chemical Physics 67, 36833683.CrossRefGoogle Scholar
Pratt, L. R. & Chandler, D. (1980). Effects of solute–solvent attractive forces on hydrophobic correlations. The Journal of Chemical Physics 73, 3430.CrossRefGoogle Scholar
Pratt, L. R. & Laviolette, R. A. (1998). Quasi-chemical theories of associated liquids. Molecular Physics 94, 909915.Google Scholar
Pratt, L. R., Laviolette, R. A., Gomez, M. A. & Gentile, M. E. (2001). Quasi-chemical theory for the statistical thermodynamics of the hard-sphere fluid†. Journal of Physical Chemistry B 105, 1166211668.CrossRefGoogle Scholar
Pratt, L. R. & Pohorille, A. (1992). Theory of hydrophobicity: transient cavities in molecular liquid. Proceedings of the National Academy of Sciences of the United States of America 89, 29952999.CrossRefGoogle Scholar
Pratt, L. R. & Pohorille, A. U. (2002). Hydrophobic effects and modeling of biophysical aqueous solution interfaces. Chemical Reviews 102, 26712691.CrossRefGoogle ScholarPubMed
Price, S. L. (1985). A distributed multipole analysis of the charge densities of some aromatic hydrocarbons. Chemical Physics Letters 114, 359364.CrossRefGoogle Scholar
Price, S. L., Stone, A. J. & Alderton, M. (1984). Explicit formulae for the electrostatic energy, forces and torques between a pair of molecules of arbitrary symmetry. Molecular Physics 52, 9871001.CrossRefGoogle Scholar
Qiao, R. & Aluru, N. R. (2004). Charge inversion and flow reversal in a nanochannel electro-osmotic flow. Physical Review Letters 92.CrossRefGoogle Scholar
Qiu, X., Parsegian, A. & Rau, D. (2010). Divalent counterion-induced condensation of triple-strand DNA. Proceedings of the National Academy of Sciences of the United States of America 107, 2148221486.CrossRefGoogle ScholarPubMed
Rahman, A. (1971). Molecular dynamics study of liquid water. Journal of Chemical Physics 55, 3336.CrossRefGoogle Scholar
Rajamani, S., Truskett, T. M. & Garde, S. (2005). Hydrophobic hydration from small to large lengthscales: understanding and manipulating the crossover. Proceedings of the National Academy of Sciences of the United States of America 102, 94759480.CrossRefGoogle ScholarPubMed
Ramirez, R. & Borgis, D. (2005). Density functional theory of solvation and its relation to implicit solvent models. Journal of Physical Chemistry B 109, 67546763.CrossRefGoogle ScholarPubMed
Rappe, A. K. & Goddard, W. A. (1991). Charge equilibration for molecular dynamics simulations. Journal of Physical Chemistry 95, 33583363.CrossRefGoogle Scholar
Record, M. T., Anderson, C. F. & Lohman, T. M. (1978). Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Quarterly Reviews of Biophysics 11, 103178.CrossRefGoogle ScholarPubMed
Record, M. T., Olmsted, M. C., Bond, J. P., Anderson, C. F. & Record, M. T. Jr. (1995). Grand canonical Monte Carlo molecular and thermodynamic predictions of ion effects on binding of an oligocation (L8+) to the center of DNA oligomers. Biophysical Journal 68, 634647.Google Scholar
Reed, A. E., Curtiss, L. A. & Weinhold, F. (1988). Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chemical Reviews 88, 899926.CrossRefGoogle Scholar
Rempe, S. B., Asthagiri, D. & Pratt, L. R. (2004). Inner shell definition and absolute hydration free energy of K + (aq) on the basis of quasi-chemical theory and ab initio molecular dynamics. Physical Chemistry Chemical Physics 6, 19661969.CrossRefGoogle Scholar
Ren, P. & Ponder, J. W. (2002). Consistent treatment of inter- and intramolecular polarization in molecular mechanics calculations. Journal of Computational Chemistry 23, 14971506.CrossRefGoogle ScholarPubMed
Ren, P. & Ponder, J. W. (2003). Polarizable atomic multipole water model for molecular mechanics simulation. Journal of Physical Chemistry B 107, 59335947.CrossRefGoogle Scholar
Ren, P., Wu, C. & Ponder, J. W. (2011). Polarizable atomic multipole-based molecular mechanics for organic molecules. Journal of Chemical Theory and Computation 7, 31433161.CrossRefGoogle ScholarPubMed
Reyes-Caballero, H., Campanello, G. & Giedroc, D. (2011). Metalloregulatory proteins: metal selectivity and allosteric switching. Biophysical Chemistry.CrossRefGoogle ScholarPubMed
Reynolds, C. A., Essex, J. W. & Graham Richards, W. (1992a). Errors in free-energy perturbation calculations due to neglecting the conformational variation of atomic charges. Chemical Physics Letters 199, 257260.CrossRefGoogle Scholar
Reynolds, C. A., Essex, J. W. & Richards, W. G. (1992b). Atomic charges for variable molecular conformations. Journal of the American Chemical Society 114, 90759079.CrossRefGoogle Scholar
Rhodes, M. M., Réblová, K., Sponer, J. & Walter, N. G. (2006). Trapped water molecules are essential to structural dynamics and function of a ribozyme. Proceedings of the National Academy of Sciences of the United States of America 103, 1338013385.CrossRefGoogle ScholarPubMed
Ribeiro, M. (1999). Fluctuating charge model for polyatomic ionic systems: a test case with diatomic anions. Journal of Chemical Physics 110, 11445.CrossRefGoogle Scholar
Riccardi, D., Schaefer, P., Yang Yu, H., Ghosh, N., Prat-Resina, X., König, P., Li, G., Xu, D., Guo, H., Elstner, M. & Cui, Q. (2006). Development of effective quantum mechanical/molecular mechanical (QM/MM) methods for complex biological processes. Journal of Physical Chemistry B 110, 64586469.CrossRefGoogle ScholarPubMed
Rick, S. W. (2001). Simulations of ice and liquid water over a range of temperatures using the fluctuating charge model. Journal of Chemical Physics 114, 22762283.CrossRefGoogle Scholar
Robinson, G., Cho, C. H. & Urquidi, J. (1999). Isosbestic points in liquid water: further strong evidence for the two-state mixture model. Journal of Chemical Physics 111, 698.CrossRefGoogle Scholar
Robinson, R. A. & Stokes, R. H. (2002). Electrolyte Solutions: Second Revised Edition. Mineola, NY: Dover.Google Scholar
Rocchia, W., Sridharan, S., Nicholls, A., Alexov, E., Chiabrera, A. & Honig, B. (2002). Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: applications to the molecular systems and geometric objects. Journal of Computational Chemistry 23, 128137.CrossRefGoogle Scholar
Rode, B., Hofer, T., Randolf, B., Schwenk, C., Xenides, D. & Vchirawongkwin, V. (2006). Ab initio quantum mechanical charge field (QMCF) molecular dynamics: a QM/MM – MD procedure for accurate simulations of ions and complexes. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta) 115, 7785.CrossRefGoogle Scholar
Root, J. H., Egelstaff, P. A. & Hime, A. (1986). Quantum effects in the structure of water measured by gamma ray diffraction. Chemical Physics 109, 437453.CrossRefGoogle Scholar
Rösgen, J., Pettitt, B. M. & Bolen, D. W. (2005). Protein folding, stability, and solvation structure in osmolyte solutions. Biophysical Journal 89, 29882997.CrossRefGoogle ScholarPubMed
Rösgen, J., Pettitt, B. M. & Bolen, D. W. (2007). An analysis of the molecular origin of osmolyte-dependent protein stability. Protein Science 16, 733743.CrossRefGoogle ScholarPubMed
Rossky, P. J., Pettitt, B. M. & Stell, G. (1983). The coupling of long and short range correlations in ISM liquids. Molecular Physics 50, 12631271.CrossRefGoogle Scholar
Rottler, J. & Krayenhoff, B. (2009). Numerical studies of nonlocal electrostatic effects on the sub-nanoscale. Journal of Physics: Condensed Matter 21, 255901.Google ScholarPubMed
Roux, B. (1999). Implicit solvent models. Biophysical Chemistry 78, 120.CrossRefGoogle ScholarPubMed
Roux, B., Allen, T., Bernèche, S. & Im, W. (2004). Theoretical and computational models of biological ion channels. Quarterly Reviews of Biophysics 37, 15103.CrossRefGoogle ScholarPubMed
Roux, C., Bhatt, F., Foret, J., De Courcy, B., Gresh, N., Piquemal, J. P., Jeffery, C. J. & Salmon, L. (2011). The reaction mechanism of type I phosphomannose isomerases: new information from inhibition and polarizable molecular mechanics studies. Proteins 79, 203220.CrossRefGoogle ScholarPubMed
Royer, W. E., Pardanani, A., Gibson, Q. H., Peterson, E. S. & Friedman, J. M. (1996). Ordered water molecules as key allosteric mediators in a cooperative dimeric hemoglobin. Proceedings of the National Academy of Sciences of the United States of America 93, 1452614531.CrossRefGoogle Scholar
Sachs, J. N. & Woolf, T. B. (2003). Understanding the Hofmeister effect in interactions between chaotropic anions and lipid bilayers: molecular dynamics simulations. Journal of the American Chemical Society 125, 87428743.CrossRefGoogle ScholarPubMed
Sagui, C., Pedersen, L. G. & Darden, T. A. (2004). Towards an accurate representation of electrostatics in classical force fields: efficient implementation of multipolar interactions in biomolecular simulations. Journal of Chemical Physics 120, 7387.CrossRefGoogle ScholarPubMed
Samsonov, S., Teyra, J. & Pisabarro, M. T. (2008). A molecular dynamics approach to study the importance of solvent in protein interactions. Proteins: Structure, Function, and Bioinformatics 73, 515525.CrossRefGoogle Scholar
Savelyev, A. & Papoian, G. (2007). Inter-DNA electrostatics from explicit solvent molecular dynamics simulations. Journal of the American Chemical Society 129, 60606061.CrossRefGoogle ScholarPubMed
Savelyev, A. & Papoian, G. A. (2006). Electrostatic, steric, and hydration interactions favor Na+ condensation around DNA compared with K+. Journal of the American Chemical Society 128, 1450614518.CrossRefGoogle ScholarPubMed
Schaefer, M. & Karplus, M. (1996). A comprehensive analytical treatment of continuum electrostatics. Journal of Physical Chemistry 100, 15781599.CrossRefGoogle Scholar
Schaefer, P., Riccardi, D. & Cui, Q. (2005). Reliable treatment of electrostatics in combined QM/MM simulation of macromolecules. Journal of Chemical Physics 123.CrossRefGoogle ScholarPubMed
Schlick, T. (2002). Molecular Modeling and Simulation: An Interdisciplinary Guide. New York, NY: Springer-Verlag.CrossRefGoogle Scholar
Schmid, B., Michalsky, J. J., Slater, D. W., Barnard, J. C., Halthore, R. N., Liljegren, J. C., Holben, B. N., Eck, T. F., Livingston, J. M., Russell, P. B., Ingold, T. & Slutsker, I. (2001). Comparison of columnar water–vapor measurements from solar transmittance methods. Applied Optics 40, 18861896.CrossRefGoogle ScholarPubMed
Schnieders, M., Baker, N., Ren, P. & Ponder, J. (2007). Polarizable atomic multipole solutes in a Poisson–Boltzmann continuum. Journal of Chemical Physics 126, 124114.CrossRefGoogle Scholar
Schnieders, M. J. & Ponder, J. W. (2007). Polarizable atomic multipole solutes in a generalized Kirkwood continuum. Journal of Chemical Theory and Computation 3, 20832097.CrossRefGoogle Scholar
Schreiber, H. & Steinhauser, O. (1992a). Molecular dynamics studies of solvated polypeptides: why the cut-off scheme does not work. Chemical Physics 168, 7589.CrossRefGoogle Scholar
Schreiber, H. & Steinhauser, O. (1992b). Taming cut-off induced artifacts in molecular dynamics studies of solvated polypeptides: the reaction field method. Journal of Molecular Biology 228, 909923.CrossRefGoogle ScholarPubMed
Schutz, C. N. & Warshel, A. (2001). What are the dielectric ‘constants’ of proteins and how to validate electrostatic models? Proteins 44, 400417.CrossRefGoogle ScholarPubMed
Sciortino, F., Geiger, A. & Stanley, H. E. (1990). Isochoric differential scattering functions in liquid water: the fifth neighbor as a network defect. Physical Review Letters 65, 3452.CrossRefGoogle ScholarPubMed
Senn, H. M. & Thiel, W. (2009). QM/MM methods for biomolecular systems. Angewandte Chemie International Edition 48, 11981229.CrossRefGoogle ScholarPubMed
Sham, Y. Y., Muegge, I. & Warshel, A. (1998). The effect of protein relaxation on charge-charge interactions and dielectric constants of proteins. Biophysical Journal 74, 17441753.CrossRefGoogle ScholarPubMed
Shan, J. & Mehler, E. L. (2011). Calculation of pKa in proteins with the microenvironment modulated-screened Coulomb potential (MM-SCP). Proteins-Structure Function and Bioinformatics 79, 33463355.CrossRefGoogle Scholar
Sharp, K. A. & Honig, B. (1990a). Calculating total electrostatic energies with the nonlinear Poisson–Boltzmann equation. Journal of Physical Chemistry 94, 76847692.CrossRefGoogle Scholar
Sharp, K. A. & Honig, B. (1990b). Electrostatic interactions in macromolecules – theory and applications. Annual Review of Biophysics and Biophysical Chemistry 19, 301332.CrossRefGoogle ScholarPubMed
Sharp, K. A., Nicholls, A., Fine, R. F. & Honig, B. (1991a). Reconciling the magnitude of the microscopic and macroscopic hydrophobic effects. Science 252, 106109.CrossRefGoogle ScholarPubMed
Sharp, K. A., Nicholls, A., Friedman, R. & Honig, B. (1991b). Extracting hydrophobic free energies from experimental data: relationship to protein folding and theoretical models. Biochemistry 30, 96869697.CrossRefGoogle ScholarPubMed
Sheinerman, F. B., Norel, R. & Honig, B. (2000). Electrostatic aspects of protein-protein interactions. Current Opinion in Structural Biology 10, 153159.CrossRefGoogle ScholarPubMed
Shi, Y., Wu, C. J., Ponder, J. W. & Ren, P. Y. (2011). Multipole electrostatics in hydration free energy calculations. Journal of Computational Chemistry 32, 967977.CrossRefGoogle ScholarPubMed
Shimizu, S. (2004a). Estimating hydration changes upon biomolecular reactions from osmotic stress, high pressure, and preferential hydration experiments. Proceedings of the National Academy of Sciences of the United States of America 101, 11951199.CrossRefGoogle ScholarPubMed
Shimizu, S. (2004b). Estimation of excess solvation numbers of water and cosolvents from preferential interaction and volumetric experiments. Journal of Chemical Physics 120, 49894990.CrossRefGoogle ScholarPubMed
Shimizu, S., Mclaren, W. M. & Matubayasi, N. (2006). The Hofmeister series and protein-salt interactions. Journal of Chemical Physics 124, 234905.CrossRefGoogle ScholarPubMed
Shimizu, S. & Smith, D. J. (2004). Preferential hydration and the exclusion of cosolvents from protein surfaces. Journal of Chemical Physics 121, 11481154.CrossRefGoogle ScholarPubMed
Shults, M., Pearce, D. & Imperiali, B. (2003). Modular and tunable chemosensor scaffold for divalent zinc. Journal of the American Chemical Society 125, 1059110597.CrossRefGoogle ScholarPubMed
Sigalov, G., Fenley, A. & Onufriev, A. (2006). Analytical electrostatics for biomolecules: beyond the generalized Born approximation. Journal of Chemical Physics 124, 124902.CrossRefGoogle ScholarPubMed
Silveston, R. & Kronberg, B. (1989). Water structuring around nonpolar molecules as determined by HPLC. Journal of Physical Chemistry 93, 62416246.CrossRefGoogle Scholar
Silvestrelli, P. L. & Parrinello, M. (1999). Water molecule dipole in the gas and in the liquid phase. Physical Review Letters 82, 3308.CrossRefGoogle Scholar
Simonov, N., Mascagni, M. & Fenley, M. (2007). Monte Carlo-based linear Poisson–Boltzmann approach makes accurate salt-dependent solvation free energy predictions possible. Journal of Chemical Physics 127, 185105.CrossRefGoogle ScholarPubMed
Simonson, T. (1999). Dielectric relaxation in proteins: microscopic and macroscopic models. International Journal of Quantum Chemistry 73, 4557.3.0.CO;2-Q>CrossRefGoogle Scholar
Simonson, T. (2001). Macromolecular electrostatics: continuum models and their growing pains. Current Opinion in Structural Biology 11, 243252.CrossRefGoogle ScholarPubMed
Simonson, T. (2003). Electrostatics and dynamics of proteins. Reports on Progress in Physics 66, 737787.CrossRefGoogle Scholar
Simonson, T. (2008). Dielectric relaxation in proteins: the computational perspective. Photosynthesis Research 97, 2132.CrossRefGoogle ScholarPubMed
Simonson, T. & Brunger, A. T. (1994). Solvation free energies estimated from macroscopic continuum theory: an accuracy assessment. Journal of Physical Chemistry 98, 46834694.CrossRefGoogle Scholar
Sitkoff, D., Sharp, K. & Honig, B. (1994a). Accurate calculation of hydration free energies using macroscopic solvent models. Journal of Physical Chemistry 98, 19781988.CrossRefGoogle Scholar
Sitkoff, D., Sharp, K. A. & Honig, B. (1994b). Correlating solvation free energies and surface tensions of hydrocarbon solutes. Biophysical Chemistry 51, 397409.CrossRefGoogle ScholarPubMed
Smolin, N. & Winter, R. (2004). Molecular dynamics simulations of staphylococcal nuclease: properties of water at the protein surface. Journal of Physical Chemistry B 108, 1592815937.CrossRefGoogle Scholar
Söderhjelm, P., Krogh, J. W., Karlström, G., Ryde, U. & Lindh, R. (2007). Accuracy of distributed multipoles and polarizabilities: comparison between the LoProp and MpProp models. Journal of Computational Chemistry 28, 10831090.CrossRefGoogle ScholarPubMed
Sokalski, W. A., Keller, D. A., Ornstein, R. L. & Rein, R. (1993). Multipole correction of atomic monopole models of molecular charge distribution. I. Peptides. Journal of Computational Chemistry 14, 970976.CrossRefGoogle ScholarPubMed
Soper, A. (2000). The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa. Chemical Physics 258, 121137.CrossRefGoogle Scholar
Soper, A. K. & Phillips, M. G. (1986). A new determination of the structure of water at 25 °C. Chemical Physics 107, 4760.CrossRefGoogle Scholar
Sorenson, J. M., Hura, G., Glaeser, R. M. & Gordon, T. H. (2000). What can X-ray scattering tell us about the radial distribution functions of water? Journal of Chemical Physics 113, 91499161.CrossRefGoogle Scholar
Soto, A. M., Misra, V. & Draper, D. E. (2007). Tertiary structure of an RNA pseudoknot is stabilized by ‘diffuse’ Mg2+ ions. Biochemistry 46, 29732983.CrossRefGoogle ScholarPubMed
Stafford, A., Ensign, D. & Webb, L. (2000). Vibrational stark effect spectroscopy at the interface of Ras and Rap1A bound to the Ras binding domain of RalGDS reveals an electrostatic mechanism for protein-protein interaction. Journal of Physical Chemistry B 114, 1533115344.CrossRefGoogle Scholar
Steinbach, P. J. & Brooks, B. R. (1994). New spherical-cutoff methods for long-range forces in macromolecular simulation. Journal of Computational Chemistry 15, 667683.CrossRefGoogle Scholar
Stern, H. A., Rittner, F., Berne, B. J. & Friesner, R. A. (2001). Combined fluctuating charge and polarizable dipole models: application to a five-site water potential function. Journal of Chemical Physics 115, 22372251.CrossRefGoogle Scholar
Still, C., Tempczyk, A., Hawley, R. & Hendrickson, T. (1990). Semianalytical treatment of solvation for molecular mechanics and dynamics. Journal of the American Chemical Society 112, 61276129.CrossRefGoogle Scholar
Stone, A. J. (1981). Distributed multipole analysis, or how to describe a molecular charge distribution. Chemical Physics Letters 83, 233239.CrossRefGoogle Scholar
Stone, A. J. (1996). The Theory of Intermolecular Forces. Oxford: Oxford University Press.CrossRefGoogle Scholar
Stone, A. J. (2005). Distributed multipole analysis: stability for large basis sets. Journal of Chemical Theory and Computation 1, 11281132.CrossRefGoogle ScholarPubMed
Stone, A. J. & Alderton, M. (2002). Distributed multipole analysis methods and applications. Molecular Physics 100, 221233.CrossRefGoogle Scholar
Stout, J. M. & Dykstra, C. E. (1995). Static dipole polarizabilities of organic molecules. Ab initio calculations and a predictive model. Journal of the American Chemical Society 117, 51275132.CrossRefGoogle Scholar
Stout, J. M. & Dykstra, C. E. (1998). A distributed model of the electrical response of organic molecules. Journal of Physical Chemistry A 102, 15761582.CrossRefGoogle Scholar
Stuart, S. J. & Berne, B. J. (1996). Effects of polarizability on the hydration of the chloride ion. Journal of Physical Chemistry 100, 1193411943.CrossRefGoogle Scholar
Stumpe, M., Blinov, N., Wishart, D., Kovalenko, A. & Pande, V. (2011). Calculation of local water densities in biological systems: a comparison of molecular dynamics simulations and the 3D-RISM-KH molecular theory of solvation. Journal of Physical Chemistry B 115, 319328.CrossRefGoogle ScholarPubMed
Su, Y. & Gallicchio, E. (2004). The non-polar solvent potential of mean force for the dimerization of alanine dipeptide: the role of solute-solvent van der Waals interactions. Biophysical Chemistry 109, 251260.CrossRefGoogle ScholarPubMed
Sun, H. (1998). COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. Journal of Physical Chemistry B 102, 73387364.CrossRefGoogle Scholar
Svishchev, I. M., Kusalik, P. G., Wang, J. & Boyd, R. J. (1996). Polarizable point-charge model for water: results under normal and extreme conditions. Journal of Chemical Physics 105, 47424750.CrossRefGoogle Scholar
Swanson, J. M. J., Mongan, J. & Mccammon, J. A. (2005). Limitations of atom-centered dielectric functions in implicit solvent models. Journal of Physical Chemistry B 109, 1476914772.CrossRefGoogle ScholarPubMed
Swanson, J. M. J., Wagoner, J. A., Baker, N. A. & Mccammon, J. A. (2007). Optimizing the Poisson dielectric boundary with explicit solvent forces and energies: lessons learned with atom-centered dielectric functions. Journal of Chemical Theory and Computation 3, 170183.CrossRefGoogle ScholarPubMed
Tafipolsky, M. & Engels, B. (2011). Accurate intermolecular potentials with physically grounded electrostatics. Journal of Chemical Theory and Computation 7, 17911803.CrossRefGoogle ScholarPubMed
Taheri-Araghi, S. & Ha, B.-Y. (2005). Charge renormalization and inversion of a highly charged lipid bilayer: effects of dielectric discontinuities and charge correlations. Physical Review E 72, 021508.CrossRefGoogle ScholarPubMed
Tan, C., Tan, Y. H. & Luo, R. (2007). Implicit nonpolar solvent models. Journal of Physical Chemistry B 111, 1226312274.CrossRefGoogle ScholarPubMed
Tan, Z.-J. & Chen, S.-J. (2005). Electrostatic correlations and fluctuations for ion binding to a finite length polyelectrolyte. Journal of Chemical Physics 122, 4490344903.CrossRefGoogle ScholarPubMed
Tang, C. L., Alexov, E., Pyle, A. M. & Honig, B. (2007). Calculation of pKas in RNA: on the structural origins and functional roles of protonated nucleotides. Journal of Molecular Biology 366, 14751496.CrossRefGoogle ScholarPubMed
Tang, K. E. S. & Bloomfield, V. A. (2002). Assessing accumulated solvent near a macromolecular solute by preferential interaction coefficients. Biophysical Journal 82, 28762891.CrossRefGoogle Scholar
Tanizaki, S. & Feig, M. (2005). A generalized Born formalism for heterogeneous dielectric environments: application to the implicit modeling of biological membranes. Journal of Chemical Physics 122, 124706.CrossRefGoogle Scholar
Teixeira, V. H., Cunha, C. A., Machuqueiro, M., Oliveira, A. S. F., Victor, B. L., Soares, C. M. & Baptista, A. M. (2005). On the use of different dielectric constants for computing individual and pairwise terms in Poisson–Boltzmann studies of protein ionization equilibrium. Journal of Physical Chemistry B 109, 1469114706.CrossRefGoogle ScholarPubMed
Thilagavathi, R. & Mancera, R. L. (2010). Ligand-protein cross-docking with water molecules. Journal of Chemical Information and Modeling 50, 415421.CrossRefGoogle ScholarPubMed
Thirumalai, D. & Hyeon, C. (2005). RNA and protein folding: common themes and variations. Biochemistry 44, 49574970.CrossRefGoogle ScholarPubMed
Thole, B. T. (1981). Molecular polarizabilities calculated with a modified dipole interaction. Chemical Physics 59, 341350.CrossRefGoogle Scholar
Tikhomirova, A. & Chalikian, T. V. (2004). Probing hydration of monovalent cations condensed around polymeric nucleic acids. Journal of Molecular Biology 341, 551563.CrossRefGoogle ScholarPubMed
Timasheff, S. N. (1992). Water as ligand: preferential binding and exclusion of denaturants in protein unfolding. Biochemistry 31, 98579864.CrossRefGoogle ScholarPubMed
Timasheff, S. N. (1998). In disperse solution, ‘osmotic stress’ is a restricted case of preferential interactions. Proceedings of the National Academy of Sciences of the United States of America 95, 73637367.CrossRefGoogle ScholarPubMed
Timasheff, S. N. (2002). Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components. Proceedings of the National Academy of Sciences of the United States of America 99, 97219726.CrossRefGoogle ScholarPubMed
Tironi, I. G., Sperb, R., Smith, P. E. & Gunsteren, W. F. V. (1995). A generalized reaction field method for molecular dynamics simulations. Journal of Chemical Physics 102, 54515459.CrossRefGoogle Scholar
Tjong, H. & Zhou, H. X. (2007a). GBr6: a parameterization-free, accurate, analytical generalized born method. Journal of Physical Chemistry B 111, 30553061.CrossRefGoogle ScholarPubMed
Tjong, H. & Zhou, H. X. (2007b). GBr6NL: a generalized Born method for accurately reproducing solvation energy of the nonlinear Poisson–Boltzmann equation. Journal of Chemical Physics, 126.CrossRefGoogle ScholarPubMed
Tjong, H. & Zhou, H. X. (2008). On the dielectric boundary in Poisson–Boltzmann calculations. Journal of Chemical Theory and Computation 4, 507514.CrossRefGoogle ScholarPubMed
Tobias, D. J. & Hemminger, J. C. (2008). Chemistry: getting specific about specific ion effects. Science 319, 11971198.CrossRefGoogle ScholarPubMed
Todd, B. A., Parsegian, V. A., Shirahata, A., Thomas, T. J. & Rau, D. C. (2008). Attractive forces between cation condensed DNA double helices. Biophysical Journal 94, 47754782.CrossRefGoogle ScholarPubMed
Todd, B. A. & Rau, D. C. (2008). Interplay of ion binding and attraction in DNA condensed by multivalent cations. Nucleic Acids Research 36, 501510.CrossRefGoogle ScholarPubMed
Torrie, G. M. & Valleau, J. P. (1974). Monte Carlo free energy estimates using non-Boltzmann sampling: application to the sub-critical Lennard-Jones fluid. Chemical Physics Letters 28, 578581.CrossRefGoogle Scholar
Tran, H. T., Pappu, R. V. & Mao, A. (2008). Role of backbone-solvent interactions in determining conformational equilibria of intrinsically disordered proteins. Journal of the American Chemical Society 130, 73807392.CrossRefGoogle ScholarPubMed
Tsui, V. & Case, D. (2000). Theory and applications of the generalized born solvation model in macromolecular simulations. Biopolymers 56, 275291.3.0.CO;2-E>CrossRefGoogle Scholar
Tynan-Connolly, B. M. & Nielsen, J. E. (2006). pKD: re-designing protein pK a values. Nucleic Acids Research 34 (Web Server issue), W48W51.CrossRefGoogle ScholarPubMed
Vácha, R., Siu, S. W., Petrov, M., Böckmann, R. A., Barucha-Kraszewska, J., Jurkiewicz, P., Hof, M., Berkowitz, M. L. & Jungwirth, P. (2009). Effects of alkali cations and halide anions on the DOPC lipid membrane. Journal of Physical Chemistry A 113, 72357243.CrossRefGoogle ScholarPubMed
Van Dijk, A. D. J. & Bonvin, A. M. J. J. (2006). Solvated docking: introducing water into the modelling of biomolecular complexes. Bioinformatics 22, 23402347.CrossRefGoogle ScholarPubMed
Van Duijnen, P. T. & De Vries, A. H. (1996). Direct reaction field force field: a consistent way to connect and combine quantum-chemical and classical descriptions of molecules. International Journal of Quantum Chemistry 60, 11111132.3.0.CO;2-2>CrossRefGoogle Scholar
Van Duijnen, P. T. & Swart, M. (1998). Molecular and atomic polarizabilities: Thole's model revisited. The Journal of Physical Chemistry A 102, 23992407.CrossRefGoogle Scholar
Vesely, F. J. (1977). N-particle dynamics of polarizable stockmayer-type molecules. Journal of Computational Physics 24, 361371.CrossRefGoogle Scholar
Villacanas, O., Madurga, S., Giralt, E. & Belda, I. (2009). Explicit treatment of water molecules in protein-ligand docking. Current Computer-Aided Drug Design 5, 145154.CrossRefGoogle Scholar
Vinter, J. G. (1996). Extended electron distributions applied to the molecular mechanics of some intermolecular interactions. II. Organic complexes. Journal of Computer-Aided Molecular Design 10, 417426.CrossRefGoogle Scholar
Vitalis, A. & Pappu, R. (2009). ABSINTH: a new continuum solvation model for simulations of polypeptides in aqueous solutions. Journal of Computational Chemistry 30, 673699.CrossRefGoogle ScholarPubMed
Vrbka, L., Jungwirth, P., Bauduin, P., Touraud, D. & Kunz, W. (2006). Specific ion effects at protein surfaces: a molecular dynamics study of bovine pancreatic trypsin inhibitor and horseradish peroxidase in selected salt solutions. Journal of Physical Chemistry B 110, 70367043.CrossRefGoogle ScholarPubMed
Wagoner, J. & Baker, N. (2004). Solvation forces on biomolecular structures: a comparison of explicit solvent and Poisson–Boltzmann models. Journal of Computational Chemistry 25, 16231629.CrossRefGoogle ScholarPubMed
Wagoner, J. & Baker, N. (2006). Assessing implicit models for nonpolar mean solvation forces: the importance of dispersion and volume terms. Proceedings of the National Academy of Sciences of the United States of America 103, 83318336.CrossRefGoogle ScholarPubMed
Wagoner, J. A. & Pande, V. S. (2011). A smoothly decoupled particle interface: new methods for coupling explicit and implicit solvent. Journal of Chemical Physics 134, 214103.CrossRefGoogle ScholarPubMed
Waldron, K. J. & Robinson, N. J. (2009). How do bacterial cells ensure that metalloproteins get the correct metal? Nature Reviews Microbiology 7, 2535.CrossRefGoogle ScholarPubMed
Wallace, J. & Shen, J. (2011). Continuous constant pH molecular dynamics in explicit solvent with pH-based replica exchange. Journal of Chemical Theory and Computation 7, 26172629.CrossRefGoogle ScholarPubMed
Wang, J., Cieplak, P., Li, J., Cai, Q., Hsieh, M., Lei, H., Luo, R. & Duan, Y. (2011a). Development of polarizable models for molecular mechanical calculations II: induced dipole models significantly improve accuracy of intermolecular interaction energies. Journal of Physical Chemistry B 115, 31003111.CrossRefGoogle ScholarPubMed
Wang, J., Cieplak, P., Li, J., Hou, T., Luo, R. & Duan, Y. (2011b). Development of polarizable models for molecular mechanical calculations I: parameterization of atomic polarizability. Journal of Physical Chemistry B 115, 30913099.CrossRefGoogle ScholarPubMed
Wang, K., Yu, Y.-X. & Gao, G.-H. (2004). Density functional study on the structures and thermodynamic properties of small ions around polyanionic DNA. Physical Review E 70, 011912.CrossRefGoogle Scholar
Wang, L. & Hermans, J. (1995). Reaction field molecular dynamics simulation with Friedman's image charge method. Journal of Physical Chemistry 99, 1200112007.CrossRefGoogle Scholar
Wang, Z. X., Zhang, W., Wu, C., Lei, H., Cieplak, P. & Duan, Y. (2006). Strike a balance: optimization of backbone torsion parameters of AMBER polarizable force field for simulations of proteins and peptides. Journal of Computational Chemistry 27, 781790.CrossRefGoogle ScholarPubMed
Warren, G. L. & Patel, S. (2007). Hydration free energies of monovalent ions in transferable intermolecular potential four point fluctuating charge water: An assessment of simulation methodology and force field performance and transferability. Journal of Chemical Physics 127, 064509.CrossRefGoogle Scholar
Warshel, A. (1976). Bicycle-pedal model for the first step in the vision process. Nature 260, 679683.CrossRefGoogle ScholarPubMed
Warshel, A. (1979). Calculations of chemical processes in solutions. Journal of Physical Chemistry 83, 16401652.CrossRefGoogle Scholar
Warshel, A. & Dryga, A. (2011). Simulating electrostatic energies in proteins: perspectives and some recent studies of pKas, redox, and other crucial functional properties. Proteins-Structure Function and Bioinformatics 79, 34693484.CrossRefGoogle ScholarPubMed
Warshel, A., Kato, M. & Pisliakov, A. V. (2007). Polarizable force fields: history, test cases, and prospects. Journal of Chemical Theory and Computation 3, 20342045.CrossRefGoogle ScholarPubMed
Warshel, A. & Papazyan, A. (1998). Electrostatic effects in macromolecules: fundamental concepts and practical modeling. Current Opinion in Structural Biology 8, 211217.CrossRefGoogle ScholarPubMed
Warwicker, J. & Watson, H. C. (1982). Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. Journal of Molecular Biology 157, 671679.CrossRefGoogle ScholarPubMed
Webb, H., Tynan-Connolly, B., Lee, G., Farrell, D., O'Meara, F., Søndergaard, C., Teilum, K., Hewage, C., Mcintosh, L. & Nielsen, J. (2011). Remeasuring HEWL pK a values by NMR spectroscopy: methods, analysis, accuracy, and implications for theoretical pK a calculations. Proteins 79, 685702.CrossRefGoogle Scholar
Wells, C. M. & Di Cera, E. (1992). Thrombin is a Na(+)-activated enzyme. Biochemistry 31, 1172111730.CrossRefGoogle ScholarPubMed
Wen, Q. & Tang, J. X. (2004). Absence of charge inversion on rodlike polyelectrolytes with excess divalent counterions. Journal of Chemical Physics 121, 1266612670.CrossRefGoogle ScholarPubMed
Wesson, L. & Eisenberg, D. (1992). Atomic solvation parameters applied to molecular dynamics of proteins in solution. Protein Science 1, 227235.CrossRefGoogle ScholarPubMed
Wheatley, R. J. & Mitchell, J. B. O. (1994). Gaussian multipoles in practice: electrostatic energies for intermolecular potentials. Journal of Computational Chemistry 15, 11871198.CrossRefGoogle Scholar
Whitfield, T. W., Varma, S., Harder, E., Lamoureux, G., Rempe, S. B. & Roux, B. (2007). Theoretical study of aqueous solvation of K+ comparing ab initio, polarizable, and fixed-charge models. Journal of Chemical Theory and Computation 3, 20682082.CrossRefGoogle ScholarPubMed
Wiberg, K. B. & Rablen, P. R. (1993). Comparison of atomic charges derived via different procedures. Journal of Computational Chemistry 14, 15041518.CrossRefGoogle Scholar
Williams, D. E. (1988). Representation of the molecular electrostatic potential by atomic multipole and bond dipole models. Journal of Computational Chemistry 9, 745763.CrossRefGoogle Scholar
Wimley, W. C., Creamer, T. P. & White, S. H. (1996). Solvation energies of amino acid side chains and backbone in a family of host–guest pentapeptides. Biochemistry 35, 51095124.CrossRefGoogle Scholar
Witham, S., Talley, K., Wang, L., Zhang, Z., Sarkar, S., Gao, D., Yang, W. & Alexov, E. (2011). Developing hybrid approaches to predict pK a values of ionizable groups. Proteins-Structure Function and Bioinformatics 79, 33893399.CrossRefGoogle ScholarPubMed
Woelki, S., Kohler, H. H., Krienke, H. & Schmeer, G. (2008). Improvements of DRISM calculations: symmetry reduction and hybrid algorithms. Physical Chemistry and Chemical Physics 10, 896910.CrossRefGoogle ScholarPubMed
Wong, G. C. L. & Pollack, L. (2010). Electrostatics of strongly charged biological polymers: ion-mediated interactions and self-organization in nucleic acids and proteins. Annual Review of Physical Chemistry 61, 171189.CrossRefGoogle ScholarPubMed
Wu, J. C., Piquemal, J. P., Chaudret, R., Reinhardt, P. & Ren, P. Y. (2010). Polarizable molecular dynamics simulation of Zn(II) in water using the AMOEBA force field. Journal of Chemical Theory and Computation 6, 20592070.CrossRefGoogle ScholarPubMed
Xantheas, S., Burnham, C. J. & Harrison, R. J. (2002). Development of transferable interaction models for water. II. Accurate energetics of the first few water clusters from first principles. Journal of Chemical Physics 116, 1493.CrossRefGoogle Scholar
Xantheas, S. S. & Dunning, T. H. (1994). Structures and energetics of F-(H2O)n, n = 1–3 clusters from ab Initio calculations. Journal of Physical Chemistry 98, 1348913497.CrossRefGoogle Scholar
Xia, K., Zhan, M. & Wei, G.-W. (2011). MIB method for elliptic equations with multi-material interfaces. Journal of Computational Physics 230, 45884615.CrossRefGoogle ScholarPubMed
Xu, Z., Cheng, X. & Yang, H. (2011). Treecode-based generalized Born method. Journal of Chemical Physics 134, 064107.CrossRefGoogle ScholarPubMed
Yang, C. & Sharp, K. (2004). The mechanism of the type III antifreeze protein action: a computational study. Biophysical Chemistry 109, 137148.CrossRefGoogle Scholar
Yang, T., Wu, J. C., Yan, C., Wang, Y., Luo, R., Gonzales, M. B., Dalby, K. N. & Ren, P. (2011). Virtual screening using molecular simulations. Proteins: Structure Function and Genetics 79, 19401951.CrossRefGoogle ScholarPubMed
Yeagle, P. L. (2004). The Structure of Biological Membranes. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Yonetani, Y., Maruyama, Y., Hirata, F. & Kono, H. (2008). Comparison of DNA hydration patterns obtained using two distinct computational methods, molecular dynamics simulation and three-dimensional reference interaction site model theory. Journal of Chemical Physics 128, 185102185102.CrossRefGoogle ScholarPubMed
Yoon, B. & Lenhoff, A. M. (1990). A boundary element method for molecular electrostatics with electrolyte effects. Journal of Computational Chemistry 11, 10801086.CrossRefGoogle Scholar
Yoshida, N., Phongphanphanee, S., Maruyama, Y., Imai, T. & Hirata, F. (2006). Selective ion-binding by protein probed with the 3D-RISM theory. Journal of the American Chemical Society 128, 1204212043.CrossRefGoogle ScholarPubMed
Yu, H., Whitfield, T. W., Harder, E., Lamoureux, G., Vorobyov, I., Anisimov, V. M., Mackerell, A. D. Jr. & Roux, B. (2010). Simulating monovalent and divalent ions in aqueous solution using a drude polarizable force field. Journal of Chemical Theory and Computation 6, 774786.CrossRefGoogle ScholarPubMed
Yu, S., Geng, W. & Wei, G. W. (2007a). Treatment of geometric singularities in implicit solvent models. The Journal of Chemical Physics 126, 944954.CrossRefGoogle ScholarPubMed
Yu, S. & Wei, G. (2007). Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities. Journal of Computational Physics 227, 602632.CrossRefGoogle Scholar
Yu, S., Zhou, Y. & Wei, G. (2007b). Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces. Journal of Computational Physics 224, 729756.CrossRefGoogle Scholar
Zangi, R., Hagen, M. & Berne, B. J. (2007). Effect of ions on the hydrophobic interaction between two plates. Journal of the American Chemical Society 129, 46784686.CrossRefGoogle ScholarPubMed
Zauhar, R. J. (1995). SMART: a solvent-accessible triangulated surface generator for molecular graphics and boundary element applications. Journal of Computer-Aided Molecular Design 9, 149159.CrossRefGoogle Scholar
Zauhar, R. J. & Morgan, R. S. (1985). A new method for computing the macromolecular electric potential. Journal of Molecular Biology 186, 815820.CrossRefGoogle ScholarPubMed
Zauhar, R. J. & Morgan, R. S. (1988). The rigorous computation of the molecular electric potential. Journal of Computational Chemistry 9, 171187.CrossRefGoogle Scholar
Zelko, J., Iglič, A., Iglič, V. & Kumar, S. (2010). Effects of counterion size on the attraction between similarly charged surfaces. Journal of Chemical Physics 133, 204901.CrossRefGoogle ScholarPubMed
Zhang, W., Ni, H., Capp, M. W., Anderson, C. F., Lohman, T. M. & Record, M. T. (1999). The importance of coulombic end effects: experimental characterization of the effects of oligonucleotide flanking charges on the strength and salt dependence of oligocation (L8+) binding to single-stranded DNA oligomers. Biophysical Journal 76, 10081017.CrossRefGoogle ScholarPubMed
Zhang, Y., Xu, G. & Bajaj, C. (2006). Quality meshing of implicit solvation models of biomolecular structures. Computer-Aided Geometric Design 23, 510530.CrossRefGoogle ScholarPubMed
Zheng, L., Chen, M. & Yang, W. (2008). Random walk in orthogonal space to achieve efficient free-energy simulation of complex systems. Proceedings of the National Academy of Sciences of the United States of America 105, 2022720232.CrossRefGoogle ScholarPubMed
Zheng, L., Chen, M. & Yang, W. (2009). Simultaneous escaping of explicit and hidden free energy barriers: application of the orthogonal space random walk strategy in generalized ensemble based conformational sampling. Journal of Chemical Physics 130, 234105.CrossRefGoogle ScholarPubMed
Zhou, H. X. (1993). Boundary element solution of macromolecular electrostatics: interaction energy between two proteins. Biophysical Journal 65, 955963.CrossRefGoogle ScholarPubMed
Zhou, H. X. (2005). Interactions of macromolecules with salt ions: an electrostatic theory for the Hofmeister effect. Proteins 61, 6978.CrossRefGoogle ScholarPubMed
Zhou, R., Huang, X., Margulis, C. J. & Berne, B. J. (2004). Hydrophobic collapse in multidomain protein folding. Science 305, 16051609.CrossRefGoogle ScholarPubMed
Zhou, Y. & Wei, G. (2006). On the fictitious-domain and interpolation formulations of the matched interface and boundary (MIB) method. Journal of Computational Physics 219, 228246.CrossRefGoogle Scholar
Zhu, J., Alexov, E. & Honig, B. (2005). Comparative study of generalized Born models: born radii and peptide folding. Journal of Physical Chemistry B 109, 30083022.CrossRefGoogle ScholarPubMed