Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-23T13:22:53.383Z Has data issue: false hasContentIssue false

Bacteriorhodopsin: a biological material for information processing

Published online by Cambridge University Press:  17 March 2009

Dieter Oesterhelt
Affiliation:
Max-Planck-Institute for Biochemistry, Martinsried, Germany
Christoph Bräuchle
Affiliation:
Institute for Physical Chemistry, University of Munich, Germany
Norbert Hampp
Affiliation:
Institute for Physical Chemistry, University of Munich, Germany

Extract

Technology which makes use of biological materials has advanced dramatically in the last few decades. Production of specific biochemicals by selected microbial strains, the use of enzymes for stereospecific biosynthesis of materials and gene technological production of biologically important macromolecules are a few examples of these developments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdulaev, N. G., Barmenkov, Y. O., Zaitsev, S. Y., Zosimov, V. V., Zubov, V. P., Kozhevikov, N. M., Lipovskaya, M. Y. & Lyamshev, L. M. (1988). Photorefractive sensitivity of polymer films containing bacteriorhodopsin. Sov. Phys. Tech. Phys. 33, 508510.Google Scholar
Aktsypetrov, O. A., Akhmediev, N. N., Vsevolodov, N. N., Esikov, D. A. & Shutov, D. A. (1987). Photochromism in nonlinear optics: photocontrolled generation of the 2nd harmonic by bacteriorhodopsin molecules. Doklady Akad. Nauk USSR 293, 592594.Google Scholar
Arai, R., Haruta, M. & Yamamoto, N. (1986 a). Protein-enzyme biochemical optical recording medium and imaging process (Canon K.K.). Jpn. Kokai Tokkyo Koho JP 63/92947, 5 pp.Google Scholar
Arai, R., Haruta, M., Yamamoto, N., Yano, T., Kishi, H. & Sakuranaga, M. (1986b). Recording material and color recording process using this material (Canon K.K.). Jpn. Kokai Tokkyo Koho JP Appl. 86/238142 and Ger. Offen. (1988) DE 3734078, 13 pp.Google Scholar
Ariki, M., Magde, D., Lanyi, J. K. (1987). Metal ion binding sides of bacteriorhodopsin; laser-induced lanthanide luminescence study. J. biol. Chem. 262, 49474951.CrossRefGoogle Scholar
Asato, A. E., Li, X. Y., Mead, D., Patterson, G. M. L. & Liu, R. S. H. (1990). Azulenic retinoids and the corresponding bacteriorhodopsin analogues. Unusually red-shifted pigments. J. Am. chem. Soc. 112, 73987399.CrossRefGoogle Scholar
Balashov, S. P. & Litvin, F. (1981). Photochemical conversions of bacteriorhodopsin. Biophys. J. 26, 566581.Google Scholar
Bamberg, E., Apell, H.-J., Dencher, N. A., Sperling, W., Stieve, H. & Läuger, P. (1979). Photocurrents generated by bacteriorhodopsin on planar bilayer membranes. Biophys. Struct. Mechanism 5, 277292.CrossRefGoogle Scholar
Barmenkov, Yu. O., Zosimov, V. V., Kozhevnikov, N. M., Kotov, O. I., Lyamshev, L. M. & Nikolaev, V. M. (1987). Detection of a phase-modulation signal from a fiber-optic interferometer by means of a dynamic hologram in bacteriorhodopsin. Akust. Zh. 33, 568569.(Russian) and Sov. Phys. Acoust. 33, 334–335.Google Scholar
Barmenkov, Yu. O., Zosimov, V. V., Kozhernikov, N. M., Lipovskaya, M. Y. & Lamshev, L. M. (1988). Holographic filtering of a low-frequency noise in the output signal of an interferometer. Opt. Spektrosk. 64, 13391393.Google Scholar
Bazhenov, V. Y., Soskin, V. B. & Taranenko, V. B. (1987). Holographic recording of continuous radiation in a suspension of purple membranes of halobacteria. Pis'ma Zh. Tekh. Fiz. 13, 918922.Google Scholar
Bazhenov, V. Y., Soskin, M. S., Taranenko, V. B. & Vasnetsov, M. V. (1989). Biopolymers for real-time optical processing. In Optical Processing and Computing (ed. Arsenault, A.), pp. 103144, New York: Academic Press.CrossRefGoogle Scholar
Birge, R. R. (1989). Optical random access memory based on bacteriorhodopsin. Bull. Am. Phys. Soc. 34, 483.Google Scholar
Birge, R. R. (1990 a). Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin. Biochim. biophys. Acta 1016, 293327.CrossRefGoogle ScholarPubMed
Birge, R. R. (1990 b). Photophysics and molecular electronic applications of the rhodopsins. A. Rev. phys. Chem. 41, 683733.CrossRefGoogle ScholarPubMed
Birge, R. R., Fleitz, P. A., Lawrence, A. F., Masthay, M. A. & Zhang, C. F. (1990 c). Nonlinear optical properties of bacteriorhodopsin: assignment of second order hyperpolarizabilities of randomly oriented systems using two-photon spectroscopy. Mol. Cryst. Liq. Cryst. 189, 107122.Google Scholar
Birge, R. R., Fleitz, P. A., Gross, R. B., Izgi, J. C., Lawrence, A. F., Stuart, J. A. & Tallent, J. R. (1990 d). Spatial light modulators and optical associative memories based on bacteriorhodopsin. IEEE EMBS 12, 17881789.Google Scholar
Blanck, A. & Oesterhelt, D. (1987). The halo-opsin gene. II. Sequence, primary structure of halorhodopsin and comparison with bacteriorhodopsin. EMBO J. 6, 265273.CrossRefGoogle ScholarPubMed
Blanck, A., Oesterhelt, D., Ferrando, E.E., Schegk, E. S. & Lottspeich, F. (1989). Primary structure of sensory rhodopsin I, a procaryotic photoreceptor. EMBO J. 8, 39633971.CrossRefGoogle Scholar
Blatz, P. E., Mohler, J. H. & Navangul, H. V. (1972). Anion-induced wavelength regulation of absorption maxima of Schiff bases of retinal. Biochemistry 11, 848855.CrossRefGoogle ScholarPubMed
Borisevitch, G. B., Likashev, E. P., Kononenko, A. A. & Rubin, A. B. (1979). Bacteriorhodopsin (BR-570) bathochromic band shift in an external electric field. Biochem. biophys. Acta 546, 171174.Google Scholar
Bräuchle, C. & Burland, D. M. (1983). Holographic methods for the investigation of photochemical and photophysical properties of molecules. Angew. Chem. Int. Ed. Engl. 22, 582598.CrossRefGoogle Scholar
Bräuchle, C., Hampp, N. & Oesterhelt, D. (1991). Optical applications of bacteriorhodopsin and its mutated variants – a new approach in material science. Advanced Materials (In the Press.)CrossRefGoogle Scholar
Brown, G. M., Grant, R. M. & Stroke, G. W. (1969). Theory of holographic interferometry. J. Acoust. Soc. Amer. 45, 11661187.CrossRefGoogle Scholar
Bunkin, F. V., Vsevolodov, N. N., Druzhko, A. B., Mitsner, B. I., Prokhorov, A. M., Savranskii, V. V., Tkachenko, N. V. & Shevnenko, T. B. (1981). Diffraction efficiency of bacteriorhodopsin and its analogs. Sov. Tech. Phys. Lett. 7, 630631.Google Scholar
Burykin, N. M., Korchemskaya, E. Y., Soskin, M. S., Taranenko, V. B., Dukova, T. V. & Vsevolodov, N. N. (1985). Photoinduced anisotropy in biochrom films. Opt. Comm. 54, 6871.CrossRefGoogle Scholar
Butt, H. J., Fendler, K., Bamberg, E., Tittor, J. & Oesterhelt, D. (1989). Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump. EMBO J. 8, 16571663.CrossRefGoogle ScholarPubMed
Chamarovskii, S. K., Lukashev, E. P., Kononenko, A. A. & Rubin, A. B. (1983). Effects of electric field on the photocycle of BR. Biochim. biophys. Acta 725, 403406.CrossRefGoogle Scholar
Chen, D. (1974). Magnetic materials for optical recording. Appl. Opt. 13, 767778.CrossRefGoogle ScholarPubMed
Chernavskii, D. S., Chizhov, I. V., Lozier, R. H., Murina, T. M., Prokhorov, A. M. & Zubov, B. V. (1989). Kinetic model of bacteriorhodopsin photocycle: pathway from M-state to bR. Photochem. Photobiol. 49, 649653.CrossRefGoogle ScholarPubMed
Clark, N. A., Rothschild, K. J., Luippold, D. A., Simon, B. A. (1980). Surface-induced lamellar orientation of multilayer membrane arrays. Theoretical analysis and a new method with application to purple membrane fragments. Biophys. J. 31, 6596.CrossRefGoogle Scholar
Collier, R. J., Burckhardt, C. B. & Lin, L. H. (1971). Optical Holography. New York: Academic Press.Google Scholar
Corcoran, T. C., Ismail, K. Z. & El-sayed, M. A. (1987). Evidence for the involvement of more than one metal cation in the Schiff base deprotonation process during the photocycle of bacteriorhodopsin. Proc. natn. Acad. Sci. USA 84, 40944098.CrossRefGoogle ScholarPubMed
Czégé, J. (1988). Light scattering changes and protein distortion in the bacteriorhodopsin during the photocycle. FEBS Lett. 242, 8993.CrossRefGoogle Scholar
Dancsházy, Z., Groma, G. I., Oesterhelt, D. & Tittor, J. (1986). The photochemical cycle of bacteriorhodopsin has no refractory period. FEBS Lett. 196, 198202.CrossRefGoogle Scholar
De Groot, H. J. M., Harbison, G. S., Herzfeld, J. & Griffin, R. G. (1989). Nuclear magnetic resonance study of the Schiff base in bacteriorhodopsin: counterion effects on the 15N shift anisotropy. Biochemistry 28, 33463353.CrossRefGoogle ScholarPubMed
Dobler, J., Zinth, W., Kaiser, W. & Oesterhelt, D. (1988). Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy. Chem. Phys. Lett. 144, 215220.CrossRefGoogle Scholar
Drachev, L. A., Frolov, V. N., Kaulen, A. D., Liberman, E. A., Ostroumov, S. A., Plakunova, V. G., Semenov, A. Y. & Skulachev, V. P. (1976). Reconstitution of biological molecular generators of electric current. J. biol. Chem. 251, 70597065.CrossRefGoogle ScholarPubMed
Drachev, L. A., Kaulen, A. D. & Zorina, V. V. (1989). Light-scattering changes in the bacteriorhodopsin photocycle. FEBS Lett. 243, 57.CrossRefGoogle Scholar
Draheim, J. E., Gibson, N. J. & Cassim, J. Y. (1988). Large scale global structural changes of the purple membrane during the photocycle. Biophys. J. 54, 931944.CrossRefGoogle Scholar
Druzhko, A. B., Zharmuhamedov, S. K. & Vsevolodov, N. N. (1986). Photoinduced transformations of 4-keto-bacteriorhodopsin in polymeric matrix. Biofisika 31 (2), 253257.Google Scholar
Duñach, M., Seigneuret, M., Rigaud, J.-L. & Padros, E. (1987). Characterization of the cation binding sites of the purple membrane. Electron spin resonance and flash photolysis studies. Biochemistry 26, 11791186.CrossRefGoogle Scholar
Dyukova, T. V., Vsevolodov, N. N. & Chekulayeva, L. N. (1985). Change in the photochemical activity of bacteriorhodopsin in polymer matrices on its dehydration. Biophysics 30, 668672.Google Scholar
Dyukova, T. V., Saphonova, M. V. & Vsevolodov, N. N. (1990). Optical parameters of purple membranes in polymeric films: temperature and humidity effects. IEEE EMBS 12, 1716.Google Scholar
Ebrey, T. G., Becher, B., Mao, B., Kilbride, P. & Honig, B. (1977). Exciton interactions and chromophore orientation in the purple membrane. J. molec. Biol. 112, 377397.CrossRefGoogle ScholarPubMed
Efron, U. (ed.) (1990). Spatial light modulators and applications. In Technical Digest Series, vol. 14. Washington: Optical Society of America.Google Scholar
Eisenbach, M., Weissmann, C., Tanny, G. & Caplan, S. R. (1977). Bacteriorhodopsinloaded charged synthetic membranes utilization of light energy to generate electrical current. FEBS Lett. 81, 7780.CrossRefGoogle ScholarPubMed
Emmelius, M., Pawlowski, G. & Vollmann, H. W. (1989). Materials for optical data storage. Angew. Chem. Int. Ed. 101, 14751502.CrossRefGoogle Scholar
Erf, R. K. (ed.) (1978). Speckle Metrology. New York: Academic Press.Google Scholar
Fischer, U., Towner, P. & Oesterhelt, D. (1981). Light-induced isomerization, at acidic pH, initiates hydrolysis of bacteriorhodopsin to bacterio-opsin and 9-cis retinal. Photochem. Photobiol. 33, 529537.CrossRefGoogle Scholar
Fowler, G. J. S. & Devonshire, R. (1991). Colored complexes of all-trans-retinal with benzocaine and other local anesthetics. J. Photochem. Photobiol. B - Biology 84, 183188.CrossRefGoogle Scholar
Gärtner, W., Oesterhelt, D., Towner, P., Hopf, H. & Ernst, L. (1981). 13-Trifluoromethylretinal forms an active and far red shifted chromophore in bacteriorhodopsin. J. Amer. Chem. Soc. 103, 76427643.CrossRefGoogle Scholar
Gärtner, W. & Oesterhelt, D. (1988). Methoxyretinals in bacteriorhodopsin. Absorption maxima, cis-trans isomerization and retinal protein interaction. Eur. J. Biochem. 176, 641648.CrossRefGoogle ScholarPubMed
Gerwert, K., Hess, B., Soppa, J. & Oesterhelt, D. (1989). The role of Asp96 in proton translocation by bacteriorhodopsin. Proc. natn. Acad. Sci. USA 86, 49434947.CrossRefGoogle ScholarPubMed
Goodman, J. W. (1968). Introduction to Fourier Optics. New York: McGraw-Hill.Google Scholar
Govindjee, R., Balashov, S. P. & Ebrey, T. G. (1990). Quantum efficiency of the photochemical cycle of bacteriorhodopsin. Biophys. J. 58, 597608.CrossRefGoogle ScholarPubMed
Groma, G. I., Helgerson, S. L., Wolber, P. K., Beece, D., Dancsházy, Z., Keszthelyi, L. & Stoeckenius, W. (1984). Coupling between the bacteriorhodopsin photocycle and the proton motive force in Halobacterium halobium cell envelope vesicles. II. Quantitation and preliminary modelling of the M → bR reactions. Biophys. J. 45, 985992.CrossRefGoogle Scholar
Großjean, M. F. & Tavan, P. (1988). Wavelength regulation in bacteriorhodopsin and halorhodopsin: a PPP-MRD-CI study of retinal dyes. J. chem. Phys. 88. 48844896.CrossRefGoogle Scholar
Haarer, D. (1989). How to tailor molecular electronics or why is nature taking the ‘soft’ approach? Adv. Mater. 11, 362365.CrossRefGoogle Scholar
Hampp, N., Bräuchle, C. & Oesterhelt, D. (1988). Bacteriorhodopsin and its functional variants as new materials for optical information processing. 1. European Conference on Biotechnology (EIT), 124128.Google Scholar
Hampp, N., Bräuchle, C. & Oesterhelt, D. (1989). Optical properties of polymeric films of bacteriorhodopsin and its functional variants: new materials for optical information processing. In: ‘Thin Films in Optics’ (ed. Tschudi, ). SPIE 1125, 28.Google Scholar
Hampp, N., Bräuchle, C. & Oesterhelt, D. (1990 a). Bacteriorhodopsin wildtype and variant aspartate-96 → asparagine as reversible holographic media. Biophys. J. 58, 8393.CrossRefGoogle ScholarPubMed
Hampp, N., Thoma, R., Oesterhelt, D. & Bräuchle, C. (1990 b). The biological photochrome bacteriorhodopsin and its genetic variant Asp96 → Asn as reversible media for dynamic optical pattern recognition. In: ‘Technical Digest on Spatial Light Modulators and Applications, vol. 14, pp. 4142. Washington D.C.: Optical Society of America.Google Scholar
Hampp, N., Bräuchle, C. & Oesterhelt, D. (1990 c). Bacteriorhodopsin as a reversible holographic medium in optical processing. IEEE EMBS 12, 17191720.Google Scholar
Hampp, N., Oesterhelt, D. & Bräuchle, C. (1990 d). The biological photochrome bacteriorhodopsin and its variants: their application in dynamic holographic recording. Proc. Holographies '90, Nuremberg, 6571.Google Scholar
Hampp, N., Thoma, R., Oesterhelt, D. & Bräuchle, C. (1990 e). Process for improving the signal-to-noise ratio in holography using bacteriorhodopsin-based recording media. German Application P 4007 374.2, 5 pp.Google Scholar
Hampp, N. & Bräuchle, C. (1990 f). Bacteriorhodopsin and its functional variants: potential applications in modern optics. In Photochromism: Molecules and Systems (ed. Dürr, H. and Bouas-Laurent, H.), pp. 954975. Amsterdam: Elsevier.Google Scholar
Hampp, N., Thoma, R., Oesterhelt, D. & Bräuchle, C. (1991 a). The biological photochrome bacteriorhodopsin and its genetic variant Asp96 → Asn as media for optical pattern recognition. Appl. Opt. (In the Press.)Google Scholar
Hampp, N., Popp, A., Bräuchle, C. & Oesterhelt, D. (1991 b). Diffraction efficiency of bacteriorhodopsin films for holography containing bacteriorhodopsin wildtype BRwt and its variants BRd85e and BRd96n. J. phys. Chem. (submitted).Google Scholar
Haronian, D. & Lewis, A. (1991). Elements of a unique bacteriorhodopsin neural network architecture. Appl. Opt. 30, 597608.CrossRefGoogle ScholarPubMed
Hauss, T., Gresziek, S., Otto, H., Westerhausen, J. & Heyn, M. P. (1990). Transmembrane location of retinal in bacteriorhodopsin by neutron diffraction. Biochemistry 29, 49094913.CrossRefGoogle ScholarPubMed
Hegemann, P., Oesterhelt, D. & Bamberg, E. (1985 a). The transport activity of the light-driven chloride pump halorhodopsin is regulated by green and blue light. Biochim. biophys. Acta 819, 195205.CrossRefGoogle Scholar
Hegemann, P., Oesterhelt, D. & Steiner, M. (1985 b). The photocycle of the chloride pump halorhodopsin. I. Azide catalyzed deprotonation of the chromophore is a side reaction of photocycle intermediates inactivating the pump. EMBO J. 4, 23472350.CrossRefGoogle ScholarPubMed
Henderson, R. & Schertler, G. F. X. (1990). The structure of bacteriorhodopsin and its relevance to the visual opsins and other seven-helix G-protein coupled receptors. Phil. Trans. R. Soc. Lond. B326, 379389.Google Scholar
Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E. & Downing, K. H. (1990). Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. molec. Biol. 213, 899929.CrossRefGoogle ScholarPubMed
Henry, N., Beaudoin, N., Baribeau, J. & Boucher, F. (1988). Further characterization of anesthetic treated membranes. Photochem. Photobiol. 47, 8590.CrossRefGoogle Scholar
Heyn, M. P., Cherry, R. J. & Muller, U. (1977). Transient and linear dichroism studies on bacteriorhodopsin: determination of the orientation of the 568 nm all-trans retinal chromophore. J. molec. Biol. 117, 607620.CrossRefGoogle ScholarPubMed
Higashiyama, H. & Tokumaga, F. (1987). Cause of the blue shift of the absorption spectrum of tetranitromethane-treated bacteriorhodopsin. FEBS Lett. 218, 287291.CrossRefGoogle Scholar
Hikima, M., Tanabe, K., Iida, Y. & Karube, M. (1985). A biochip (Ajinomoto Co.). Jpn. Kokai Tokkyo Koho JP 62/11158, 5 pp.Google Scholar
Holz, M., Drachev, L. A., Mogi, T., Otto, H., Kaulen, A. D., Heyn, M. P., Skulachev, V. P. & Khorana, H. G. (1989). Replacement of aspartic acid-96 by asparagine in bacteriorhodopsin slows both the decay of the M intermediate and the associated proton movement. Proc. natn. Acad. Sci. USA 86, 21672171.CrossRefGoogle Scholar
Hong, F. T. (1986). The bacteriorhodopsin model membrane system as a prototype molecular computing element. BioSystems 19, 223236.CrossRefGoogle ScholarPubMed
Huang, J. Y. & Lewis, A. (1989). Determination of the absolute orientation of the retinylidene chromophore in purple membrane by a second-harmonic interference technique. Biophys. J. 55, 835842.CrossRefGoogle ScholarPubMed
Huang, J. Y., Chen, Z. & Lewis, A. (1989). Second harmonic generation in purplemembrane-poly(vinyl alcohol) films: probing the dipolar characteristics of the bacteriorhodopsin chromophore in BR570 and M412. J. phys. Chem. 93, 33143320.CrossRefGoogle Scholar
Inatomi, K. (1984). ATP-regenerating bioreactor equipped with immobilized ATPase (Mitsubishi Electric. Corp.). Jpn. Kokai Tokkyo Koho JP 61/124384, 6 pp.Google Scholar
Inoue, K. (1987 a). Bacteriorhodopsin optical switches (Sanyo Electric Co.). Jpn. Kokai Tokkyo Koho JP 63/231424, 3 pp.Google Scholar
Inoue, K. (1987 b). Method and apparatus for preparing oriented thin films used in photoelectric devices (Sanyo Electric Co.). Jpn. Kokai Tokkyo Koho JP 63/230900, 4 PP.Google Scholar
Isoda, S. & Daimon, M. (1984). Optical recording media (Mitsubishi Electric Corp.). Jpn. Kokai Tokkyo Koho JP 60/184246, 5 pp.Google Scholar
Isoda, S. (1984 a). Optical recording and readout processes (Mitsubishi Electric Corp.). Jpn. Kokai Tokkyo Koho JP 60/185228, 4 pp.Google Scholar
Isoda, S. (1984 b). Optical recording, readout, and erasing methods (Mitsubishi Electric Corp.). Jpn. Kokai Tokkyo Koho JP 60/185229, 5 pp.Google Scholar
Jähne, B. (1989). Digitate Bildverarbeitung. Berlin: Springer.CrossRefGoogle Scholar
Javidi, B. (1990). Comparison of nonlinear joint transform correlator and nonlinear matched filter based correlator. Opt. Comtnun. 75, 813.CrossRefGoogle Scholar
Joenathan, C. & Torroba, R. (1990). Simple electronic speckle-shearing-pattern interferometer. Opt. Lett. 15, 11591161.CrossRefGoogle ScholarPubMed
Joyeux, D. & Lowenthal, S. (1982). Optical Fourier transform: what is the optimal setup. Appl. Opt. 21, 43684372.CrossRefGoogle ScholarPubMed
Katsura, T., Maeda, H., Sakai, T. & Tsuda, K. (1989). Photosensor having photosensitive part formed of purple membrane. US 4804834.Google Scholar
Karube, I. (1986). Present stage of biochip model development. Science & Technology in Japan 5, 2224.Google Scholar
Keszthelyi, L., Száraz, S., Dér, A., Stoeckenius, W. (1990 a). Bacteriorhodopsin and halorhodopsin: multiple ion pumps. Biochim. biophys. Acta 1018, 260262.CrossRefGoogle Scholar
Keszthelyi, L., Ormos, P., Váró, G. & Groma, G. (1990 b). Bacteriorhodopsin as a light induced electricity generator. IEEE EMBS 12, 17121713.Google Scholar
Kimura, Y., Ikegami, A. & Stoeckenius, W. (1984). Salt and pH-dependent changes of the purple membrane absorption spectrum. Photochem. and Photobiol. 40, 641646.CrossRefGoogle ScholarPubMed
Kitagawa, T. & Maeda, A. (1989). Vibrational spectra of rhodopsin and bacteriorhodopsin. Photochem. Photobiol. 50, 883894.CrossRefGoogle ScholarPubMed
Kogelnick, H. (1969). Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 48, 29092947.CrossRefGoogle Scholar
Kölling, E., Gärtner, W., Oesterhelt, D. & Ernst, L. (1984). Sterically fixed retinal-analogue prevents proton pumping activity in bacteriorhodopsin. Angew. Chemie Int. Ed. English 23, 8182. Angew. Chemie 96, 76–78.CrossRefGoogle Scholar
Korchemskaya, E. Y., Soskin, M. S. & Taranenko, V. B. (1987). Spatial polarization wavefront reversal under conditions of four-wave mixing in biochrome films. Sov. J. Quantum Electron. 17, 450454.CrossRefGoogle Scholar
Korchemskaya, E. Y., Soskin, M. S. & Taranenko, V. B. (1990). Enhancement of the contrast of low-noise optical signals in the course of nonlinear absorption in media based on bacteriorhodopsin. Sov. J. Quantum Electron. 20, 381382.CrossRefGoogle Scholar
Korenstein, R. & Hess, B. (1977). Hydration effects on cis–trans isomerization of bacteriorhodopsin. FEBS Lett. 82, 711.CrossRefGoogle ScholarPubMed
KouyamaP., K. P., K., Kinositu, K. & Ikegami, A. (1988). Structure and function of bacteriorhodopsin. Adv. Biophys. 24, 123175.CrossRefGoogle ScholarPubMed
Kouyama, T. & Nasuda-Kouyama, A. (1989). Turnover rate of the proton pumping cycle of bacteriorhodopsin: pH and light-intensity dependences. Biochemistry 28, 59635970.CrossRefGoogle Scholar
Kovács, I. & VáRó, G. (1988). Charge motion in vacuum-dried bacteriorhodopsin. J. Photochem. Photobiol., B: Biology 1, 469474.CrossRefGoogle Scholar
Kunugi, S., Tatsukawa, K., Nakajima, T., Nomura, A. & Tanaka, A. (1989). Orientation of bacteriorhodopsin in non-aqueous polymer membrane. Polym. Bull. 21, 5962.CrossRefGoogle Scholar
Lam, W. L. & Doolittle, W. F. (1989). Shuttle vectors for the archaebacterium volcanii. Proc. natn. Acad. Sci. USA 86, 54785482.CrossRefGoogle ScholarPubMed
Lanyi, J. K. (1990). Halorhodopsin, a light-driven electrogenic chloride transport system. Physiological Reviews 70, 319330.CrossRefGoogle ScholarPubMed
Lanyi, J. K., Duschl, A., Hatfield, G. W., May, K. & Oesterhelt, D. (1990). The primary structure of a halorhodopsin from Neutronobacterium pharoaonis: Structural, functional and evolutionary implications for bacterial rhodopsins and halorhodopsins. J. biol. Chem. 265, 12531260.CrossRefGoogle ScholarPubMed
Lazarev, Y. A. & Terpugov, E. L. (1980). Effect of water on the structure of bacteriorhodopsin and photochemical processes in purple membrane. Biochim. biophys. Acta 590, 324338.CrossRefGoogle Scholar
Lee, I.-J., Gillie, J. K. & Johnson, C. K. (1989). Photochemical hole burning in bacteriorhodopsin. Chem. Phys. Lett. 156, 227232.CrossRefGoogle Scholar
Lee, K. H., McIntosh, A. R. & Boucher, F. (1991). The interaction between halogenated anesthetics and bacteriorhodopsin in purple membrane as examined by intrinsic ultraviolet fluorescence. Biochem. Cell Biol. 69, 178184.CrossRefGoogle ScholarPubMed
Lee, T. C. & Gossen, D. (1971). Generalized Fourier-transform holography and its applications. Appl. Opt. 10, 961963.CrossRefGoogle ScholarPubMed
Lee, T. C., Rebholz, J. & Tamuva, P. (1979). Dual-axis joint-Fourier-transform correlator. Opt. Lett. 4, 121123.CrossRefGoogle ScholarPubMed
Lin, S. W. & Mathies, R. A. (1989). Orientation of the protonated retinal Schiff base group in bacteriorhodopsin from absorption linear dichroism. Biophys. J. 56, 653660.CrossRefGoogle ScholarPubMed
Liu, S. Y. & Ebrey, T. G. (1987). The quantum efficiency for the interphotoconversion of the blue and pink forms of purple membrane. Photochem. Photobiol. 46, 263267.CrossRefGoogle Scholar
Lu, X. J., Yu, F. T. S. & Gregory, D. A. (1990). Comparison of Vander Lugt and joint transform correlators. Appl. Phys. B51, 153164.CrossRefGoogle Scholar
Lukashev, E. P., Vozary, E., Kononenko, A. A. & Rubin, A. B. (1980). Electric field promotion of the bacteriorhodopsin BR-570 to BR-412 photoconversion in films of halobacterium halobium purple membrane Biochem. biophys. Acta 592, 258266.Google Scholar
Maeda, A., Iwasa, T. & Yoshizawa, T. (1980). Formation of 9-cis and 11-cis retinal pigments from bacteriorhodopsin by irradiating purple membrane in acid. Biochemistry 19, 38253831.CrossRefGoogle ScholarPubMed
Margalit, R. & Yu, J. (1990). Optical processing in bacteriorhodopsin films. IEEE EMBS 12, 17171718.Google Scholar
Marinetti, T., Subramaniam, S., Mogi, T., Marti, T. & Khorana, H. G. (1989). Replacement of aspartic residues 85, 96, 115, 212, affects the quantum yield and kinetics of proton release and uptake by bacteriorhodopsin. Proc. natn. Acad. Sci. USA 86, 529533.CrossRefGoogle ScholarPubMed
Martin, G., Lam, L. K. & Hellwarth, R. W. (1980). Generation of a time-reversal replica of a nonuniformly polarized image-bearing optical beam. Opt. Lett. 5, 185187.CrossRefGoogle Scholar
Mathies, R. A., Brito Cruz, C. H., Pollard, W. T. & Shank, C. V. (1988). Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin. Science 240, 777779.CrossRefGoogle ScholarPubMed
Maximychev, A. B., Chamorovsky, S. K., Timashev, S. F., Kononenko, A. A. & Chekulaeva, L. N. (1984). Photoelectric processes in films of oriented purple membranes applied onto conducting surfaces. Biologicheskie Membrany 1, 12901301.Google Scholar
Maximychev, A. V. & Chamorovskii, S. K. (1988). Bacteriorhodopsin as a possible element of membrane bioreactors. Russ. Chem. Rev. 57, 592604.CrossRefGoogle Scholar
Michl, J. & Thulstrup, E. W. (1986). Spectroscopy with Polarized Light. New York: Academic Press.Google Scholar
Miller, A. & Oesterhelt, D. (1990). Kinetic optimization of bacteriorhodopsin by aspartic acid 96 as an internal proton donor. Biochim. biophys. Acta 1020, 5764.CrossRefGoogle Scholar
Mitaku, S., Ikuta, K., Itoh, H., Kataoka, R., Naka, M., Yamada, M. & Suwa, M. (1988). Denaturation of bacteriorhodopsin by organic solvents. Biophys. Chem. 30, 6979.CrossRefGoogle ScholarPubMed
Mobarry, C. & Lewis, A. (1986). Implementations of neural networks using photoactivated conducting biological materials. SPIE 700, 304306.Google Scholar
Mowery, P. C., Lozier, R. H., Chae, Q., Tseng, Y. W., Taylor, M. & Stoeckenius, W. (1979). Effect of acid pH on the absorption spectra and photoreactions of bacteriorhodopsin. Biochemistry 18, 41004107.CrossRefGoogle ScholarPubMed
Mukaihata, T. (1986). Cationic dye-modified halobacterium purple membrane for biosensor (Suntory Ltd.). Jpn. Kokai Tokkyo Koho JP 63/28390, 5 pp.Google Scholar
Nakasako, M., Kataoka, M. & Tokunaga, F. (1989). Arginine remarkably prolongs the lifetime of the M-intermediate in the bacteriorhodopsin photocycle at room temperature. FEBS Lett. 254, 211214.CrossRefGoogle Scholar
Nassal, M., Mogi, T., Karnik, S. S. & Khorana, H. G. (1987). Structure-function studies on bacteriorhodopsin. III. Total synthesis of a gene for bacterio-opsin and its expression in Escherichia coli. J. biol. Chem. 262, 92649270.Google ScholarPubMed
Neugebauer, D. -C, Blaurock, A. E. & Worcester, D. L. (1977). Magnetic orientation of purple membranes demonstrated by optical measurements and neutron scattering. FEBS Lett. 78, 3135.CrossRefGoogle ScholarPubMed
Neumann, S. & Leigeber, H. (1989). Verfahren zur Herstellung von Purpurmembran enthaltend Bacteriorhodopsin. German Patent Application DE 3922133 A1, 3 pp.Google Scholar
Oagawa, K. (1985). Photoelectric device (Matsushita Electronic Industrial Co. Ltd). Jpn. Kokai Tokkyo Koho JP 62/09228, 3 pp.Google Scholar
Oesterhelt, D., Schuhmann, L. & Gruber, H. (1974). Light-dependent reaction of bacteriorhodopsin with hydroxylamine in cell suspensions of Halobacterium halobium: demonstration of an apo-membrane. FEBS Lett. 44, 257261.CrossRefGoogle ScholarPubMed
Oesterhelt, D., Hartmann, R., Fischer, U., Michel, H. & Schreckenbach, T. (1975). Biochemistry of a light-driven proton-pump: bacteriorhodopsin.Proc. 10th FEBS Meeting,Paris (ed. P. Desnuelle and A. M. Michelson) 40, 239251.Google Scholar
Oesterhelt, D. (1976). Bacteriorhodopsin as a light-driven ion exchanger. FEBS Lett. 64, 2022.CrossRefGoogle ScholarPubMed
Oesterhelt, D. & Krippahl, G. (1983). Phototrophic growth of halobacteria and its use for isolation of photosynthetically deficient mutants. Ann. Microbiol. (Inst. Pasteur) I34B, 137150.CrossRefGoogle Scholar
Oesterhelt, D., Hegemann, P., Tavan, P. & Schulten, K. (1986). Trans-cis isomerization of retinal and a mechanism for ion translocation in halorhodopsin. Eur. Biophys. J. 14, 123129.CrossRefGoogle Scholar
Oesterhelt, D. (1989). Photosynthetic systems in procaryotes. The retinal proteins of halobacteria and the reaction centre of purple bacteria. Biochemistry Intern. 18, 673694.Google Scholar
Oesterhelt, D. & Tittor, J. (1989). Two pumps, one principle. TIBS 14, 5761.Google ScholarPubMed
Ormos, P., Dancsházy, Z. & Keszthelyi, L. (1980). Electric response of a back photoreaction in the bacteriorhodopsin photocycle. The quenching effect of blue light. Biophys. J. 31, 207213.CrossRefGoogle ScholarPubMed
Ostrovsky, Y. I., Butusov, M. M. & Ostrovskaya, G. V. (1980). Interferometry by Holography. In Springer Series in Optical Sciences (ed. MacAdam, D. L.), vol. 20, Berlin: Springer.CrossRefGoogle Scholar
Papadopoulos, G., Dencher, N. A., Zaccai, G. & Büldt, G. (1990). Water molecules and exchangeable hydrogen ions at the active centre of bacteriorhodopsin localized by neutron diffraction. J. molec. Biol. 214, 1519.CrossRefGoogle ScholarPubMed
Peak, E. G. & Psaltis, D. (1987). Optical associative memory using Fourier transform holograms. Optical Engineering 26, 428433.Google Scholar
Petrov, M. P. & Popdimitrova, N. G. (1982). Electrooptical behaviour of purple membrane fragments in a thin oriented film. Acad. Bulg. Sci. 35, 14751478.Google Scholar
Pleskov, Y. V. (1990). Solar Energy Conversion: A Photoelectrochemical Approach. Berlin: Springer.CrossRefGoogle Scholar
Polland, H. -J., Franz, M. A., Zinth, W., Kaiser, W., Rölling, E. & Oesterhelt, D. (1984). Optical picosecond studies of bacteriorhodopsin containing a sterically fixed retinal. Biochim. biophys. Acta 767, 635639.CrossRefGoogle Scholar
Powel, R. J. & Stetson, K. A. (1965). Interferometric vibration analysis of threedimensional objects by wavefront reconstruction. J. opt. Soc. Amer. 55, 15931598.CrossRefGoogle Scholar
Ravich, L. E. (1989). Optical storage becomes multifaceted. Laser Focus World 8, 115122.Google Scholar
Rayfield, G. W. (1989). Bacteriorhodopsin as an ultrafast electrooptic material. Bull. Am. Phys. Soc. 34, 483.Google Scholar
Razumov, A. A., Poltoratsky, V. A. & Vsevolodov, N. N. (1989). ‘Biochrom’ film in holographic interferometer. Zhurnal Technicheaskoy Fiziki 59 (4), 176177.Google Scholar
Renner, T. & Hampp, N. (1991). Bacteriorhodopsin films in real-time interferometry. Opt. Comm. (in preparation).Google Scholar
Rottenkolber, H. (1989). Die neunziger Jahre im Visier: Durchbruch der holographischen Prüftechnik. Laser u. Optoelektr. 21, 3942.Google Scholar
Savransky, V. V., Tkachenko, N. V. & Chikharev, V. I. (1987). Refraction index changes in bacteriorhodopsin photocycle. Biol. Mem. 4, 479485.Google Scholar
Schulten, K., Dinur, U. & Honig, B. (1980). The spectra of carbonium ions, cyanine dyes, and protonated Schiff base polyenes. J. chem. Phys. 73, 39273935.CrossRefGoogle Scholar
Seta, P., Ormos, P., D'Epenoux, B. & Gavach, C. (1980). Photocurrent response of bacteriorhodopsin adsorbed on bimolecular lipid membranes. Biochim. biophys. Acta 591, 3752.CrossRefGoogle ScholarPubMed
Siebert, F. (1990). Retinal proteins. In Photochromism – Molecules and Systems; Studies in Organic Chemistry vol. 40 (ed. Dürr, H. and Bouas-Laurent, H.), pp. 756792. Amsterdam: Elsevier.Google Scholar
Singh, K., Lebedev, H. & Caplan, S. R. (1980 a). Purple membrane for conversion of light into electric current. Faraday Discuss. Chem. Soc. 375382.CrossRefGoogle Scholar
Singh, K., Korenstein, R., Lebedeva, H. & Caplan, S. R. (1980 b). Photoelectric conversion by bacteriorhodopsin in charged synthetic membranes. Biophys. J. 31, 393402.CrossRefGoogle ScholarPubMed
Singh, K. & Caplan, S. R. (1980 c). The purple membrane and solar energy conversion. TIBS 5, 6264.Google Scholar
Smith, H. M. (ed.) (1977). Holographic recording materials. In Topics in Applied Physics, vol. 20, Berlin: Springer.Google Scholar
Smith, S. O., Myers, A. B., Pardoen, J. A., Winkel, C., Mulder, P. P. J., Lugtenburg, J. & Mathies, R. (1984). Determination of retinal Schiff base configuration in bacteriorhodopsin. Proc. natn. Acad Sci. USA 81, 20552059.CrossRefGoogle ScholarPubMed
Soppa, J. & Oesterhelt, D. (1989). Bacteriorhodopsin mutants of halobacterium spec. grb; 1. The 5-bromo-2'-desoxyuridine-selection as a method to isolate point mutants in halobacteria. J. biol. Chem. 264, 1304313048.CrossRefGoogle Scholar
Soppa, J., Otomo, J., Straub, J., Tittor, J., Meeßen, S. & Oesterhelt, D. (1989). Bacteriorhodopsin mutants of Halobacterium spec, grb; 2. Characterization of mutants. J. biol. Chem. 264, 1304913056.CrossRefGoogle Scholar
Spudich, J. L. & Bogomolni, R. A. (1988). Sensory rhodopsins of halobacteria. A. Rev. Biophys. Chem. 17, 193215.CrossRefGoogle ScholarPubMed
Stoylov, S. P., Todorov, G. & Zhivkov, A. (1984). Effects of external electric fields on membrane proteins: the bacteriorhodopsin. Bioelectrochem. Bioenergetics 12, 4955.CrossRefGoogle Scholar
Subranamiam, S., Marti, T. & Khorana, H. G. (1990). Protonation state of Asp (Glu)-85 regulates the purple-to-blue transition in bacteriorhodopsin mutants Arg-82 → Ala and Asp-85 → Glu: The blue form is inactive in proton translocation. Proc. natn. Acad. Sci. USA 87, 10131017.CrossRefGoogle Scholar
Takei, H., Lewis, A., Chen, Z. & Nebenzahl, I. (1991). Implementing receptive fields with excitatory and inhibitory optoelectrical responses of bacteriorhodopsin films. Appl. Opt. 30, 500509.CrossRefGoogle ScholarPubMed
Tavan, P., Schulten, K. & Oesterhelt, D. (1985). The effect of protonation and electrical interactions on the stereochemistry of retinal Schiff bases. Biophys. J. 47, 415430.CrossRefGoogle ScholarPubMed
Thoma, R., Hampp, N., Bräuchle, C. & Oesterhelt, D. (1991). Bacteriorhodopsin films as spatial light modulators for nonlinear optical filtering. Opt. Lett. 16, 651653.CrossRefGoogle ScholarPubMed
Tittor, J., Söll, C., Oesterhelt, D., Butt, H.-J. & Bamberg, E. (1989). A defective proton pump, point-mutated bacteriorhodopsin Asp96 → Asn is fully reactivated by azide. EMBO J. 8, 34773482.CrossRefGoogle ScholarPubMed
Tittor, J. & Oesterhelt, D. (1990). The quantum yield of bacteriorhodopsin. FEBS Lett. 263, 269273.CrossRefGoogle Scholar
Tittor, J. (1991). Bacteriorhodopsin. Current opinion in structural biology. 1, 534538.CrossRefGoogle Scholar
Tkachenko, N. V., Savransky, V. V. & Sharonov, A. Y. (1989). Time resolved refractive index change during the bacteriorhodopsin photocycle. Eur. Biophys. J. 17, 131136.CrossRefGoogle Scholar
Trissl, H.-W. (1987). Eine biologische Photodiode mit höchster Zeitauflösung. Optoelektronik Magazin 3, 105107.Google Scholar
Trissl, H. -W., Gärtner, W. & Leible, W. (1989). Reversed picosecond charge displacement from the photoproduct K of bacteriorhodopsin demonstrated photoelectrically. Chem. Phys. Lett. 158, 515518.CrossRefGoogle Scholar
Trissl, H.-W. (1990). Photoelectric measurements of purple membranes. Photochem. Photobiol. 51, 793818.CrossRefGoogle ScholarPubMed
Tsuji, K. & Hess, B. (1987). Electrooptical analysis of blue and cation-regenerated BR. Eur. Biophys. J. 15, 231236.CrossRefGoogle Scholar
Uehara, K., Kawai, K. & Kouyama, T. (1990). Oriented purple membrane as an ether sensor. Denki Kagaku 58, 11321135.CrossRefGoogle Scholar
Uegaki, K., Sugiyama, Y. & Mukohata, Y. (1991). Archaerhodopsin-2, from Halobacterium sp. aus-2. Further reveals essential amino acid residues for light-driven proton pumps. Archives of Biochem. and Biophys. 286, 107110.CrossRefGoogle ScholarPubMed
Van Brunt, J. (1985). Biochips: the ultimate computer. Bio/Technol. 3, 209215.Google Scholar
Vander Lugt, A. (1964). Signal detection by complex spatial filtering. IEEE Trans. IT 10, 139145.Google Scholar
Varner, J. R. (1974). Holographic Nondestructive Testing (ed. Erf, R.). New York: Academic Press.Google Scholar
Váró, G. (1981). Dried oriented purple membrane samples. Acta biol. Acad. Sci. Hung. 32, 301310.Google Scholar
Váró, G. & Keszthelyi, L. (1983). Photoelectric signals from dried oriented purple membranes of Halobacterium halobium. Biophys. J. 43, 4751.CrossRefGoogle ScholarPubMed
Váró, G. & Eisenstein, L. (1987). Infrared studies of water induced conformational changes in bacteriorhodopsin. Eur. Biophys. J. 14, 163168.CrossRefGoogle ScholarPubMed
Váró, G. & Lanyi, J. K. (1990). Pathways of the rise and decay of the M photointermediate of bacteriorhodopsin. Biochemistry 29, 22412250.CrossRefGoogle Scholar
Váró, G. & Lanyi, J. K. (1991). Distortions in the photocycle of bacteriorhodopsin at moderate dehydration. Biophys. J. 59, 313322.CrossRefGoogle ScholarPubMed
Váró, G., Duschl, A. & Lanyi, J. K. (1990). Interconversions of the M, N, and O intermediates in the bacteriorhodopsin photocycle. Biochemistry 29, 37983804.CrossRefGoogle Scholar
Vsevolodov, N. N., Djukova, T. V., Korchemskaya, E. Y. & Taranenko, V. B. (1981). Nonlinear Veigert-effect in ‘biochrom’ films based on bacteriorhodopsin. Ukrainsky Fizichesky Zhurnal 29 (7), 11071109.Google Scholar
Vsevolodov, N. N. & Ivanitskii, G. R. (1985 a). Biological light-sensitive complexes as technical information photocarriers. Biophysics 30, 962967.Google Scholar
Vsevolodov, N. N. & Poltoratsky, V. A. (1985 b). Holograms on ‘Biochrom’ a biological photochromic material. Zhurnal Technicheskoy Fiziki 55, 20932094.Google Scholar
Vsevolodov, N. N., Ivanitskii, G. R., Soskin, M. S. & Taranenko, V. B. (1986). Biochrome films: reversible media for optical recording. Avtometrya 2, 4148.Google Scholar
Vsevolodov, N. N., Druzhko, A. B. & Djukova, T. V. (1989). Actual possibilities of bacteriorhodopsin application in optoelectronics. In Molecular Electronics : Biosensors and Biocomputers (ed. Hong, F. T.), pp. 381384. New York: Plenum Press.CrossRefGoogle Scholar
Weaver, C. S. & Goodman, J. W. (1966). A technique for optically convolving two functions. Appl. Opt. 5, 12481249.CrossRefGoogle ScholarPubMed
Werner, O., Fischer, B., Lewis, A. & Nebenzahl, I. (1990). Saturable absorption, wave mixing, and phase conjugation with bacteriorhodopsin. Opt. Lett. 15, 11171119.CrossRefGoogle ScholarPubMed
Wild, U. P., Renn, A., De Caro, C. & Bernet, S. (1990). Spectral holeburning and molecular computing. Appl. Opt. 29, 43294331.CrossRefGoogle Scholar
Worcester, D. L. (1977). Magnetic orientation of purple membranes demonstrated by optical measurements and neutron scattering. FEBS Lett. 78, 3135.Google Scholar
Xie, A. (1990). The quantum efficiency of bacteriorhodopsin photochemical reactions. Biophys. J. 58, 11271132.CrossRefGoogle ScholarPubMed
Yoshida, M., Ohno, K., Takeuchi, Y. & Kagawa, Y. (1977). Prolonged lifetime of the 410-nm intermediate of bacteriorhodopsin in the presence of guanidine hydrochloride. Biochem. biophys. Res. Commun. 75, 11111116.CrossRefGoogle ScholarPubMed
Zeisel, D. & Hampp, N. (1991). Spectral relation of the light-induced changes of the refractive index and the absorption coefficient in bacteriorhodopsin films. Applied Physics B (in preparation).Google Scholar
Zeldovich, B. Ya. & Shkunov, V. V. (1979). Space-polarizational wavefront reversal during four-photon interaction. Sov. J. Quant. Electr. 6, 629632.Google Scholar
Zimanyi, L. & Lanyi, J. K. (1987). Iso-halorhodopsin: a stable 9-cis retinal-containing photoproduct of halorhodopsin. Biophys. J. 52, 10071013.CrossRefGoogle ScholarPubMed