Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T12:26:45.426Z Has data issue: false hasContentIssue false

The transfer function of the cochlea*

Published online by Cambridge University Press:  17 March 2009

T. W. Barrett
Affiliation:
Department of Physiology and Biophysics, University of Tennessee Center for the Health Sciences, 894 Union Avenue, Memphis, Tennessee 38163

Extract

A sinusoidal signal is generally considered the simplest auditory signal. It is, indeed, a simple signal. However, it does not follow that a complex analysing device, like the cochlea, should treat a simple signal in a simple way. Indeed, a simple signal may appear to be complex when viewed from the standpoint of the device considered. Such an observation becomes cogent when one is attempting to discover the analysing capabilities of a device such as the cochlea, which appears designed to handle signals more complex than a sinusoid or multiple sinusoids.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrett, T. W. (1971 a). The information content of an electromagnetic field with relevance to the sensory processing of information. T.-I.-T.J. Life Sciences 1, 129–35.Google Scholar
Barrett, T. W. (1971 b). The response of auditory cortex neurons in cat to various parameters of auditory stimulation. Brain Res., Osaka 28, 579–81.CrossRefGoogle Scholar
Barrett, T. W. (1972 a). On vibrating strings and information theory. J. Sound & Vib. 20, 407–12.CrossRefGoogle Scholar
Barrett, T. W. (1972 b). The conceptual basis of two information theories: a reply to some criticisms. J. Sound & Vib. 25, 638–42.Google Scholar
Barrett, T. W. (1972 c). Conservation of information. Acustica 27, 44–7.Google Scholar
Barrett, T. W. (1972 d). Definition precedence of signal parameters: sequential versus simultaneous information. Acustica 27, 90–3.Google Scholar
Barrett, T. W. (1972 e). The octave ratio as the absolute measurement unit of sensory communication in the cerebral cortext. J. theor. Biol. 34, 8797.Google Scholar
Barrett, T. W. (1972 f). The multiple use of the auditory cortex: interaction at a single point. Expl Neurol. 34, 115.Google Scholar
Barrett, T. W. (1972 g). Interaural stimulation: effects on the Q value of tuning curves and post-stimulus time histograms of cat auditory cortex neurons. Expl Neurol. 34, 484–96.Google Scholar
Barrett, T. W. (1973 a). Analytical information theory. Acustica 29, 65–7.Google Scholar
Barrett, T. W. (1973 b). Uncertainty relations in interaural parameters of acoustical stimulation: an evoked potential study of the auditory cortex in the anesthetized cat. Behav. Biol. 8, 299323.Google Scholar
Barrett, T. W. (1973 c). Information processing in the inferior colliculus of cat using high frequency acoustical stimulation and direct electrical stimulation of the osseous spiral laminae. Behav. Biol. 9, 189219.CrossRefGoogle ScholarPubMed
Barrett, T. W. (1973 d). Structural information theory. J. acoust. Soc. Am. 54, 1092–8.CrossRefGoogle Scholar
Barrett, T. W. (1973 e). A tensor representation of the information available in a lateral sound source. T.-I.-T. J. Life Sciences 3, 1924.Google Scholar
Barrett, T. W. (1973 f). Neural information processing in the medial superior olive. Acoustical Soc. Am. Abstr., 86th Meeting.Google Scholar
Barrett, T. W. (1974 a). Information processing in the cochlea. Biophys. Soc. Abstr., 18th Annual Meeting.Google Scholar
Barrett, T. W. (1974 b). Four parameters of information processing in the cochlea. Experientia 30, 1287–8.Google Scholar
Barrett, T. W. (1975 a). Information processing in the cochlea. Acustica 33, 102–15.Google Scholar
Barrett, T. W. (1975 b). Nonlinear analysis and structural information theory: a comparison of mathematical and physical derivations. Acustica 33, 149–65.Google Scholar
Barrett, T. W. (1975 c). On linearizing non-linear systems. J. Sound & Vib. 39, 265–8.Google Scholar
Barrett, T. W. (1975 d). Linearity in secular systems: four parameter superposition. J. Sound & Vib. 41, 259–61.CrossRefGoogle Scholar
Barrett, T. W. (1975 e). The basic nature of information and its relevance to neural systems. Acta Symbolica 6, 133Google Scholar
Barrett, T. W. (1976 a). Structural information theory of sound. Acustica 36, 272–81.Google Scholar
Barrett, T. W. (1976 b). Information measurement. I. On maximum entropy conditions applied to elementary signals. Acustica 35, 80–5.Google Scholar
Barrett, T. W. (1976 c). Information measurement. II. On minimum conditions of energy order applied to elementary signals. Acustica 36, 282–6.Google Scholar
Barrett, T. W. (1976 d). Superposition of binaural influences on single neuron activity in the medial superior olive elicited by electrical stimulation of the osseous spiral laminae. Brain Res. Bull. 1, 209–28.Google Scholar
Barrett, T. W. (1976 e). The processing of informationally relevant signals in the cochlea. Math. Biosci. 29, 203217.CrossRefGoogle Scholar
Barrett, T. W. (1977 a). A causal explanation for quantum phenomena in macroscopic physics. Nuovo Cim. B 39, 116–22.CrossRefGoogle Scholar
Barrett, T. W. (1977 b). Cochlear fluid mechanics considered as flows on a cusp catastrophe. Acustica 38, 118–23.Google Scholar
Barrett, T. W. (1977 c). Quantum statistical foundations for structural information theory and communication theory. In Nonlinear Systems and Applications (ed. Lakshmikantham, V.), pp. 391409. New York: Acadamic Press.CrossRefGoogle Scholar
Barrett, T. W. (1977 d). A mathematical theory of cochlear fluid mechanics: a kinetic theory of nonequilibrium flows and of energy absorption and dispersion in the cochlear fluid-partition system. In Simulation and Identification in Biological Science (ed. Gruver, W. A.), pp. 3984. Claremont, California: Khalsa.Google Scholar
Békésy, G. von (1953). Description of some mechanical properties of the organ of Corti. J. acoust. Soc. Am. 25, 770–85.Google Scholar
Békésy, G. von (1960). Experiments in Hearing. New York: McGraw-Hill.Google Scholar
Biesel, F. (1952). Study of wave propagation in water of gradually varying depth. In Gravity Waves. Proc. National Bureau of Standards Circular 521, 28 11 1952, pp. 243–53.Google Scholar
Billone, M. & Raynor, S. (1973). Transmission of radial shear forces to cochlear hair cells. J. acoust. Soc. Am. 54, 1143–56.CrossRefGoogle ScholarPubMed
Born, M. & Wolf, E. (1970). Principles of Optics, 4th ed.New York: Pergamon.Google Scholar
Bredberg, G., Ades, H. & Engström, H. (1972). Scanning electron microscopy of the normal and pathologically altered organ of Corti. Acta Otolar. Suppl. 301, 348.CrossRefGoogle Scholar
Brillouin, L. (1962). Science and Information Theory, 2nd ed.New York. Academic Press.Google Scholar
Cornu, A. (1874). Méthode nouvelle pour la discussion des problèmes de diffraction dans le cas d'une onde cylindrique. J. Physique 3, 515.Google Scholar
Dallos, P. (1973 a). The Auditory Periphery: Biophysics and Physiology. New York: Academic Press.Google Scholar
Dallos, P. (1973 b). Cochlear potentials and cochlear mechanics. In Basic Mechanisms in Hearing (ed. Møller, A. R.), pp. 335–72. New York: Academic Press.CrossRefGoogle Scholar
Dallos, P. J., Billone, M. C., Durant, J. D., Wang, C. Y. & Raynor, S. (1972). Cochlear inner and outer hair cells: functional differences. Science, N.Y. 177, 356–8.Google Scholar
Dallos, P., Schoeny, Z. G. & Cheatham, M. A. (1972). Cochlear summating potentials: descriptive aspects. Acta Otolar. Suppl. 302, 146.Google Scholar
Dallos, P. & Sweetman, R. (1969). Distribution pattern of cochlear harmonics. J. acoust. Soc. Am. 45, 3746.CrossRefGoogle ScholarPubMed
Davis, H., Deatherage, B. H., Eldredge, D. H. & Smith, C. A. (1958). Summating potentials of the cochlea. Am. J. Physiol. 195, 251–61.Google Scholar
Davis, H., Fernández, C. & McAuliffe, D. R. (1950). The excitatory process in the cochlea. Proc. natn. Acad. Sci. U.S.A. 36, 580–7.Google Scholar
Dean, W. R. (1927). Note on the motion of fluid in a curved pipe. Phil. Mag. 4, 208–23.Google Scholar
Dean, W. R. (1928). The stream-line motion of fluid in a curved pipe. Phil. Mag. 5, 673–95.Google Scholar
Engebretson, A. M. & Eldredge, D. H. (1968). Model of the nonlinear characteristics of cochlear potentials. J. acoust. Soc. Am. 44, 548–54.Google Scholar
Evans, E. F. & Wilson, J. P. (1975). Cochlear tuning properties: concurrent basilar membrane and single nerve fiber measurements. Science, N. Y. 190, 1218.CrossRefGoogle ScholarPubMed
Flanagan, J. L. (1960). Models for approximating basilar membrane displacement. Bell System tech. J. 39, 1163–92.Google Scholar
Flanagan, J. L. (1962 a). Models for approximating basilar membrane displacement. Part II. Bell System tech. J. 41, 9591009.Google Scholar
Flanagan, J. L. (1962 b). Computational model for basilar membrane displacement. J. acoust. Soc. Am. 34, 1370–6.Google Scholar
Gabor, D. (1946). Theory of communication. J.I.E.E. 93, 429–57.Google Scholar
Gabor, D. (1947 a). Acoustical quanta and the theory of hearing. Nature, Lond. 159, 591–4.CrossRefGoogle ScholarPubMed
Gabor, D. (1947 b). New possibilities in speech transmission. J.I.E.E. 94, 369–90.Google Scholar
Harmuth, H. F. (1972). Transmission of Information by Orthogonal Functions, 2nd ed.New York: Springer-Verlag.CrossRefGoogle Scholar
Helmholtz, H. L. (1877). On the Sensations of Tone (1954). Translation of the fourth and last German edition. New York: Dover Publications.Google Scholar
Honrubia, V. (1970). Temporal and spatial distribution of the CM and SP of the cochlea. In Frequency Analysis and Periodicity Detection in Hearing (ed. Plomp, R. and Smoorenburg, G. F.), pp. 94105. Leiden, The Netherlands: A. W. Sijthoff.Google Scholar
Honrubia, V. & Ward, P. (1969). Properties of the summating potential of the guinea pig's cochlea. J. acoust. Soc. Am. 45, 1443–50.Google Scholar
Jaeger, J. C. & Newstead, C. T. (1949). An Introduction to the Laplace Transformation, with Engineering Application. London: Methuen.Google Scholar
Johnstone, J. R., Johnstone, B. M. & Yates, G. K. (1975). Cochlear neurons: frequency selectivity altered by conductance change in scala tympani. J. acoust. Soc. Am. 57, 1210–11.Google Scholar
Kharkevich, A. A. (1960). Spectra and Analysis. New York: Consultants Bureau.CrossRefGoogle Scholar
Kluvanec, I. (1965). Sampling theorem in abstract harmonic analysis. Mathematicko-fyzikálny Casopis Sloven. Akad. Vied 15, 43–8.Google Scholar
Kock, W. E. (1935). On the principle of uncertainty in sound. J. acoust. Soc. Am. 7, 56–8.Google Scholar
McConalogue, D. J. & Srivastava, R. S. (1968). Motion of a fluid in a curved tube. Proc. R. Soc. A 307, 3753.Google Scholar
Naftalin, L. (1967). The cochlear geometry as a frequency analyser. J. Lar. Otol. 81, 619–31.Google Scholar
Ohm, G. S. (1843). Über die Definition des Tones, nebst daran geknüpfter Theorie der Sirene und ahnlichte tonbildender Vorrichtungen. Poggendorf's Annln Phys. Chem. 59, ser. 2, 497565.Google Scholar
Papoulis, A. (1962). The Fourier Integral and its Applications. New York: McGraw-Hill.Google Scholar
Pimonow, L. (1962). Vibrations en régime transitoire. Paris: Dunod.Google Scholar
Robertson, D. (1974). Cochlear neurons: frequency selectivity altered by perilymph removal. Science, N.Y. 186, 153–5.Google Scholar
Robertson, D. & Manley, G. A. (1974). Manipulation of frequency analysis in the cochlear ganglion of the guinea pig. J. Comp. Physiol. 91, 363–75.Google Scholar
Schroeder, M. R. (1973). An integrable model for the basilar membrane. J. acoust. Soc. Am. 53, 429–34.Google Scholar
Schwartzkopff, J. (1968). Structure and function of the ear and adjacent brain area in birds. Hearing Mechanisms in Vertebrates (ed. Reuck, A. V. S. De and Knight, J.), pp. 4159. London: Churchill.Google Scholar
Seebeck, A. (1843). Beobachtungen über einige Bedingungen der Entstehung von Tönen. Annln Phys. 53, ser. 2, 417–36.Google Scholar
Shannon, C. E. (1958). A mathematical theory of communication. Bell System tech. J. 27, 379423.Google Scholar
Spoendlin, H. (1970). Structural basis of peripheral frequency analysis. In Frequency Analysis and Periodicity Detection in Hearing (ed. Plomp, R. and Smoorenburg, G. F.), pp. 235. Leiden, The Netherlands: Sijthoff.Google Scholar
Stewart, G. W. (1931). Problems suggested by an uncertainty principle in acoustics. J. acoust. Soc. Am. 2, 325–39.Google Scholar
Stoker, J. J. (1957). Water Waves. New York: Interscience.Google Scholar
Tereshchenko, V. M. (1974). Determination of the parameters of the helix of the cochlea. Biofizika 19, 364–5.Google Scholar
Tonndorf, J. (1958). Localization of aural harmonics along the basilar membrane of guinea pigs. J. acoust. Soc. Am. 30, 938–43.Google Scholar
Tonndorf, J. (1960). Shearing motion in scala medial of cochlear models. J. acoust. Soc. Am. 32, 238–44.Google Scholar
Tonndorf, J. (1962). Time/frequency analysis along the partition of cochlear models: a modified phase concept. J. acoust. Soc. Am. 34, 1337–50.Google Scholar
Tonndorf, J. (1970). Cochlear mechanics and hydrodynamics. Foundations of Modern Auditory Theory, vol. 1 (ed. Tobias, J. V.), pp. 205–54. New York: Academic Press.Google Scholar
Tunturi, A. R. (1955). Analysis of cortical auditory responses with the probability pulse. Am. J. Physiol. 181, 630–8.Google Scholar
Tunturi, A. R. (1960). Anatomy and physiology of the auditory cortex. In Neural Mechanisms of the Auditory and Vestibular Systems (ed. Rasmussen, G. L. and Windle, W. F.), pp. 181200. Springfield, Ill.: Thomas.Google Scholar
Whittaker, E. T. & Watson, G. N. (1927). A Course in Modern Analysis. Cambridge University Press.Google Scholar
Worthington, D. (1970). Spatial patterns of cochlear difference tones. Unpublished Ph.D. thesis, Northwestern University.Google Scholar
Yates, G. K. & Johnstone, B. M. (1976). Localized cochlear microphonics recorded from the spiral laminae. J. acoust. Soc. Am. 59, 476–9.Google Scholar
Zalosh, R. G. & Nelson, W. G. (1973). Pulsating flow in a curved tube. J. Fluid Mech. 59, 693705.Google Scholar
Zwislocki, J. J. & Sokolich, W. G. (1974). Neuro-mechanical frequency analysis in the cochlea. In Facts and Models in Hearing (ed. Zwicker, E. and Terhardt, E.), pp. 107–17. New York: Academic Press.Google Scholar