Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T18:42:59.950Z Has data issue: false hasContentIssue false

Structure and function of tetanus and botulinum neurotoxins

Published online by Cambridge University Press:  17 March 2009

Cesare Montecucco
Affiliation:
Centro CNR Biomembrane and Dipartimento di Scienze Biomediche, Università di Padova, Via Trieste 75, 35121 Padova, Italy
Giampietro Schiavo
Affiliation:
Centro CNR Biomembrane and Dipartimento di Scienze Biomediche, Università di Padova, Via Trieste 75, 35121 Padova, Italy

Extract

Tetanus and botulinum neurotoxins are produced by Clostridia and cause the neuroparalytic syndromes of tetanus and botulism. Tetanus neurotoxin acts mainly at the CNS synapse, while the seven botulinum neurotoxins act peripherally. Clostridial neurotoxins share a similar mechanism of cell intoxication: they block the release of neurotransmitters. They are composed of two disulfide-linked polypeptide chains. The larger subunit is responsible for neurospecific binding and cell penetration. Reduction releases the smaller chain in the neuronal cytosol, where it displays its zinc-endopeptidase activity specific for protein components of the neuroexocytosis apparatus. Tetanus neurotoxin and botulinum neurotoxins B, D, F and G recognize specifically VAMP/synaptobrevin. This integral protein of the synaptic vesicle membrane is cleaved at single peptide bonds, which differ for each neurotoxin. Botulinum A, and E neurotoxins recognize and cleave specifically SNAP-25, a protein of the presynaptic membrane, at two different sites within the carboxyl-terminus. Botulinum neurotoxin type C cleaves syntaxin, another protein of the nerve plasmalemma. These results indicate that VAMP, SNAP-25 a n d syntaxin play a central role in neuroexocytosis. These three proteins are conserved from yeast to humans and are essential in a variety of docking and fusion events in every cell. Tetanus and botulinum neurotoxins form a new group of zinc-endopeptidases with characteristic sequence, mode of zinc coordination, mechanism of activation and target recognition. They will be of great value in the unravelling of the mechanisms of exocytosis and endocytosis, as they are in the clinical treatment of dystonias.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, M., Deshpande, S. S., Sheridan, R. E. & Lebeda, F. J. (1994). Evaluation of captopril and other potential therapeutic compounds in antagonizing botulinum toxin-induced muscle paralysis. In Therapy with botulinum toxin, (eds. Jankovic, J. & Hallett, M.), pp. 6370. New York: Marcel Dekker.Google Scholar
Alder, G. M., Bashford, C. L. & Pasternak, C. A. (1990). Action of diphtheria toxin does not depend on the induction of large, stable pores across biological membranes. J. Membr. Biol. 113, 6774.CrossRefGoogle Scholar
Almers, W. (1994). How fast can you get? Nature 367, 682683.CrossRefGoogle Scholar
Anderson, M. D., Fairweather, N., Charles, I. G., Emsley, P., Isaacs, N. W. & Macdermott, G. (1993). Crystallographic characterization of tetanus toxin fragment C. J Mol Biol 230, 673674.CrossRefGoogle ScholarPubMed
Anhert-Hilger, G., Bader, M. F., Bhakdi, S. & Gratzl, M. (1989 a). Introduction of macromolecules into bovine adrenal medullary chromaffin cells and rat pheochromocytoma cells (PC 12) by permeabilization with streptolysin O – inhibitory effect of tetanus toxin on catecholamine secretion. J. Neurochem. 52, 17511758.CrossRefGoogle Scholar
Anhert-Hilger, G., Weller, U., Dauzenroth, M. E., Habermann, E. & Gratzl, M. (1989 b). The tetanus toxin light chain inhibits exocytosis. FEBS Lett. 242, 245248.CrossRefGoogle Scholar
Archer, B. T., Ozcelik, T., Jahn, R., Francke, U. & Südhof, T. C. (1990). Structures and chromosomal localizations of two human genes encoding synaptobrevins 1 and 2. J. Biol. Chem. 265, 1726717273.CrossRefGoogle Scholar
Arnon, S. S. (1980). Infant Botulism. Annu. Rev. Med. 31, 541560.CrossRefGoogle ScholarPubMed
Ashton, A. C., De Paiva, A. M., Poulain, B., Tauc, L. & Dolly, J. O. (1993). Factors underlying the characteristic inhibition of the neuronal release of transmitters by tetanus and various botulinum toxin. In: DasGupta, B. R. (ed). Botulinum and tetanus neurotoxins. Neurotransmission and biomedical aspects. Plenum press, New York, pp. 191213.CrossRefGoogle Scholar
Aureli, P., Fenicia, L., Pasolini, B., Gianfranceschi, M., McCroskey, L. M. & Hatheway, C. O. (1986). Two cases of type E infant botulism in Italy caused by neurotoxigenic Clostridium butyricum. J. Infect. Dis. 154, 207211.CrossRefGoogle ScholarPubMed
Bagetta, G., Nisticò, G. & Bowery, N. G. (1991). Characteristic of tetanus toxin and its exploitation in neurodegenerative studies. Trends Pharmacol. Set. 12, 285289.CrossRefGoogle ScholarPubMed
Bark, C. (1993). Structure of the chicken gene for SNAP-25 reveals duplicated exons encoding distinct isoforms of the protei. J. Mol. Biol. 233, 6776.CrossRefGoogle Scholar
Bark, C. & Wilson, M. C. (1994). Human cDNA clones encoding two different isoforms of the nerve terminal protein SNAP-25. Gene 139, 291292.CrossRefGoogle ScholarPubMed
Barrett, A. Editor (1995). Metallo-proteinases and aspartic proteases. Methods Enzymol. 248, Academic Press.Google Scholar
Bartels, F., Bergel, H., Bigalke, H., Frevert, J., Halpern, J. & Middlebrook, J. (1994). Specific antibodies against the Zn-binding domain of clostridial neurotoxins restore exocytosis in chromaffin cells treated with tetanus or botulinum A neurotoxin. J. Biol. Chem. 269, 81228127.CrossRefGoogle ScholarPubMed
Bauerfeind, R., Huttner, W. B., Almers, W. & Augustine, G. J. (1994). Quantal neurotransmitter release from early endosomes. Trends Cell Biol. 4, 155156.CrossRefGoogle ScholarPubMed
Baumann, U., Wu, S., Flaherty, K. M. & McKay, D. B. (1993). Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two domain protein with a calcium binding parallel beta roll motif. EMBO J. 12, 33573364.CrossRefGoogle ScholarPubMed
Baumert, M., Maycox, P. R., Navone, F., De Camilli, P. & Jahn, R. (1989). Synaptobrevin: an integral membrane protein of 18,000 daltons present in small synaptic vesicles of rat brain. EMBO J. 8, 379384.CrossRefGoogle Scholar
Beise, J., Hahnen, J., Andersen-Beckh, B. & Dreyer, F. (1994). Pore formation by tetanus toxin, its chain and fragments in neuronal membranes and evaluation of the underlying motifs in the structure of the toxin molecule. Naunyn-Schmiedeberg's Arch. Pharmacol. 349, 6673.CrossRefGoogle ScholarPubMed
Benecke, R., Takano, K., Schmidt, J. & Henatsch, H. D. (1977). Tetanus toxin induced actions on spinal Renshaw cells and la-inhibitory interneurons during development of local tetanus in the cat. Exp. Brain Res. 27, 271286.Google ScholarPubMed
Bennett, M. K., Calakos, N. & Scheller, R. H. (1992). Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257, 255259.CrossRefGoogle ScholarPubMed
Bennett, M. K., Garcia-Arras, J. E., Elferink, L. A., Peterson, K., Fleming, A. M., Hazuka, C. D. & Scheller, R. H. (1993). The syntaxin family of vesicular transport receptors. Cell 74, 863873.CrossRefGoogle ScholarPubMed
Bennett, M. K. & Scheller, R. H. (1994). A molecular description of synaptic vesicle membrane trafficking. Annu. Rev. Biochem. 63, 63100.CrossRefGoogle ScholarPubMed
Bergey, G. K., McDonald, R. L., Habig, W. H., Hardegree, M. C. & Nelson, P. G. (1983). Tetanus toxin: convulsant action on mouse spinal cord neurons in culture. J. Neuroscience 3, 23102324.CrossRefGoogle ScholarPubMed
Bergey, G. K., Bigalke, H. & Nelson, P. G. (1987). Differential effects of tetanus toxin on inhibitory and excitatory synaptic transmission in mammalian spinal cord neurons in culture: a presynaptic locus of action for tetanus toxin. J. Neurophysiol. 57, 121131.CrossRefGoogle ScholarPubMed
Bevan, S. & Wendon, L. M. B. (1984). A study of the action of tetanus toxin at rat soleus neuromuscular junctions. J. Physiol. (London) 348, 117.CrossRefGoogle ScholarPubMed
Bigalke, H., Dreyer, F. & Bergey, G. (1985). Botulinum A neurotoxin inhibits non-cholinergic synaptic transmission in mouse spinal cord neurons in culture. Brain Res. 360, 318324.CrossRefGoogle ScholarPubMed
Bigalke, H., Muller, H. & Dreyer, F. (1986). Botulinum A neurotoxin unlike tetanus toxin acts via a neuraminidase sensitive structure. Toxicon 24, 10651074.CrossRefGoogle Scholar
Binz, T., Grebenstein, O., Kurazono, H., Eisel, U., Wernars, K., Popoff, M., Mochida, S., Poulain, B., Tauc, L., Kozaki, S. & Niemann, H. (1992). Molecular biology of the L chains of clostridial neurotoxins. In Bacterial Protein Toxins (ed. Witholt, B.), pp. 5665. Stuttgart: Gustav Fischer Verlag.Google Scholar
Binz, T., Blasi, J., Yamasaki, S., Baumeister, A., Link, E., Südhof, T. C., Jahn, R. & Niemann, H. (1994). Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J. Biol. Chem. 269, 16171620.CrossRefGoogle Scholar
Bisson, R. & Montecucco, C. (1987). Diphtheria toxin membrane translocation: an open question. Trends Biochem. Sci. 12, 181182.CrossRefGoogle Scholar
Bittner, M. A. & Holz, R. W. (1988). Effects of tetanus toxin on catecholamine release from intact and digitonin-permeabilized chromaffin cells. J. Neurochem. 51, 451456.CrossRefGoogle ScholarPubMed
Bittner, M. A., DasGupta, B. R. & Holz, R. W. (1989 a). Isolated light chains of botulinum neurotoxins inhibit exocytosis. Studies in digitonin-permeabilized chromaffin cells. J. Biol. Chem. 264, 1035410360.CrossRefGoogle ScholarPubMed
Bittner, M. A., Habig, W. H. & Holz, R. W. (1989 b). Isolated light chain of tetanus toxin inhibits exocytosis: studies in digitonin-permeabilized cells. J. Neurochem. 53, 966968.CrossRefGoogle ScholarPubMed
Black, J. D. & Dolly, J. O. (1986 a). Interaction of 1251-labeled neurotoxins with nerve terminals. I. Ultrastructure autoradiographic localization and quantitation of distinct membrane acceptors for types A and B on motor nerves. J. Cell Biol. 103, 521534.CrossRefGoogle Scholar
Black, J. D. & Dolly, J. O. (1986 b). Interaction of 1251-labeled neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis. J. Cell Biol. 103, 535544.CrossRefGoogle Scholar
Blasi, J., Chapman, E. R., Link, E., Binz, T., Yamasaki, S., DeCamilli, P., Südhof, T. C., Niemann, H. & Jahn, R. (1993 a). Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 365, 160163.CrossRefGoogle ScholarPubMed
Blasi, J., Chapman, E. R., Yamasaki, S., Binz, T., Niemann, H. & Jahn, R. (1993 b). Botulinum neurotoxin C blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. EMBO J. 12, 48214828.CrossRefGoogle Scholar
Blaustein, R. O., Germann, W. J., Finkelstein, A. & DasGupta, B. R. (1989). The N-terminal half of the heavy chain of botulinum type A neurotoxin forms channels in planar phospholipid bilayers. FEBS Lett., 226, 115120.CrossRefGoogle Scholar
Bleck, T. P. (1989). Clinical aspects of tetanus. In Botulinum neurotoxins and tetanus toxin, (ed. Simpson, L. L.), pp. 379398. San Diego: Academic Press.CrossRefGoogle Scholar
Blumenthal, R. & Habig, W. H. (1984). Mechanism of tetanolysin-induced membrane damage: studies with black lipid membranes. J. Bacteriol. 157, 321323.CrossRefGoogle ScholarPubMed
Bode, W., Gomis-Ruth, F. X., Huber, R., Zwilling, R. & Stocker, W. (1992). Structure of astacin and implication of astacins and zinc-ligation of collagenases. Nature 358, 164166.CrossRefGoogle ScholarPubMed
Bode, W., Gomis-Ruth, F. X. & Stocker, W. (1993). Astacins, serralysin, snake venoms and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’. FEBS Lett. 331, 134140.CrossRefGoogle ScholarPubMed
Bode, W., Reinemer, P., Huber, R., Kleine, T., Schnierer, S. & Tschesche, H. (1994). The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J. 13, 12631269.CrossRefGoogle ScholarPubMed
Bonventre, P. F. & Kempe, L. L. (1960). Physiology of toxin production by Clostridium botulinum type A and B. IV Activation of toxin. J. Bacteriol. 79, 2432.CrossRefGoogle Scholar
Boquet, P. & Duflot, E. (1983). Tetanus toxin fragment forms channels in lipid vesicles at low pH. Proc. Natl. Acad. Set. USA, 79, 76147618.CrossRefGoogle Scholar
Boquet, P., Duflot, E. & Hattecoeur, B. (1984). Low pH induces a hydrophobic domain in the tetanus toxin molecule. Eur. J. Biochem., 144, 339344.CrossRefGoogle Scholar
Boroff, D. A., DelCastillo, J., Evoy, W. H. & Steinhardt, R. A. (1974). Observations on the actions of type A botulinum toxin on frog neuromuscular junctions. J. Physiol. (London) 240, 227253.CrossRefGoogle ScholarPubMed
Brace, H. M., Jeffrerys, J. G. R. & Mellanby, J. (1985). Long-term changes in hyppocampal physiology and learning ability of rats after intrahyppocampal tetanus toxin. J. Physiol. (London) 368, 343357.CrossRefGoogle Scholar
Braun, J. E. A., Fritz, B. A., Wong, S. M. E. & Lowe, A. W. (1994). Identification of a vesicle-associated membrane protein (VAMP-like) membrane protein in zymogen granules of the rat exocryne pancreas. J. Biol. Chem. 269, 53285335.CrossRefGoogle ScholarPubMed
Brennwald, P., Kearns, B., Champion, K., Keranen, S., Bankaitis, V. & Novick, P. (1994). Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in excytosis. Cell 79, 245258.CrossRefGoogle Scholar
Brooks, V. B., Curtis, D. R. & Eccles, J. C. (1955). Mode of action of tetanus toxin. Nature 175, 120121.CrossRefGoogle ScholarPubMed
Brooks, V. B., Curtis, D. R. & Eccles, J. C. (1957). The action of tetanus toxin on the inhibition of motoneurons. J. Physiol. 135, 655672.CrossRefGoogle Scholar
Bruschettini, A. (1892). Sulla diffusione del veleno del tetano nell'organismo. Rif. Med. 8, 270273.Google Scholar
Burgen, A. S. V., Dickens, F. & Zatman, L. J. (1949). The action of botulinum toxin on the neuro-muscular junction. J. Physiol. (London) 109, 1024.CrossRefGoogle Scholar
Burgoyne, R. D. & Morgan, A. (1993). Regulated exocytosis. Biochem. J. 293, 305316.CrossRefGoogle ScholarPubMed
Bychkova, V. E., Pain, R. H. & Ptitsyn, O. B. (1988). The ‘molten globule’ state is involved in the translocation of proteins across membranes? FEBS Lett. 238, 231234.CrossRefGoogle ScholarPubMed
Cabiaux, V., Lorge, P., Vandenbranden, M., Falmagne, P. & Ruysschaert, J. M. (1985). Tetanus toxin induces fusion and aggregation of lipid vesicles containing phosphatidylinositol at low pH. Biochem. Biophys. Res. Commun., 128, 840849.CrossRefGoogle ScholarPubMed
Calakos, N. & Scheller, R. H. (1994). Vesicle-associated membrane protein and synaptophysin are associated on the synaptic vesicle. J. Biol. Chem. 269, 2453424537.CrossRefGoogle Scholar
Carle, A. & Rattone, G. (1884). Studio esperimentale sull'eziologia del tetano. Giorn. Accad. Med. Torino 32, 174179.Google Scholar
Chapman, E. R., An, S., Barton, N. & Jahn, R. (1994). SNAP-25, a t-SNARE which binds to both syntaxin and synaptobrevin via domains that may form coiled coils. J. Biol. Chem. 269, 2742727432.CrossRefGoogle ScholarPubMed
Chin, A. C., Burgess, R. W., Wong, B. R., Schwarz, T. L. & Scheller, R. H. (1994). Differential expression of transcripts from syb, a Drosophila melanogaster gene encoding VAMP (synaptobrevin that is abundant in non-neuronal cells. Gene 131, 175181.CrossRefGoogle Scholar
Corley-Cain, C., Trimble, W. S. & Lienhard, G. E. (1992). Members of the VAMP family of synaptic vesicles proteins are components of glucose transporter-containing vesicles from rat adipocytes. J. Biol. Chem. 267, 1168111684.CrossRefGoogle Scholar
Cornille, F., Goudreau, N., Flcheux, D., Nlemann, H. & Roques, B. P. (1994) Solid-phase synthesis, conformational analysis and in vitro cleavage of synthetic human synaptobrevin II 1–93 by tetanus toxin L chain. Eur. J. Biochem. 222, 173181.CrossRefGoogle ScholarPubMed
Creighton, T. E. (1992). Proteins: structures and molecular properties. Freeman & Co., Oxford.Google Scholar
Critchley, D. R., Nelson, P. G., Habig, W. H. & Fishman, P. H. (1985). Fate of tetanus toxin bound to the surface of primary neurons in culture: evidence for rapid internalization. J. Cell Biol. 100, 14991507.CrossRefGoogle Scholar
Cull-Candy, S. G., Lundh, H. & Thesleff, S. (1976). Effects of botulinum toxin on neuromuscular transmission in the rat. J. Physiol. (London) 260, 177203.CrossRefGoogle ScholarPubMed
Curtis, D. R., Game, C. J. A., Lodge, D. & McCulloch, R. M. (1976). A pharmacologic study of Renshaw cell inhibition. J. Physiol. 258, 227242.CrossRefGoogle Scholar
DasGupta, B. R. (1989). The structure of botulinum neurotoxin. In Botulinum neurotoxins and tetanus toxin, (ed. Simpson, L. L.), pp. 5367. San Diego: Academic Press.CrossRefGoogle Scholar
DasGupta, B. R. (1994). Structures of botulinum neurotoxin, its functional domains, and perspectives on the crystalline type A toxin. In Therapy with botulinum toxin (eds. Jankovic, J. & Hallett, M.), pp. 1539. New York: Marcel Dekker.Google Scholar
Dayanithi, G., Weller, U., Anhert-Hilger, G., Link, H., Nordmann, J. J. & Gratzl, M. (1992). The light chain of tetanus toxin inhibits calcium dependent vasopressin release from permeabilized nerve endings. Neuroscience 46, 489493.CrossRefGoogle Scholar
Dayanithi, G., Stecher, B., Höhne-Zell, B., Yamasaki, S., Binz, T., Weller, U., Niemann, H. & Gratzl, M. (1994). Exploring the functional domain and the target of the tetanus toxin light chain in neurohypophysial terminals. Neuroscience 58, 423431.CrossRefGoogle Scholar
De Filippis, V., Vangelista, L., Schaivo, G., Tonello, F. & Montecucco, C. (1995). Structural studies on the zinc-endopeptidase light chain of tetanus neurotoxin. Eur. J. Biochem., in press.Google ScholarPubMed
De Paiva, A., Poulain, B., Lawrence, G. W., Shone, C. C., Tauc, L. & Dolly, J. O. (1993 a). A role for the interchain disulfide or its participating thiols in the internalization of botulinum neurotoxin A revealed by a toxin derivative that binds to ecto-acceptors and inhibits transmitter release intracellularly. J. Biol. Chem. 268, 2083820844.CrossRefGoogle ScholarPubMed
De Paiva, A., Ashton, A. C., Foran, P., Schiavo, G., Montecucco, C. & Dolly, J. O. (1993 b). Botulinum A like type B and tetanus toxin fulfils criteria for being a zinc-dependent protease. J. Neurochem. 61, 23382341.CrossRefGoogle Scholar
Di Antonio, A., Burgess, R. W., Chin, A. C., Deitcher, D. L., Scheller, R. H. & Schwarz, T. L. (1993). Identification and characterization of Drosophila genes for synaptic vesicle proteins. J. Neurosci. 13, 49244935.CrossRefGoogle ScholarPubMed
Dobrenis, K., Joseph, A. & Rattazzi, M. C. (1992). Neuronal lysosomal enzyme replacement using fragment C of tetanus toxin. Proc. Natl. Acad. Sci. USA 89, 22972301.CrossRefGoogle ScholarPubMed
Dolly, J. O., Black, J., Williams, R. S. & Melling, J. (1984). Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature 307, 457460.CrossRefGoogle Scholar
Dolly, J. O., Lande, S. & Wray, D. W. (1987). The effects of in vitro application of purified botulinum neurotoxin at mouse motor-nerve terminals. J. Physiol. (London) 386, 475484.CrossRefGoogle ScholarPubMed
Donovan, J. J. & Middlebrook, J. L. (1986). Ion-conducting channels produced by botulinum toxin in planar lipid membranes. Biochemistry, 25, 28722876.CrossRefGoogle ScholarPubMed
Dreyer, F. & Schmitt, A. (1981). Different effect of botulinum A toxin and tetanus toxin in the transmitter releasing process at the mammalian neuromuscular junction. Neurosci. Lett. 26, 307311.CrossRefGoogle ScholarPubMed
Dreyer, F. & Schmitt, A. (1983). Transmitter release in tetanus and botulinum A toxin-poisoned mammalian motor endplates and its dependence on nerve stimulation and temperature. Pflugers Arch. 399, 228234.CrossRefGoogle ScholarPubMed
Dreyer, F., Mallart, A. & Brigant, J. L. (1983). Botulinum A toxin and tetanus toxin do not affect presynaptic membrane currents in mammalian motor nerve endings. Brain Res. 270, 373375.CrossRefGoogle Scholar
Duchen, L. W. (1973 a). The effects of tetanus toxin on the motor end-plates of the mouse–an electron microscopic study. J. Neurol. Sci. 19, 153167.CrossRefGoogle Scholar
Duchen, L. W. (1973 b). The local effects of tetanus toxin on the electron microscopic structure of skeletal muscle fibres of the mouse. J. Neurol. Sci. 19, 169177.CrossRefGoogle ScholarPubMed
Duchen, L. W. & Tonge, D. A. (1973). The effects of tetanus toxin on neuromuscular transmission and on the morphology of motor end-plate in slow and fast skeletal muscle of the mouse. J. Physiol. (London) 228, 157172.CrossRefGoogle ScholarPubMed
Elferink, L. A., Trimble, W. S. & Scheller, R. H. (1989). Two vesicle-associated membrane protein genes are differently expressed in the rat central nervous system. J. Biol. Chem. 264, 1106111064.CrossRefGoogle ScholarPubMed
Eklund, M. W., Poysky, F. T. & Habig, W. H. (1989). Bacteriophages, plasmids and toxin production. In Botulinum neurotoxins and tetanus toxin, (ed. Simpson, L. L.), pp. 2551. New York, Academic Press.CrossRefGoogle Scholar
Erdmann, G., Wiegand, H. & Wellhoner, H. (1975). Intraxonal and extraaxonal transport of 125I-tetanus toxin in early local tetanus. Naunyn-Schmiedebergs Arch. Pharmacol. 290, 357373.CrossRefGoogle Scholar
Erdmann, G., Hanauske, A. & Wellhoner, H. (1981). Intraspinal distribution and reaction in the grey matter with tetanus toxin of intracistemally injected antitetanus toxoid F(ab′)2 fragments. Brain Res. 211, 367377.CrossRefGoogle Scholar
Evans, D. M., Williams, R. S., Shone, C. C., Hambleton, P., Melling, J. & Dolly, J. O. (1986). Botulinum neurotoxin type B: purification, radioiodination and interaction with rat brain synaptosomal membranes. Eur. J. Biochem. 154, 409416.CrossRefGoogle Scholar
Faber, K. (1890). Die Pathogenie des Tetanus. Berl. klin. Wochenschr. 27, 717720.Google Scholar
Facchiano, F., Benfenati, F., Valtorta, F. & Luini, A. (1993 a). Covalent modification of synapsin I by a tetanus toxin-activated transglutaminase. J. Biol. Chem. 268, 45884591.CrossRefGoogle Scholar
Facchiano, F., Valtorta, F., Benfenati, F. & Luini, A. (1993 b). The transglutaminase hypothesis for the action of tetanus toxin. Trends Biochem. Sci. 18, 327329.CrossRefGoogle ScholarPubMed
Ferro-Novick, S. & Jahn, R. (1994). Vesicle fusion from yeast to man. Nature 370, 191193.CrossRefGoogle Scholar
Fesce, R., Grohovaz, F., Valtorta, F. & Meldolesi, J. (1994). Neurotransmitter release: fusion or ‘kiss-and-run’? Trends Cell Biol. 4, 14.CrossRefGoogle ScholarPubMed
Fevre, F., Henry, J-P. & Thieffry, M. (1994). Reversible and irreversible effects of basic peptides on the mitochondrial cationic channel. Biophys. J. 66, 18871894.CrossRefGoogle ScholarPubMed
Gaisano, H. Y., Sheu, L., Foskett, J. K. & Trimble, W. S. (1994). Tetanus toxin light chain cleaves a vesicle-associated membrane protein (VAMP) isoform 2 in rat pancreatic zymogen granules and inhibits enzyme secretion. J. Biol. Chem. 269, 1706217066.CrossRefGoogle Scholar
Gambale, F. & Montal, M. (1988). Characterization of the channel properties of tetanus toxin in planar lipid bilayers. Biophys. J., 53, 771783.CrossRefGoogle Scholar
Gansel, M., Penner, R. & Dreyer, F. (1987). Distinct sites of action of clostridial neurotoxins revealed by double poisoning of mouse motor-nerve terminals. P flugers Arch. 409, 533539.CrossRefGoogle ScholarPubMed
Gomis-Ruth, F. X., Kress, L. F. & Bode, W. (1993). First structure of a snake venom metalloproteinase: a prototype for matrix metalloproteinases/collagenases. EMBO J., 12, 41514157.CrossRefGoogle ScholarPubMed
Gundersen, C. B. (1980). The effects of botulinum toxin on the synthesis, storage and release of acetylcholine. Prog. Neurobiol. 14, 99119.CrossRefGoogle ScholarPubMed
Gundersen, C. B., Katz, B. & Miledi, R. (1982). The antagonism between botulinum toxin and calcium in motor-nerve terminals. Proc. Royal Soc. [B] 216, 369376.Google ScholarPubMed
Habermann, E. & Albus, U. (1986). Interaction between tetanus toxin and rabbit kidney: a comparison with brain preparations. J. Neurochem. 46, 12191226.CrossRefGoogle Scholar
Habermann, E. & Dimpfel, W. (1973). Distribution of 125I-tetanus toxin and 125I-toxoid in rat with generalized tetanus, as influenced by antitoxin. Naunyn Schmiedebergs Arch. Pharamacol. 176, 327340.CrossRefGoogle Scholar
Habermann, E. & Dreyer, F. (1986). Clostridial neurotoxins: handling and action at the cellular and molecular level. Curr. Top. Microbiol. Immunol. 129, 93179.Google Scholar
Habermann, E., Dreyer, F. & Bigalke, H. (1980). Tetanus toxin blocks the neuromuscular transmission in vitro like botulinum A toxin. Naunyn-Schmiedebergs Arch. Pharmacol. 311, 3340.CrossRefGoogle ScholarPubMed
Habermann, E. & Weller, U. (1989). Structure-activity relationships of tetanus in comparison to botulinum toxin, tetanus. In Eight International Conference on Tetanus (eds. Nisticò, G., Bizzini, B., Bytchenko, B. & Triau, R.), pp. 4350. Rome: Pythagora Press.Google Scholar
Habig, W. H., Bigalke, H., Bergey, G. K., Neale, E. A., Hardegree, M. C. & Nelson, P. G. (1986). Tetanus toxin in dissociated spinal cord cultures: long term characterization of form and action. J. Neurochem. 47, 930937.CrossRefGoogle ScholarPubMed
Hall, J. D., McCroskey, L. M., Pincomb, B. J. & Hatheway, C. O. (1985). Isolation of an organism resembling Clostridium barati which produces type F toxin from an infant with botulism. J. Clin. Microbiol. 21, 654655.CrossRefGoogle Scholar
Halpern, J. L. & Loftus, A. (1993). Characterization of the receptor-binding domain of tetanus toxin. J. Biol. Chem. 268, 1118811192.CrossRefGoogle ScholarPubMed
Halpern, J. L. & Neale, E. A. (1995). Neurospecific binding, internalization, and retrograde axonal transport. In Clostridial Neurotoxins, Curr. Top. Microbiol. Immunol. (ed. Montecucco, C.), 195, in press.Google Scholar
Harris, A. J. & Miledi, R. (1971). The effect of type D botulinum toxin on frog neuromuscular junctions. J. Physiol. (London) 217, 497515.CrossRefGoogle ScholarPubMed
Hatheway, C. L. (1995). Botulism: the present status of the disease. In Clostridial Neurotoxins, Curr. Top. Microbiol. Immunol. (ed. Montecucco, C.), 195, in press.Google Scholar
Hayashi, T., McMahon, H., Yamasaki, S., Binz, T., Hata, Y., Sudhof, T. C. & Niemann, H. (1994). Synaptic vesicles membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 13, 50515061.CrossRefGoogle Scholar
Helting, T. B. & Zwisler, O. (1977). Structure of tetanus toxin. I. Beakdown of the toxin and discrimination between polypeptide fragments. J. Biol. Chem. 252, 187193.CrossRefGoogle Scholar
Hess, D. T., Slater, T. M., Wislon, M. C. & Skene, J. H. P. (1992). The 25 kDa synaptosomal-associated protein SNAP-25 is the major methionine-rich polypeptide in rapid axonal transport and a major substrate for palmitoylation in adult CNS. J. Neurosci. 12, 46344641.CrossRefGoogle Scholar
Hoch, D. H., Romero-Mira, M., Ehrlich, B. E., Finkelstein, A., DasGupta, B. R. & Slmpson, L. L. (1985). Channels formed by botulinum, tetanus and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes. Proc. Natl. Acad. Sci. USA 82, 16921696.CrossRefGoogle ScholarPubMed
Höhne-Zell, B., Stecher, B. & Gratzl, M. (1993). Functional characterization of the catalytic site of the tetanus toxin light chain using permeabilized adrenal chromaffin cells. FEBS Lett. 336, 175180.CrossRefGoogle ScholarPubMed
Höhne-Zell, B., Ecker, A., Weller, U. & Gratzl, M. (1994). Synaptobrevin cleavage by tetanus toxin light chain is linked to inhibition of exocytosis in chromaffin cells. FEBS Lett. 355, 131134.CrossRefGoogle ScholarPubMed
Holmgren, J., Elwing, H., Fredman, P. & Svennerholm, L. (1980). Polystirene-absorbed gangliosides for investigation of the structure of the tetanus toxin receptor. Eur.J. Biochem. 106, 371379.CrossRefGoogle ScholarPubMed
Hughes, R. & Whaler, B. C. (1962). Influence of nerve-endings activity and of drugs on the rate of paralysis of rat diaphragm preparations by Clostridium botulinum type A toxin. J. Physiol. (London) 160, 221233.CrossRefGoogle ScholarPubMed
Hunt, J. M., Bommert, K., Charlton, M. P., Kistner, A., Habermann, E., Augustine, G. J. & Betz, H. (1994). A post-docking role for synaptobrevin in synaptic vesicle fusion. Neuron 12, 12691279.CrossRefGoogle ScholarPubMed
Inoue, A., Obata, K. & Akagawa, K. (1992). Cloning and sequence analysis of cDNA for a neuronal cell membrane antigen, HPC-1. J. Biol. Chem. 267, 1061310619.CrossRefGoogle ScholarPubMed
Ikonen, E., Tagaya, M., Ullrich, O., Montecucco, C. and Simons, K. (1995). Different requirements for NSF, SNAP, and Rab proteins in apical and basolateral transport in MDCK cells. Cell, in press.CrossRefGoogle Scholar
Jacobsson, G., Bean, A. J., Scheller, R. H., Juntti-Berggren, L., Beeney, J. T., Berggren, P. O. & Meister, B. (1994). Identification of synaptic proteins and their isoform mRNA in compartments of pancreatic endocrine cells. Proc. Natl. Acad. Sci. USA 91, 1248712491.CrossRefGoogle ScholarPubMed
Jankovic, J. & Hallett, M. Editors (1994). Therapy with botulinum toxin. New York: Marcel Dekker.Google ScholarPubMed
Jiang, W. & Bond, J. S. (1992). Families of metalloendopeptidases and their relationships. FEBS Lett. 312, 110114.CrossRefGoogle ScholarPubMed
Jongeneel, C. V., Bouvier, J. & Bairoch, A. (1989). A unique signature identifies a family of zinc-dependent metallopeptidases. FEBS Lett. 242, 211214.CrossRefGoogle ScholarPubMed
Johnstone, S. R., Morrice, L. M. & Van Heyningen, S. (1990). The heavy chain of tetanus toxin can mediate the entry of cytotoxic gelonin into intact cells. FEBS Lett. 265, 101103.CrossRefGoogle ScholarPubMed
Kamata, Y., Kozaki, S., Sakaguchi, G., Iwamori, M. & Nagai, Y. (1986). Evidence for direct binding of Clostridium botulinum type E derivative toxin and its fragments to gangliosides and free fatty acids. Biochem. Biophys. Res. Commun. 140, 10151019.CrossRefGoogle ScholarPubMed
Kanda, K. & Takano, K. (1983). Effect of tetanus toxin on the excitatory and the inhibitory post-synaptic potentials in the rat motoneurone. J. Physiol. (London) 335, 319333.CrossRefGoogle Scholar
Katz, B. (1966). Nerve, muscle, and synapse. McGraw-Hill, New YorkGoogle Scholar
Kaufmann, J. A., Way, J. F., Siegel, L. S. & Sellin, L. C. (1985). Comparison of the actions of types A and F botulinum toxin at the rat neuromuscular junction. Toxicol. Appl. Pharmacol. 79, 211217.CrossRefGoogle Scholar
Kelly, R. (1993). Storage and release of neurotransmitters. Cell 72 / Neuron 10, 4253.Google Scholar
Kim, Y., Lomo, T., Lupa, M. T. & Thesleff, S. (1984). Miniature end plate potentials in rat skeletal muscle poisoned with botulinum toxin. J. Physiol (London) 356, 587599.CrossRefGoogle ScholarPubMed
Kitamura, M., Iwamori, M. & Nagai, Y. (1980). Interaction between Clostridium botulinum neurotoxin and gangliosides. Biochim. Biophys. Acta 628, 328335.CrossRefGoogle ScholarPubMed
Kitamura, M. & Sone, S. (1987). Binding ability of Clostridium botulinum neurotoxin to the synaptosomes upon treatment with various kind of enzymes. Biochem. Biophys. Res. Commun. 143, 928933.CrossRefGoogle Scholar
Kitasato, S. (1889). Ueber den Tetanus bacillus. Ztschr. Hyg. InfektKr. 7, 225233.Google Scholar
Kitasato, S. (1891). Experimented Unterschungen ùber das Tetanusgift. Ztschr. Hyg. InfektrKr. 10, 267305.Google Scholar
Knight, D. E., Tonge, D. A. & Baker, P. F. (1985). Inhibition of exocytosis in bovine adrenal medullary cells by botulinum toxin type D. Nature 317, 719721.CrossRefGoogle ScholarPubMed
Kozaki, S., Miki, A., Kamata, Y., Ogasawara, J. & Sakaguchi, G. (1989). Immunological characterization of papain-induced fragments of Clostridium botulinum type A neurotoxin and interaction of the fragments with brain synaptosomes. Infect. Immun. 57, 26342639.CrossRefGoogle ScholarPubMed
Krieglstein, K. G., Henschen, A., Weller, U. & Habermann, E. (1991). Limited proteolysis of tetanus toxin. Eur. J. Biochem. 202, 4151.CrossRefGoogle ScholarPubMed
Kryzhanovsky, G. N. (1958). Central nervous changes in experimental tetanus and the mode of action of the tetanus toxin. Communication I. Irradiation of the excitation on stimulating the tetanized limb. Bull. Exp. Biol. Med. 44, 14561464 (English translation).CrossRefGoogle Scholar
Kryzhanovsky, G. N., Pozdynakov, O. M., D'yakonova, M. V., Polgar, A. A. & Smirnova, V. S. (1971). Disturbance of neurosecretion in myoneural junctions of muscle poisoned with tetanus toxin. Bull. Exp. Biol. Med. 72, 13871391 (English translation).CrossRefGoogle Scholar
Kurazono, H., Mochida, S., Binz, T., Eisel, U., Quanz, M., Grebenstein, O., Wernars, K., Poulain, B., Tauc, L. & Niemann, H. (1992). Minimal essential domains specifying toxicity of the light chains of tetanus toxin and botulinum nurotoxin type A. J. Biol. Chem. 267, 1472114729.CrossRefGoogle ScholarPubMed
Lebeda, F. J. & Olson, M. A. (1994). Secondary structural predictions for the clostridial neurotoxins. Proteins: Structure, Function & Genetics 20, 293300.CrossRefGoogle ScholarPubMed
Li, Y., Foran, P., Fairweather, N., De Paiva, A., Weller, U., Dougan, G. & Dolly, O. (1994). A single mutation in the recombinant light chain of tetanus toxin abolishes its proteolytic activity and removes its toxicity seen after reconstitution with native heavy chain. Biochemistry 33, 70147020.CrossRefGoogle Scholar
Liley, A. W. (1957). Spontaneous release of transmitter substance in multiquantal units. J. Physiol. (London) 136, 595605.CrossRefGoogle ScholarPubMed
Link, E., Edelmann, L., Chou, J. H., Binz, T., Yamasaki, S., Eisel, U., Baumert, M., Südhof, T. C., Niemann, H. & Jahn, R. (1992). Tetanus toxin action: inhibition of neurotransmitter release linked to synaptobrevin. Biochem. Biophys. Res. Commun. 189, 10171023.CrossRefGoogle ScholarPubMed
Llinas, R., Sugimori, M. & Silver, R. B. (1992). Microdomains of high calcium concentration in a presynaptic terminal. Science 256, 677679.CrossRefGoogle Scholar
Lovejoy, B., Cleasby, A., Hassell, A. M., Longley, K., Luther, M. A., Weigl, D., McGeehan, G., McElroy, A. B., Drewry, D., Lambert, M. H. & Jordan, S. R. (1994). Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor. Science 263, 375377.CrossRefGoogle ScholarPubMed
Mallart, A.Molgo, J., Angaut-Petit, D. & Thesleff, S. (1989). Is the internal calcium regulation altered in type A botulinum toxin poisoned motor endings? Brain Res. 479, 167171.CrossRefGoogle ScholarPubMed
Marxen, P. & Bigalke, H. (1991). The chromaffin cell: a suitable model for investigating the actions and the metabolism of tetanus and botulinum A neurotoxins. Naunyn-Schmiedebergs Arch. Pharmacol. 343 (Suppl.), 1229.Google Scholar
Marxen, P., Fuhrmann, U. & Bigalke, H. (1989). Ganglioside mediate inhibitory effects of tetanus and botulinum A neurotoxins on exocytosis in chromaffin cells. Toxicon 27, 849859.CrossRefGoogle ScholarPubMed
Matsuda, M. & Yoneda, M. (1975). Isolation and purification of two antigenically active, complementary polypeptide fragments of tetanus neurotoxin. Infect. Immun. 12, 11471153.CrossRefGoogle Scholar
Matsuda, M., Sugimoto, N., Ozutsumi, K. & Hirai, T. (1982). Acute botulinum-like intoxication by tetanus neurotoxin in mice. Biochem. Biophys. Res. Commun. 104, 799805.CrossRefGoogle ScholarPubMed
Matteoli, M., Takei, K., Perin, M. S., Sudhof, T. C. & De Camilli, P. (1992). Exoendocytic recycling of synaptic vesicles in developing processes of cultured hyppocampal neurons. J. Cell Biol. 117, 849861.CrossRefGoogle Scholar
Matthews, B. W. (1988). Structural basis of the action of thermolysin and related zinc peptidases. Acc. Chem. Res. 21, 333340.CrossRefGoogle Scholar
Matthews, B. W., Jansonius, J. N. & Colman, P. M. (1972). Three-dimensional structure of thermolysin. Nature New Biol. 238, 3741.CrossRefGoogle ScholarPubMed
McInnes, C. & Dolly, J. O. (1990). Ca2+-dependent noradrenaline release from permeabilised PC 12 cells is blocked by botulinum neurotoxin A or its light chain. FEBS Lett. 261, 323326.CrossRefGoogle ScholarPubMed
McMahon, H. T., Ushkaryov, Y. A., Edelmann, L., Link, E., Binz, T., Niemann, H., Jahn, R. & Südhof, T. C. (1993). Cellubrevin is a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein. Nature 364, 346349.CrossRefGoogle ScholarPubMed
Meldolesi, J., Scheer, H., Madeddu, L. & Wanke, E. (1986). Mechanism of action of Á-latratoxin: the presynaptic stimulatory toxin of the black widow spider venom. Trends Pharmacol. Sci. 6, 151155.CrossRefGoogle Scholar
Mellanby, J. (1984). Comparative activities of tetanus and botulinum toxins. Neuroscience 11, 2934.CrossRefGoogle ScholarPubMed
Mellanby, J. & Green, J. (1981). How does tetanus toxin act? Neuroscience 6, 281300.CrossRefGoogle ScholarPubMed
Mellanby, J. & Thompson, P. A. (1972). The effect of tetanus toxin at the neuromuscular junction in the goldfish. J. Physiol. (London) 224, 407419.CrossRefGoogle ScholarPubMed
Mellanby, J., Mellanby, H., Pope, D. & Van Heyningen, W. E. (1968). Ganglioside as a profilactic agent in experimental tetanus in mice. J. gen. Microbiol. 54, 161168.CrossRefGoogle Scholar
Mellanby, J., Beaumont, M. A. & Thompson, P. A. (1988). The effect of lantanum on nerve terminals in goldfish muscle after paralysis with tetanus toxin. Neuroscience 25, 10951106.CrossRefGoogle Scholar
Menestrina, G., Forti, S. & Gambale, F. (1989). Interaction of tetanus toxin with lipid vesicles: effects of pH, surface charge, and transmembrane potential on the kinetics of channel formation. Biophys. J. 55, 393405.CrossRefGoogle ScholarPubMed
Menestrina, G., Schiavo, G. & Montecucco, C. (1994). Molecular mechanisms of action of bacterial protein toxins. Molec. Aspects Med. 15, 79193.CrossRefGoogle ScholarPubMed
Middlebrook, J. L. & Brown, J. E. (1995) Immunodiagnosis and immunotherapy of tetanus and botulinum neurotoxins. In Clostridial Neurotoxins, Curr. Top. Microbiol. Immunol. (ed. Montecucco, C.) 195, in press.Google Scholar
Milne, J. C. & Collier, R. J. (1993). pH-dependent permeabilization of the plasma membrane of mammalian cells by anthrax protective antigen. Mol. Microbiol. 10, 647653.CrossRefGoogle ScholarPubMed
Mims, C. A. (1987). The pathogenesis of infectious disease. London: Academic Press.Google Scholar
Minton, N. (1995). Molecular genetics of clostridial neurotoxins. In Clostridial Neurotoxins, Curr. Top. Microbiol. Immunol. (ed. Montecucco, C.), 195, in press.Google Scholar
Mitsui, N., Mitsui, K. & Hase, J. (1980). Purification and some properties of tetanolysin. Microbiol. Immunol. 24, 575584.CrossRefGoogle ScholarPubMed
Mochida, S., Poulain, B., Weller, U., Habermann, E. & Tauc, L. (1989). Light chain of tetanus toxin intracellularly inhibits acethylcholine release at neuro-neuronal synapses, and its internalization is mediated by heavy chain. FEBS Lett. 253, 4751.CrossRefGoogle Scholar
Molgo, J., DasGupta, B. R. & Thesleff, S. (1989 a). Characterization of the actions of botulinum neurotoxin type E at the neuromuscular junctions. Acta Physiol. Scand. 137, 497501.CrossRefGoogle Scholar
Molgo, J., Siegel, L. S., Tabti, N. & Thesleff, S. (1989 b). A study of synchronization of quantal trasmitter release from mammalian motor endings by the use of botulinal neurotoxins type A and D. J. Physiol. (London) 411, 195205.CrossRefGoogle Scholar
Molgo, J., Comella, J. X., Angaut-Petit, D., Pecot-Dechavassine, M., Tabti, N., Faille, L., Mallart, A. & Thesleff, S. (1990). Presynaptic actions of botulinal neurotoxins at vertebrate neuromuscular junctions. J. Physiol. (Paris) 84, 152166.Google ScholarPubMed
Monk, J. R. & Fernandez, J. M. (1994). The exocytotic fusion pore and neurotransmitter release. Neuron 12, 707716.CrossRefGoogle Scholar
Montal, M. S., Blewitt, R., Tomich, J. M. & Montal, M. (1992). Identification of an ion channel-forming motif in the primary structure of tetanus and botulinum neurotoxins. FEBS Lett. 313, 1218.CrossRefGoogle ScholarPubMed
Montecucco, C. (1986). How do tetanus and botulinum neurotoxins bind to neuronal membranes? Trends Biochem. Sci. 11, 314317CrossRefGoogle Scholar
Montecucco, C. (1989). Some theoretical considerations on tetanus. In Eight International Conference on Tetanus (eds. Nisticò, G., Bizzini, B., Bytchenko, B. & Triau, R.), pp. 7191. Rome: Pythagora Press.Google Scholar
Montecucco, C. & Schiavo, G. (1993). Tetanus and botulism neurotoxins: a new group of zinc proteases. Trends Biochem. Sci. 18, 324327.CrossRefGoogle ScholarPubMed
Montecucco, C. & Schiavo, G. (1994). Mechanism of action of tetanus and botulinum neurotoxins. Mol. Microbiol. 13, 18.CrossRefGoogle ScholarPubMed
Montecucco, C., Schiavo, G., Brunner, J., Duflot, E., Boquet, P. & Roa, M. (1986). Tetanus toxin is labeled with photoactivatable phospholipids at low pH. Biochemistry 25, 919924.CrossRefGoogle ScholarPubMed
Montecucco, C., Schiavo, G., Gao, Z., Bauerlein, E., Boquet, P. & DasGupta, B. R. (1988). Interaction of botulinum and tetanus toxins with the lipid bilayer surface. Biochem. J. 251, 379383.CrossRefGoogle ScholarPubMed
Montecucco, C., Schiavo, G. & DasGupta, B. R. (1989). Effect of pH on the interaction of botulinum neurotoxins A, B and E with liposomes. Biochem. J. 259, 4753.CrossRefGoogle Scholar
Montecucco, C., Papini, E. & Schiavo, G. (1991). Molecular models of toxin membrane translocation. In Sourcebook of bacterial protein toxins, (eds. Alouf, J. E. & Freer, J. H.), pp. 4556. London: Academic Press.Google Scholar
Montecucco, C., Papini, E. & Schiavo, G. (1994). Bacterial protein toxins penetrate cells via a four-step mechanism. FEBS Lett. 346, 9298.CrossRefGoogle Scholar
Montesano, R., Roth, J., Robert, A. & Orci, L. (1982). Noa coated invaginations are involved in binding and internalization of cholera and tetanus toxin. Nature 296, 651653.CrossRefGoogle Scholar
Morante, S., Furenlid, L., Schiavo, G., Tonello, , Zwilling, R. & Montecucco, C. (1995). A X-ray absorption spectroscopy study of zinc coordination in tetanus neurotoxin, astacin, thermolysin and alkaline protease, submitted.CrossRefGoogle Scholar
Moretto, A., Lotti, M., Sabri, M. I. & Spencer, P. S. (1987). Progressive deficit of retrograde axonal transport is associated with the pathogenesis of di-n-butyl dichlorvos axonopathy. J. Neurochem. 49, 15151522.CrossRefGoogle ScholarPubMed
Morris, N. P., Consiglio, E., Kohn, L. D., Habig, W. H., Hardegree, M. C. & Helting, T. B. (1980). Interaction of fragments B and C of tetanus toxin with neural and thyroid membranes and with gangliosides. J. Biol. Chem. 255, 60716076.CrossRefGoogle Scholar
Neale, E. A., Habig, W. H., Schrier, B. K., Bergey, G. K., Bowers, L. M. & Koh, J. (1989). Application of tetanus toxin for structure-function studies in neuronal cell cultures. In Eight International Conference on Tetanus (eds. Nistico, G., Bizzini, B., Bytchenko, B. & Triau, R.), pp. 6670. Rome: Pythagora Press.Google Scholar
Niemann, H. (1991). Molecular biology of clostridial neurotoxins. In Sourcebook of bacterial protein toxins, (eds. Alouf, J. E. & Freer, J. H.), pp. 303348. London: Academic Press.Google Scholar
Nishiki, T., Kamata, Y., Nemoto, Y., Omori, A., Ito, T., Takahashi, M. & Kozaki, S. (1994). Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes. J. Biol. Chem. 269, 1049810503.CrossRefGoogle ScholarPubMed
Ochanda, J. O., Syuto, B., Ohishi, I., Naiki, M. & Kubo, S. (1986). Binding of Clostridium botulinum neurotoxin to gangliosides. J. Biochem. 100, 2733.CrossRefGoogle ScholarPubMed
O'Connor, V. O., Augustine, G. J. & Betz, H. (1994). Synaptic vesicle exocytosis: molecules and models. Cell 76, 785787.CrossRefGoogle ScholarPubMed
Osen-Sand, A., Catsicas, M., Staple, J. K., Jones, K. A., Ayala, G., Knowles, J., Grenningloh, G. & Catsicas, S. (1993). Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo. Nature 364, 445448.CrossRefGoogle ScholarPubMed
Oyler, G. A., Higgins, G. A., Hart, R. A., Battenberg, E., Billingsley, M., Bloom, F. E. & Wilson, M. C. (1989). The identification of a novel synaptosomal-associated protein, SNAP-25, differently expressed by neuronal subpopulations. J. Cell Biol. 109, 30393052.CrossRefGoogle Scholar
Papini, E., Sandonà, D., Rappuoli, R. & Montecucco, C. (1988). On the membrane translocation of diphtheria toxin: at low pH the toxin induces ion channels in cells. EMBO J. 7, 33533359.CrossRefGoogle Scholar
Papini, E., Rossetto, O. & Cutler, D. (1995). Vesicle-associated membrane protein (VAMP/synaptobrevin-2 is associated with dense core secretory granules in PC12 neuroendocryne cells. J. Biol. Chem. 270, 13321336.CrossRefGoogle Scholar
Parton, R. G., Ockleford, C. D. & Critchley, D. R. (1987). A study of the mechanism of internalisation of tetanus toxin by primary mouse spinal cord cultures. J. Neurochem. 49, 10571068.CrossRefGoogle ScholarPubMed
Parton, R. G., Ockleford, C. D. & Critchley, D. R. (1988). Tetanus toxin binding to mouse spinal cord cells: an evaluation of the role of gangliosides in toxin internalization. Brain Res. 475, 118127.CrossRefGoogle ScholarPubMed
Patarnello, T., Bargelloni, L., Rossetto, O., Schiavo, G. & Montecucco, C. (1993). Neurotransmission and secretion. Nature 364, 581582.CrossRefGoogle ScholarPubMed
Pauptit, R. A., Karlsson, R., Picot, D., Jenkins, J. A., Niklaus-Reimer, A. S. & Jansonius, J. N. (1988). Crystal structure of neutral protease from Bacillus cereus refined at 30 A resolution and comparison with the homologous but more thermostable enzyme termolysin. J. Mol. Biol. 199, 525537.CrossRefGoogle Scholar
Payling-Wright, G. (1955). The neurotoxins of Clostridium botulinum and Clostridum tetani. Pharmacol. Rev. 7, 413465.Google Scholar
Pecot-Dechavassine, M., Molgo, J. & Thesleff, S. (1991). Ultrastructure of botulinum type A poisoned frog motor nerve terminals after enhanced quantal transmitter release caused by carbonyl cyanide m-chlorophenylhydrazone. Neurosci. Lett. 130, 58.CrossRefGoogle ScholarPubMed
Penner, R., Neher, E. & Dreyer, F. (1986). Intracellularly injected tetanus toxin inhibits exocytosis in bovine adrenal chromaffin cells. Nature 324, 7677.CrossRefGoogle ScholarPubMed
Petrenko, A. G., Perin, M. S., Davletov, A. B., Ushkaryov, Y. A., Geppert, M. & Sudhof, T. C. (1991). Binding of synaptotagmin to the Á-latrotoxin receptor implicates both in synaptic vesicle exocytosis. Nature 353, 6568.CrossRefGoogle Scholar
Pierce, E. J., Davison, M. D., Parton, R. G., Habig, W. H. & Critchley, D. R. (1986). Characterization of tetanus toxin binding to rat brain membranes. Biochem. J. 236, 845852.CrossRefGoogle ScholarPubMed
Podzdnyakov, O. M., Polgar, A. A., Smirnova, V. S. & Kryzhanovsky, G. N. (1972). Changes in the ultrastructure of the neuromuscular synapse produced by tetanus toxin. Bull. Exp. Biol. Med. 74, 852855 (English translation).CrossRefGoogle Scholar
Ponomarev, A. W. (1928). Zur frage der pathogenese des tetanus und des fortbewegungsmechanismus des tetanustoxins langs dem nerven. Z. Ges. Exp.Med. 61, 93106.CrossRefGoogle Scholar
Poulain, B., Tauc, L., Maisey, E. A., Wadsworth, J. D. F., Mohan, P. M. & Dolly, J. O. (1988). Neurotransmitter release is blocked intracellularly by botulinum neurotoxins, and requires uptake of both toxin polypeptides by a process mediated by the larger chain. Proc. Natl. Acad. Sci. USA 85, 40904094.CrossRefGoogle ScholarPubMed
Poulain, B., Rossetto, O., Deloye, F., Schiavo, G., Tauc, L. & Montecucco, C. (1993). Antibodies against rat brain vesicle-associated membrane protein (sinaptobrevin) prevent inhibition of acetylcholine release by tetanus toxin of botulinum neurotoxin type B. J. Neurochem. 61, 11751178.CrossRefGoogle Scholar
Poulain, B., Thesleff, S. & Molgo, J. (1995). ‘Quantal neurotransmitter release and the clostridial neurotoxins' targets’. In Clostridial Neurotoxins, Curr. Top. Microbiol. Immunol. (ed. Montecucco, C.), 195, in press.Google Scholar
Price, D. L., Griffin, J., Young, A., Peck, K. & Stocks, A. (1975). Tetanus toxin: direct evidence for retrograde intraaxonal transport. Science 188, 945947.CrossRefGoogle ScholarPubMed
Protopopov, V., Govindan, B., Novick, P. & Gerst, J. E. (1993). Homologs of the synaptobrevin/VAMP family of synaptic vesicle proteins function on the late secretory pathway in S. cerevisiae. Cell 74, 855861.CrossRefGoogle ScholarPubMed
Ralston, E., Beushausen, S. & Ploug, T. (1994). Expression of the synaptic vesicle proteins VAMPs/synaptobrevins 1 and 2 in non-neuronal tissue. J. Biol. Chem. 269, 1540315406.CrossRefGoogle Scholar
Ramon, G. and Descombey, P. A. (1925). Sur l'immunization antitetanique et sur la production de l'antitoxine tetanique. Compt. Rend. Soc. Biol., 93, 508598.Google Scholar
Rauch, G., Gambale, F. & Montal, M. (1990). Tetanus toxin channels in phosphatidylserine planar bilayers–conductance states and pH-dependence. Eur. Biophys.J. 18, 7983.CrossRefGoogle ScholarPubMed
Ray, P., Berman, J. D., Middleton, W. & Brendle, J. (1993). Botulinum toxin inhibits arachidonic acid release associated with acetylcholine release from PC12 cells. J. Biol. Chem.. 268, 1105711064.CrossRefGoogle ScholarPubMed
Regazzi, R., Wolheim, C., Lang, J., Theler, J. M., Rossetto, O., Montecucco, C., Sadoul, K., Weller, U., Palmer, U. & Thorens, B. (1995). Vamp-2 and cellubrevin are expressed in pancreatic β-cells and are essential for Ca2+, but not GTPçS-induced secretion. EMBO J., in press.CrossRefGoogle Scholar
Risinger, C. & Larhammar, D. (1993). Multiple loci for synapse protein SNAP-25 in the tetraploid goldfish. Proc. Natl. Acad. Set. USA 90, 1059810602.CrossRefGoogle Scholar
Risinger, C., Blomqvist, A. G., Lundell, I., Lambertsson, A., Nässel, D., Pierbone, V. A., Brodin, L. & Larhammar, D. (1993). Evolutionary conservation of synaptosome-associated protein 25 kDa (SNAP-25) shown by Drosophila and Torpedo cDNA clones. J. Biol. Chem. 268, 2440824414.CrossRefGoogle ScholarPubMed
Roa, M. and Boquet, P. (1985). Interaction of tetanus toxin with lipid vescicles at low pH. J. Biol. Chem., 260, 68276835.CrossRefGoogle Scholar
Robinson, J. P., Holladay, L. A., Hash, J. H. & Puett, D. (1981). Conformational and molecular weight studies of tetanus toxin and its major peptides. J. Biol. Chem. 257, 407411.CrossRefGoogle Scholar
Robinson, J. P., Schmid, M. F., Morgan, D. G. & Chiu, W. (1988). Three-dimensional structural analysis of tetanus toxin by electron crystallography. J. Mol. Biol. 200, 367375.CrossRefGoogle ScholarPubMed
Robinson, P. J., Liu, J. P., Powell, K. A., Fykse, E. M. & Sudhof, T. C. (1994). Phosphorylation of dynamin I and synaptic-vesicle recycling. Trends Neurosci. 17, 348353.CrossRefGoogle ScholarPubMed
Ross, E. M. (1990). Viral hijack of receptors. Nature 344, 707708.CrossRefGoogle ScholarPubMed
Rossetto, O., Schiavo, G.Montecucco, C., Poulain, B., Deloye, F., Lozzi, L. & Shone, C. C. (1994). SNARE motif and neurotoxin recognition. Nature 372, 415416.CrossRefGoogle Scholar
Rossetto, O., Gorza, L., Schiavo, G., Schiavo, N., Scheller, R. H. & Montecucco, C. (1995). VAMP/Synaptobrevin isoforms 1 and 2 are widely and differentially distributed outside the nervous system. J. Cell Biol. submitted.Google Scholar
Rothman, J. E. (1994). Mechanisms of intracellular protein transport. Nature 372, 5563.CrossRefGoogle ScholarPubMed
Rothman, J. E. & Warren, G. (1994). Implications of the SNARE hypothesis for intracellular membrane topology and dynamics. Curr. Biol. 4, 220233.CrossRefGoogle ScholarPubMed
Sadoul, K., Lang, J., Montecucco, C., Weller, U., Catsicas, S., Wollheim, C. & Halban, P. (1995). SNAP-25 is expressed in islets of Lagerhans and is involved in insulin release. J. Cell. Biol. 128, 10191028.CrossRefGoogle Scholar
Sahenk, Z. & Mendell, J. R. (1981). Axoplasmic transport in zinc pyridinethione neuropathy: evidence for anormality in distal turn-around. Brain Res. 186, 343353.CrossRefGoogle Scholar
Sakaguchi, G. (1983) Clostridium botulinum Toxins. Pharmac. Ther. 19, 165194.CrossRefGoogle Scholar
Sandvig, K. & Olsnes, S. (1988). Diphtheria toxin-induced channels in Vero cells selective for monovalent cations. J. Biol. Chem. 263, 1235212359.CrossRefGoogle ScholarPubMed
Sathyamoorthy, V. & DasGupta, B. R. (1985). Separation, purification, partial characterization and comparison of the heavy and light chains of botulinum neurotoxin types A, B and E. J. Biol. Chem. 260, 1046110466.CrossRefGoogle Scholar
Schengrund, C. L., DasGupta, B. R. & Ringler, N. J. (1991). Binding of botulinum and tetanus neurotoxins to ganglioside GT1b and derivatives thereof. J. Neurochem. 57, 10241032.CrossRefGoogle ScholarPubMed
Schiavo, G. & Montecucco, C. (1995). Tetanus and botulism neurotoxins: isolation and assay. Methods Enzymol. 248, in press.CrossRefGoogle Scholar
Schiavo, G., Papini, E., Genna, G. & Montecucco, C. (1990). An intact interchain disulfide bond is required for the neurotoxicity of tetanus toxin. Infect. Immun. 58, 41364141.CrossRefGoogle ScholarPubMed
Schiavo, G., Demel, R. & Montecucco, C. (1991 a). On the role of polysialoglycosphingolipids as tetanus toxin receptors: a study with lipid monolayers. Eur. J. Biochem. 199, 705711.CrossRefGoogle ScholarPubMed
Schiavo, G., Rossetto, O., Ferrari, G. & Montecucco, C. (1991 b). Tetanus toxin receptor. Specific cross-linking of tetanus toxin to a protein of NGF-differentiated PC12 cells. FEBS Lett., 290, 227230.CrossRefGoogle Scholar
Schiavo, G., Poulain, B., Rossetto, O., Benfenati, F., Tauc, L. & Montecucco, C. (1992 a). Tetanus toxin is a zinc protein and its inhibition of neurotrasmitter release and protease activity depend on zinc. EMBO J. 11, 35773583.CrossRefGoogle Scholar
Schiavo, G., Rossetto, O., Santucci, A., DasGupta, B. R. & Montecucco, C. (1992 b). Botulinum neurotoxins are zinc proteins. J. Biol. Chem. 267, 2347923483.CrossRefGoogle Scholar
Schiavo, G., Benfenati, F., Poulain, B., Rossetto, O., Polverino De Laureto, P., DasGupta, B. R. & Montecucco, C. (1992 c). Tetanus and botulinum-B neurotoxins block neurotransmitter release by a proteolytic cleavage of synaptobrevin. Nature 359, 832835.CrossRefGoogle ScholarPubMed
Schiavo, G., Poulain, B., Benfenati, F., DasGupta, B. R. & Montecucco, C. (1993 a). Novel targets and catalytic activities of bacterial protein toxins. Trends Microbiol. 1, 170174.CrossRefGoogle ScholarPubMed
Schiavo, G., Shone, C. C., Rossetto, O., Alexandre, F. C. G. & Montecucco, C. (1993 b). Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. J. Biol. Chem. 268, 1151611519.CrossRefGoogle ScholarPubMed
Schiavo, G., Rossetto, O., Catsicas, S., Polverino De Laureto, P., DasGupta, B. R., Benfenati, F. & Montecucco, C. (1993 c). Identification of the nerve-terminal targets of botulinum neurotoxins serotypes A, D and E. J. Biol. Chem. 268, 2378423787.CrossRefGoogle Scholar
Schiavo, G., Santucci, A., DasGupta, B. R., Metha, P. P., Jontes, J., Benfenati, F., Wilson, M. C. & Montecucco, C. (1993 d). Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Lett. 335, 99103.CrossRefGoogle Scholar
Schiavo, G., Malizio, C., Trimble, W. S., Polverino De Laureto, P., Milan, G., Sugiyama, H., Johnson, E. A. & Montecucco, C. (1994). Botulinum G neurotoxin cleaves VAMP/synaptobrevin at a single Ala/Ala peptide bond. J. Biol. Chem. 269, 2021320216.CrossRefGoogle Scholar
Schiavo, G., Shone, C. C., Bennett, M. K., Scheller, R. H. & Montecucco, C. (1995 a). Botulinum neurotoxin type C cleaves a single Lys-Ala bond within the carboxyl-terminal region of syntaxins. J. Biol. Chem. 270, 1056610570.CrossRefGoogle Scholar
Schiavo, G., Rossetto, O., Tonello, F. & Montecucco, C. (1995 b). The metalloproteinase activity of tetanus and botulinum neurotoxins. In Clostridial neurotoxins, Curr. Top. Microbiol. Immunol. (ed. Montecucco, C.), 195, in press.Google Scholar
Schmid, M. F., Robinson, J. P. & DasGupta, B. R. (1993). Direct visualization of botulinum neurotoxin-induced channels in phospholipid vesicles. Nature 364, 827830.CrossRefGoogle ScholarPubMed
Schuldiner, S., Shirvan, A. & Linial, M. (1995). Vesicular neurotransmitter transporters: from bacteria to humans. Physiol. Rev. 76, in press.Google Scholar
Schwab, M. E. & Thoenen, H. (1976). Electron microscopic evidence for a transsynaptic migration of tetanus toxin in spinal cord motoneurons: an autoradiographic and morphometric study. Brain Res. 105, 213227.CrossRefGoogle ScholarPubMed
Schwab, M. E., Suda, K. & Thoenen, H. (1979). Selective retrograde trans-synaptic transfer of a protein, tetanus toxin, subsequent to its retrograde axonal transport. J. Cell. Biol., 82, 798810.CrossRefGoogle Scholar
Scott, A. B. (1989). Clostridial toxins as therapeutic agents. In Botulinum neurotoxins and tetanus toxin, (ed. Simpson, L. L.), pp. 399412. New York: Academic Press.CrossRefGoogle Scholar
Sellin, L. C. (1987). Botulinum toxin and the blockade of transmitter release. Asia Pacific J. Pharmacol. 2, 203222.Google Scholar
Sellin, L. C., Thesleff, S. & DasGupta, B. R. (1983). Different effects of types A and B botulinum toxin on transmitter release at the rat neuromuscular junction. Add Physiol. Scand. 119, 127133.CrossRefGoogle Scholar
Shone, C. C., Hambleton, P. & Melling, J. (1985). Inactivation of Clostridium botulinum type A neurotoxin by trypsin and purification of two tryptic fragments. Eur. J. Biochem. 151, 7582.CrossRefGoogle ScholarPubMed
Shone, C. C., Hambleton, P. & Melling, J. (1987). A 50-kDa fragment frpm the NH2-terminus of the heavy subunit of Clostridium botulinum type A neurotoxin forms channels in lipid vesicles. Eur. J. Biochem. 167, 7582.CrossRefGoogle Scholar
Shone, C. C., Quinn, C. P., Wait, R., Hallis, B., Fooks, S. G. & Hambleton, P. (1993). Proteolytic cleavage of synthetic fragments of vesicle-associated membrane protein, isoform-2 by botulinum type B neurotoxin. Eur. J. Biochem. 217, 965971.CrossRefGoogle ScholarPubMed
Shone, C. C. & Roberts, A. K. (1994). Peptide substrate specificity and properties of the zinc-endopeptidase activity of botulinum type B neurotoxin. Eur.J. Biochem. 225, 263270.CrossRefGoogle ScholarPubMed
Shumaker, H. B., Lamont, A. & Firor, W. M. (1939). The reaction of ‘tetanus sensitive’ and ‘tetanus resistant’ animals to the injection of tetanal toxin into the spinal cord. J. Immunol. 37, 425433.CrossRefGoogle Scholar
Simon, S. M. & Blobel, G. (1991). A protein conducting channel in the endoplasmic reticulum. Cell 65, 371380.CrossRefGoogle ScholarPubMed
Simon, S. M. & Blobel, G. (1992). Signal peptides open protein-conducting channels in E. coli. Cell 69, 677684.CrossRefGoogle ScholarPubMed
Simons, K. & Zerial, M. (1993). Rab proteins and the road maps for intracellular transport. Neuron 11, 789799.CrossRefGoogle ScholarPubMed
Simpson, L. L. (1982). The interaction between aminoquinolines and presynaptically acting neurotoxins. J. Pharmacol. Exp. Ther., 222, 4348.Google ScholarPubMed
Simpson, L. L. (1983). Ammonium chloride and methylamine hydrochloride antagonize clostridial neurotoxins. J. Pharmacol. Exp. Ther., 225, 546552.Google ScholarPubMed
Simpson, L. L. (1988). Targeting drugs and toxins to the brain: magic bullets. Intern. Rev. Neurobiol. 30, 123147.CrossRefGoogle Scholar
Simpson, L. L. Editor (1989). Botulinum neurotoxin and tetanus toxin. San Diego: Academic Press.Google Scholar
Simpson, L. L. & Rapport, M. M. (1971). Ganglioside inactivation of botulinum toxin. J. Neurochem. 18, 13411343.CrossRefGoogle ScholarPubMed
Simpson, L. L., Coffield, J. A. & Bakry, N. (1993). Chelation of zinc antagonizes the neuromuscular blocking properties of the seven serotypes of botulinum neurotoxin as well as tetanus toxin. J. Pharmacol. Exp. Ther. 267, 720727.Google ScholarPubMed
Simpson, L. L., Coffield, J. A. & Bakry, N. (1994). Inhibiton of vacuolar adenosine triphosphatase antagonizes the effects of clostridial neurotoxins but not phospholipase A2 neurotoxins. J. Pharmacol. Exp. Ther. 269, 256262.Google Scholar
Singh, B. R., Fuller, M. P. & Schiavo, G. (1990 a). Molecular structure of tetanus neurotoxin as revealed by Fourier transform infrared and circular dichroic spectroscopy. Biophys. Chem. 46, 155166.CrossRefGoogle Scholar
Singh, B. R., Wasacz, F. M., Strand, S., Jakobsen, R. J. & DasGupta, B. R. (1990 b). Structural analysis of botulinum neurotoxin types A and E in aqueous and non polar solvents by Fourier transform infrared, second derivative UV absorption and circular dichroic spectroscopies. J. Protein Chem. 9, 705713.CrossRefGoogle Scholar
Smith, L. D. & Sugiyama, H. (1988). Botulism: the organism, its toxins, the disease. C. C. Thomas Publ., Springfield, IllinoisGoogle Scholar
Söllner, T., Whiteheart, S. W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P. & Rothman, J. E. (1993 a). SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318324.CrossRefGoogle ScholarPubMed
Söllner, T., Bennett, M., Whiteheart, S. W., Scheller, R. H. & Rothman, J. E. (1993 b). A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409418.CrossRefGoogle ScholarPubMed
Staub, G. C., Walton, K. M., Schnaar, R. L., Nichols, T., Baichwal, R., Sandberg, K. & Rogers, T. B. (1986). Characterization of the binding and internalization of tetanus toxin in a neuroblastoma hybrid cell line. J. Neurosci. 6, 14431451.CrossRefGoogle Scholar
Stecher, B., Weller, U., Habermann, E., Gratzl, M. & Anhert-Hilger, G. (1989). The light chain but not the heavy chain of botulinum A toxin inhibits exocytosis from permeabilized adrenal chromaffin cells. FEBS Lett. 255, 391394.CrossRefGoogle Scholar
Steinhardt, R. A., BI, G. & Alderton, J. M. (1994). Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 263, 390393.CrossRefGoogle ScholarPubMed
Stevens, R. C., Evenson, M. L., Tepp, W. & DasGupta, B. R. (1991). Crystallization and preliminary X-ray analysis of botulinum neurotoxin type A. J. Mol. Biol. 222, 877880.CrossRefGoogle ScholarPubMed
Stockel, K., Schwab, M. & Thoenen, H. (1975). Comparison between the retrograde axonal transport of nerve growth factor and tetanus toxin in motor, sensory and adrenergic neurons. Brain Res. 99, 116.CrossRefGoogle ScholarPubMed
Stockel, K., Schwab, M. & Thoenen, H. (1977). Role of gangliosides in the uptake and retrograde axonal transport of cholera and tetanus toxin as compared to nerve growth factor and wheat germ agglutinin. Brain Res. 132, 273285.CrossRefGoogle Scholar
Südhof, T. C., Baumert, M., Perin, M. S. &. Jahn, R. (1989). A synaptic vesicle membrane protein is conserved from mammals to Drosophila. Neuron 2, 14751481.CrossRefGoogle ScholarPubMed
Südhof, T. & Jahn, R. (1991). Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron 6, 665677.CrossRefGoogle ScholarPubMed
Sweeney, S. T., Broadie, K., Keane, J., Niemann, H. & O'Kane, J. (1995). Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioural defects. Neuron 14, 341351.CrossRefGoogle Scholar
Takano, K., Kirchner, F., Terhaar, P. & Tiebert, B. (1983). Effect of tetanus toxin on the monosynaptic reflex. Naunyn-Schmiedebergs Arch. Pharmacol. 323, 217220.CrossRefGoogle ScholarPubMed
Takano, K., Kirchner, F., Gremmelt, A., Matsuda, M., Ozutsumi, N. & Sugimoto, N. (1989). Blocking effect of tetanus toxin and its fragment (A-b) on the excitatory and inhibitory synapses of the spinal motoneuron of the cat. Toxicon 27, 385392.CrossRefGoogle ScholarPubMed
Takei, K., McPherson, P. S., Schmid, S. L. & De Camilli, P. (1995). Tubular membrane invaginations coated by dynamin rings are induced by GTP-OS in nerve terminals. Nature 374, 186190.CrossRefGoogle ScholarPubMed
Thayer, M. M., Flaherty, K. M. & McKay, D. B. (1991). Three-dimensional structure of the elastase of Pseudomonas aeruginosa at 1·5 A resolution. J. Biol. Chem. 266, 28642871.CrossRefGoogle ScholarPubMed
Thesleff, S. (1986). Different kinds of acetylcholine release from the motor nerve. Intern. Rev. Neurobiol. 28, 5988.CrossRefGoogle ScholarPubMed
Thesleff, S., Molgo, J. & Tagerud, S. (1990). Trophic interrelations at the neuromuscular junction as revealed by the use of botulinal neurotoxins. J. Physiol. (Paris) 84, 167173.Google ScholarPubMed
Thieffry, M., Chich, J-F., Goldschmidt, D. & Henry, J-P.. (1988). Incorporation in lipid bilayers of a large conductance cationic channel from mitochondrial membranes. EMBO J. 7, 14491454.CrossRefGoogle ScholarPubMed
Thomas, L., Hartung, K., Langosh, D., Rehm, H., Bamber, E., Franke, W. W. & Betz, H. (1988). Identification of synaptophysin as a hexameric channel protein of the synaptic vesicle membrane. Science 242, 10501053.CrossRefGoogle ScholarPubMed
Tizzoni, G. & Cattani, G. (1890 a). Uber das Tetanusgift. Zentralbl. Bakt. 8, 6973.Google Scholar
Tizzoni, G. & Cattani, G. (1890 b). Untersuchungen über das Tetanusgift. Arch. exp. Pathol. Pharmakol. 27, 432450.CrossRefGoogle Scholar
Trimble, W. S., Cowan, D. M. & Scheller, R. H. (1988). VAMP-1: a synaptic vesicle-associated integral membrane protein. Proc. Natl. Acad. Sci. USA 85, 45384542.CrossRefGoogle ScholarPubMed
Vallee, B. L. & Auld, D. S. (1990). Zinc coordination, function and structure of zinc enzymes and other proteins. Biochemistry 29, 56475659.CrossRefGoogle ScholarPubMed
Vallee, R. B. & Bloom, G. S. (1991). Mechanisms of fast and slow axonal transport. Annu. Rev. Neurosci. 14, 5992.CrossRefGoogle ScholarPubMed
ValtortA, F., Maddedu, L., Meldolesi, J. & Ceccarelli, B. (1984). Specific localization of the à-latrotoxin receptor in the nerve terminal plasma membrane. J. Cell Biol. 99, 124132.CrossRefGoogle Scholar
Valtorta, F., Benfenati, F. & Greengard, P. (1992). Structure and function of the synapsins. J. Biol. Chem. 267, 71957198.CrossRefGoogle ScholarPubMed
Van Der Goot, F. G., Gonzalez-Menas, J. M., Lakey, J. H. & Pattus, F. (1991). A ‘molten globule’ membrane-insertion intermediate of pore-forming domain of colicin A. Nature 354, 408410.CrossRefGoogle Scholar
Van Der Kloot, W. & Molgo, J. (1994). Quantal acetylcholine release at the vertebrate neuromuscular junction. Physiol. Rev. 74, 899991.CrossRefGoogle ScholarPubMed
Van Ermengem, E. (1897). Über ein neuen anaeroben Bacillus und seine Beziehungen zum Botulismus. Ztsch. Hyg. Infektkrh. 26, 156.Google Scholar
Van Heyningen, W. E. (1959). Tentative identification of the tetanus toxin receptor in nervous tissue. J. gen. Microbiol. 20, 810820.Google Scholar
Van Heyningen, W. E. (1968). Tetanus. Sci. Am., 218, 6977.CrossRefGoogle ScholarPubMed
Van Heyningen, W. E. (1974). Gangliosides as membrane receptors for tetanus toxin, cholera toxin and serotonin. Nature. 249, 415417.CrossRefGoogle Scholar
Vile, R. G. & Weiss, R. A. (1991). Virus receptors as permeases. Nature 352, 666667.CrossRefGoogle ScholarPubMed
Von Gersdorff, H. & Matthews, G. (1994). Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals. Nature 367, 735739.CrossRefGoogle ScholarPubMed
Wadsworth, J. D. F., Desai, M., Tranter, H. S., King, H. J., Hambleton, P., Melling, J., Dolly, J. O. & Shone, C. C. (1990). Botulinum type F neurotoxin. Large scale purification and characterization of its binding to rat cerebrocortical synaptosomes. Biochem. J. 268, 123128.CrossRefGoogle ScholarPubMed
Walton, K. M., Sandberg, K., Rogers, T. B. & Schnaar, R. L. (1988). Complex ganglioside expression and tetanus toxin binding by PC 12 pheochromocytoma cells. J. Biol. Chem. 263, 20552063.CrossRefGoogle Scholar
Washbourne, P., Schiavo, G. & Montecucco, C. (1995). VAMP-2 forms a complex with synaptophysin. Biochem. J. 305, 721724.CrossRefGoogle ScholarPubMed
Weller, U., Taylor, C. F. & Habermann, E. (1986). Quantitative comparison between tetanus toxin, some fragments, and toxoid for binding and axonal transport in the rat. Toxicon 24, 10551063.CrossRefGoogle ScholarPubMed
Weller, U., Dauzenroth, M.-E., Meyer Heringdorf, D. & Habermann, E. (1989). Chains and fragments of tetanus toxin. Eur. J. Biochem. 182, 649656.CrossRefGoogle ScholarPubMed
Weller, U., Dauzenroth, M.-E., Gansel, M. & Dreyer, F. (1991). Cooperative action of the light chain of tetanus toxin and the heavy chain of botulinum toxin type A on the transmitter release of mammalian motor endplates. Neurosci. Lett. 122, 132134.CrossRefGoogle ScholarPubMed
Wellhoner, H. H. (1982). Tetanus neurotoxin. Rev. Physiol. Biochem. Pharmacol. 93, 168.Google ScholarPubMed
Wellhoner, H. H. (1992). Tetanus and botulinum neurotoxins. In Handbook of Experimental Pharmacology (eds. Herken, H. & Hucho, F.), vol 102, pp. 357417. Berlin: Springer–Verlag.Google Scholar
Wellhoner, H. H., Seib, U. C. & Hensel, B. (1973). Local tetanus in cats: the influence of neuromuscular activity on spinal distribution of 125I labelled tetanus toxin. Naunyn–Schmiedebergs Arch. Pharmacol. 276, 387394.CrossRefGoogle Scholar
Wellhoner, H. H. & Neville, D. Jr (1987). Tetanus toxin binds with high affinity to neuroblastoma x glioma hybrid cells NG 108–15 and impairs their stimulated acetylcholine release. J. Biol. Chem. 262, 17374–13738.CrossRefGoogle ScholarPubMed
Williams, R. S., Tse, C. K., Dolly, J. O., Hambleton, P. & Melling, J. (1983). Radioiodination of botulinum neurotoxin type A with retention of biological activity and its binding to brain synaptosomes. Eur. J. Biochem. 131, 437445.CrossRefGoogle ScholarPubMed
Williamson, M. P. (1994). The structure and function of proline–rich regions in proteins. Biochem. J. 297, 240260.CrossRefGoogle ScholarPubMed
Williamson, L. C., Fitzgerald, S. C. & Neale, E. A. (1992). Differential effects of tetanus toxin on inhibitory and excitatory neurotransmitter release from mammalian spinal cord cells in culture. J. Neurochem. 59, 21482157.CrossRefGoogle ScholarPubMed
Williamson, L. C. & Neale, E. A. (1994). Bafilomycin Ai inhibits the action of tetanus toxin in spinal cord neurons in cell culture. J. Neurochem. 63, 23422345.CrossRefGoogle ScholarPubMed
Whitman, C., Belgharbi, L., Gasse, F., Torei, C., Mattei, V. & Zoffmann, H. (1992). Progress toward the global elimination of neonatal tetanus. Wld. Hlth. Statis. Quart. 45, 248256.Google Scholar
Wright, J. F., Pernollet, M., Reboul, A., Aude, C. & Colomb, M. (1992). Identification and partial characterization of a low affinity metal-binding site in the light chain of tetanus toxin. J. Biol. Chem. 267, 90539058.CrossRefGoogle ScholarPubMed
Yamasaki, S., Hu, Y., Binz, T., Kalkuhl, A., Kurazono, H., Tamura, T., Jahn, R., Kandel, E. & Niemann, H. (1994 a). Synaptobrevin/VAMP of Aplysia californica: structure and proteolysis by tetanus and botulinal neurotoxins type D and F. Proc. Natl. Acad. Sci. USA 91, 46884692.CrossRefGoogle Scholar
Yamasaki, S., Baumeister, A., Binz, T., Blasi, J., Link, E., Cornille, F., Roques, B., Fykse, E. M., Südhof, T. C., Jahn, R. & Niemann, H. (1994 b). Cleavage of members of the synaptobrevin/VAMP family by types D and F botulinal neurotoxins and tetanus toxin. J. Biol. Chem. 269, 1276412772.CrossRefGoogle Scholar
Yavin, E. & Habig, W. H. (1984). Binding og tetanus toxin to somatic neural hybrid cells with varying ganglioside composition. J. Neurochem., 42, 13131321.CrossRefGoogle Scholar
Yavin, E. & Nathan, A. (1986). Tetanus toxin receptors on nerve cells contain a trypsin sensitive component. Eur. J. Biochem., 154, 403407.CrossRefGoogle ScholarPubMed
Zimmermann, J. M. & Piffaretti, J. C. (1977). Interaction of tetanus toxin and toxoid with cultured neuroblastoma cells. Analysis by immunofluorescence. Naunyn Schmiedebergs Arch. Pharmacol. 296, 271277.CrossRefGoogle Scholar