Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-23T13:16:50.911Z Has data issue: false hasContentIssue false

Quantum mechanical tunnelling in biological systems

Published online by Cambridge University Press:  17 March 2009

Don Devault
Affiliation:
Department of Physiology and Biophysics, University of Illinois, Urbana, Illinois 61801, U.S.A.

Extract

‘Tunnelling’ is the metaphorical name given to the process, possible in quantum mechanics, but not in classical mechanics, whereby a particle can disappear from one side of a potential-energy barrier and appear on the other side without having enough kinetic energy to mount the barrier. One can think of this as a manifestation of the wave-nature of particles. The wavelength is larger if a particle is lighter. In particular electrons, being very light compared to atoms, have wavelengths as large or larger than atoms at energies found in the valence shells of molecules. Thus, they easily ooze through and around atoms and molecules. We are also concerned with the tunnelling of heavy particles: nuclei, atoms, molecules.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alben, J. O., Beece, D., Bowne, S. F., Eisenstein, L., Frauenfelder, H., Good, D., Marden, M. C., Moh, P. P., Reinisch, L., Reynolds, A. H. &Yue, K. T. (1980). Isotope effect in molecular tunneling. Phys. Rev.Lett. 44, 11571160.CrossRefGoogle Scholar
Alberding, N., Austin, R. H., Beeson, K. W., Chan, S. S., Eisenstein, L., Frauenfelder, H. &Nordlund, T. M. (1976). Tunneling in ligand binding to heme proteins. Science, N.Y. 192, 10021003.CrossRefGoogle ScholarPubMed
Alkaitis, S. A., Grätzel, M. &Henglein, A. (1975). Laser photoionization of phenothiazine in micellar solution. II. Mechanism and light induced redox reactions with quinones. Ber. Bunsenges. Phys. Chem. 79, 541546CrossRefGoogle Scholar
Allen, G. C. & Hush, N. S. (1967). Intervalence-transfer absorption. i.Qualitative evidence for intervalence-transfer absorption in inorganic systems in solution and in the solid state. Prog. Inorg. Chem. 8, 357389.Google Scholar
Anderson, P. W. (1950). Antiferromagnetism. Theory of superexchange interaction. Phys. Rev. 79, 350356.CrossRefGoogle Scholar
A'nderson, P. W. &Rowell, J. M. (1963). Probable observation of the Josephson superconducting tunneling effect. Phys. Rev. Lett. 10, 230232.CrossRefGoogle Scholar
Arnold, W. &Clayton, R. K. (1960). The first step in photosynthesis: evidence for its electronic nature. Proc. natn. Acad. Sci. U.S.A. 46, 769776.CrossRefGoogle ScholarPubMed
Austin, R. H., Beeson, K. W., Eisenstein, L., Frauenfelder, H. &Gunsalus, I. C. (1975). Dynamics of ligand binding to myoglobin. Biochemistry 14, 53555573.CrossRefGoogle ScholarPubMed
Austin, R. H., Beeson, K. W., Eisenstein, L., Frauenfelder, H., Gunsalus, I. C. &Marshall, V. P. (1974). Activation energy spectrum of a biomolecule: photodissociation of carbonmonoxy myoglobin at low temperatures. Phys. Rev. Lett. 32, 403405.CrossRefGoogle Scholar
Austin, R. H. &Hopfield, J. J. (1980). Personal communication from John Hopfield.Google Scholar
Avouris, P., Peters, K. S. &Rentzepis, P. M. (1978). Direct measure of electron transfer in bacteriochlorophyll. Biophys. J. 21, 8a. Abstr.M-Am-Al.Google Scholar
Ballard, S. G. &Mauzerall, D. (1979). Kinetic, evidence for electron tunneling in solution. Tf, pp. 581587.CrossRefGoogle Scholar
Ballard, S. G. &Mauzerall, D. (1980). PhotochemicaL ionogenesis in solutions of zinc octaethyl porphyrin. J. chem. Phys. 72, 933947.CrossRefGoogle Scholar
Barber, J. (ed.) (1977). Primary Processes of Photosynthesis. Amsterdam: Elsevier/North Holland.Google Scholar
Bardeen, J. (1961). Tunneling from a many-particle point of view. Phys. Rev. Lett. 6, 5–5.CrossRefGoogle Scholar
Bardeen, J., Cooper, L. N. &Schrieffer, J. R. (1957). Theory of super conductivity. Phys. Rev. 108, 11751204.CrossRefGoogle Scholar
Bartsch, R. G. &Kamen, M. D. (1960). Isolation and properties of two soluble heme proteins in extracts of the photoanaerobe Chromatium. J. biol. Chem. 235, 825831.CrossRefGoogle ScholarPubMed
Bassham, J. A., Benson, A. A., Kay, L. D., Harris, A. Z., Wilson, A. T. &Calvin, M. (1954). The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor. J. Am. chem. Soc. 76, 17601770.CrossRefGoogle Scholar
Bateman, H.(1953). Higher Transcendental Functions, vol. II (ed. Erdélyi, A.et. al.). New York: McGraw-Hill.Google Scholar
Bawn, C. E. H. &Ogden, G.(1934). Wave mechanical effects and the reactivity of the hydrogen isotopes. Trans. Faraday Soc. 30, 432443.CrossRefGoogle Scholar
Becker, R. O., Bassett, C. A. &Bachman, C. H. (1964). Bioelectric factors controlling bone structure. In Bone Dynamics (ed. Frost, H. M.), pp. 209231. Boston: Little, Brown.Google Scholar
Beitz, J. V. &Miller, J. R. (1979 a). Tunneling distances and exothermic rate restrictions in electron transfer reactions T, pp. 269280.CrossRefGoogle Scholar
Beitz, J. V. &Miller, J. R. (1979). Exothermic rate restrictions on electron transfer in a rigid medium. J. chem. Phys. 71, 45794595.CrossRefGoogle Scholar
Bell, R. P. (1933) The application of quantum mechanics to chemical kinetics. Proc. R. Soc. Lond. A 139, 466474.Google Scholar
Bell, R. P. (1935). Quantum mechanical effects in reactions involving hydrogen. Proc. R. Soc. Land. A 148, 241250.Google Scholar
Birks, J. B. (1959). General Discussion. Discussion Faraday Soc. 27, 243244.Google Scholar
Bixon, M. &Jortner, J. (1968). Intramolecular radiationless transitions. J. chem. Phys. 48, 715726.CrossRefGoogle Scholar
Blankenship, R. E. &Parson, W. W. (1979). Kinetics and thermodynamics of electron transfer in bacterial reaction centers. In Photosynthesis in Relation to Model Systems (ed. Barber, J.), pp. 71114. Amsterdam: Elsevier/North Holland.Google Scholar
Blankenship, R. E., Schaafsma, T. J. &Parson, W. W. (1977). Magnetic field effects on radical pair intermediates in bacterial photosynthesis. Biochim. biophys. Acta 461, 297305.CrossRefGoogle ScholarPubMed
Blumenfeld, L. A. (1978). The physical aspects of energy transduction inbiological systems. Q. Rev. Biophys. II, 251308.CrossRefGoogle Scholar
Blumenfeld, L. A. &Chernavskii, D. S. (1973). Tunneling of electrons inbiological processes. J. theor. Biol. 39, 17.CrossRefGoogle Scholar
Boardman, N. K. &Anderson, J. M. (1964). Isolation from spinach chloroplasts of particles containing different proportions of chlorophyll a andchlorophyll b and their possible role in the light reactions of photosynthesis. Nature, Lond. 203, 166167.CrossRefGoogle Scholar
Bogomolni, R. A. &Klein, M. P. (1975). Mobile charge carriers in photosynthesis. Nature, Lond. 258, 8889.CrossRefGoogle Scholar
Bogomolni, R. A. &Klein, M. P. (1979). Faraday rotation and photo- Conductivity of photosynthetic structures at microwave frequencies.T, pp. 504–416.Google Scholar
Born, M. &Huang, K. (1954). Dynamical Theory of Crystal Lattice. NewYork: Oxford University Press.Google Scholar
Born, M. &Oppenheimer, J. R. (1927). Zur Quantentheorie der Molekeln. Annin Phys. 84, 457484.CrossRefGoogle Scholar
Bourgin, D. G. (1929). Unimolecular reactions. Proc. natn. Acad. Sci. U.S.A. 15, 357362.CrossRefGoogle ScholarPubMed
Brailsford, A. D. &Chang, T. Y. (1970). Nonradiative decay of individual vibronic levels in large molecules. J. chem. Phys. 53, 31083113.CrossRefGoogle Scholar
Brill, A. S. (1978). Activation of electron transfer reactions of the blueproteins. Biophys. J. 22, 139142.CrossRefGoogle Scholar
Brill, A. S. (1979). Conformational distribution and vibronic coupling in the blue copper-containing protein azurin. T, pp. 561568.CrossRefGoogle Scholar
Brillouin, L. (1926). La mecanique ondulatoire de Schrödinger; une generale de resolution par approximations successives. Comptes Rendus 183, 2426.Google Scholar
Brocklehurst, B. (1973). An electron-tunneling model for recombination of aromatic hydrocarbon radical ions in non-polar solvents. Chem. Phys. 2, 618.CrossRefGoogle Scholar
Brocklehurst, B. (1979). Electron tunneling after radiolysis. T, pp. 243267.CrossRefGoogle Scholar
Brocklehurst, B., Bull, D. C. &Evans, M. (1975). Thermoluminescence of solutions of squalane after y−irradiation. J. Chem. Soc., Far. Trans. II, 71, 543.CrossRefGoogle Scholar
Brönsted, J. N. (1928). Acid and basic catalysis. Chem. Rev. 5. 231338CrossRefGoogle Scholar
Budgor, A. (1979). Tunneling in network models of molecular chains.T, pp. 7790.CrossRefGoogle Scholar
Bunker, B. C., Drago, R. S., Hendrickson, D. N., Richman, R. M. &Kessell, S. L. (1978). Experimental evidence for trapped valences in a mixed-valence complex μ-pyrazine-bis (penta-ammineruthenium) tosylate. Electron paramagnetic resonance, magnetic susceptibility, and nuclear magnetic resonance results. J. Am. chem. Soc. 100, 38053814.CrossRefGoogle Scholar
Burrau, O. (1927). Berechnung des Energiewertes des Wasserstoff molekelions, (H+2) im Normalzustand. Det. Kgl. Danske Vid. Selskab. 7, nr.14 118.Google Scholar
Burstein, E. &Lundqvist, S. (eds.) (1969). Tunneling Phenomenon in Solids. New York: Plenum.CrossRefGoogle Scholar
Butler, J., Jayson, G. G. &Swallow, A. J. (1975). The reaction between the superoxide anion radical and cytochrome c. Biochim. biophys. Acta 408, 215222.CrossRefGoogle ScholarPubMed
Butler, W. L. (1973). Primary photochemistry of photosystem II of photosynthesis. Acc. Chem. Res. 6, 117184.CrossRefGoogle Scholar
Butler, W. L., Visser, J. W. M. &Simons, H. L. (1973). The kinetics of light-induced changes of C-550, cytochrome b 559 and fluorescence yield in chloroplasts at low temperature. Biochem. biophys. Acta 292, 140151.Google ScholarPubMed
Buxton, G. V. &Kemsley, K. G. (1976). Low temperature pulse radiolysis of concentrated aqueous solutions. J. chem. Soc. Far. Trans. I, 72, 466480.CrossRefGoogle Scholar
Calvin, M. (1956). The photosynthetic carbon cycle. J. chem. Soc. pp. 18951915.CrossRefGoogle Scholar
Calvin, M. &Sogo, P. B. (1957). Primary quantum conversion process in photosynthesis: electron spin resonance. Science, N.Y. 125, 499500.CrossRefGoogle ScholarPubMed
Cartling, B. &Ehrenberg, A. (1979). The energy transforming function associated with electron transfer reactions in biological systems. T, pp. 575580.CrossRefGoogle Scholar
Chance, B. (1979). (General discussion on biological specificity and control). T, pp. 609610.Google Scholar
Chance, B. &Bonner, W. D. Jr, (1963) The temperature insensitive oxidation of cytochrome F in green leaves – a primary biochemical event of photosynthesis. In Photosynthesis Mechanisms in Green Plants, pp. 6681,. National Acad. Science-National Research Council Publication, no. 1145.Google Scholar
Chance, B., Devault, D., Frauenfelder, H., Marcus, R. A., Schrieffer, J. R. &Sutin, N. (eds.) (1979 a). Tunneling in Biological Systems. New York: Academic Press. This reference is abbreviated T in references to its chapters.Google Scholar
Chance, B., DeVault, D., Legallais, V., Mela, L. &Yonetani, T. (1967).Kinetics of electron transfer reactions in biological systems. In Nobel Symposium, no. Fast Reactions and Primary Processes in Chemical Kinetics (ed. Claesson, S.), pp. 437468. New York: Interscience.Google Scholar
Chance, B., DeVault, D., Tasaki, A. &Thornber, J. P. (1979 b). The effects of high hydrostatic pressure on light-induced electron transfer and proton binding in Chromatium. T, pp. 387402.CrossRefGoogle Scholar
Chance, B. &Hollunger, G.(1957). Succinate-linked pyridine nucleotide reduction in mitochondria. Fdn Proc. 16, Abstr. 703, p. 163.Google Scholar
Chance, B. &Hollunger, G. (1961). The interaction of energy and electron transfer reactions in mitochondria. I. General properties and nature of the products of succinate-linked reduction of pyridine nucleotide. J. biol. Chem. 236, 15341543.CrossRefGoogle ScholarPubMed
Chance, B., Kihara, T., Devault, D., Hildreth, W., Nishimura, M. &Hiyama, T. (1969). Temperature insensitive electron transfer in photosynthetic systems. In Progress in Photosynthesis Research (ed. Metzner, H.), pp. 13211346.Tübingen.Google Scholar
Chance, B. &Nishimura, M. (1960). On the mechanism of chlorophyllcytochrome interaction: the Temperature insensitivity of light-induced cytochrome oxidation in chromatium. Proc. natn. Acad. Sci. U.S.A. 46, 1924.CrossRefGoogle ScholarPubMed
Chance, B., Saronio, C. &Leigh, J. S. Jr, (1975). Functional intermediate in reaction of cytochrome oxidase and oxygen. Proc. natn. Acad. Sci. U.S.A., 72, 16351640.CrossRefGoogle Scholar
Chance, B., Saronio, C., leigh, J. S. Jr & Waring, A. (1979 c). Electron transfer reactions in cytochrome oxidase. T, pp. 483511.CrossRefGoogle Scholar
Chance, B. &Williams, G. R. (1956). The respiratory chain and oxidative phosphorylation. In Advances in Enzymology (ed. Nord, F. F.), pp. 65134. New York: Interscience.Google Scholar
Chen, E. C. M. &Wentworth, W. E. (1975). A comparison of experimental determinations of electron affinities of P1 charge transfer complex acceptors. J. chem. Phys. 63, 31833194.CrossRefGoogle Scholar
Chernavskaya, N. M. &Chernavskil, D. S. (1978). Fizicheskie aspekti vfunktsionirovanii bakteriorodapsina. Academy of Sciences, USSR, Physics Institute, Preprint no. 61. Moscow.Google Scholar
Chernavskaya, N. M., Chernavskii, D. S., Gunther, K., Hache, A. &Kilyachkov, A. A. (1977). On the mechanism of energy transformation in photosynthesis. Stud. Biophys. 62, 109126.Google Scholar
Child, M. S. (1967). Measurable consequences of a dip in the activation barrier for an adiabatic chemical reaction. Molec. Phys. 12, 401416.CrossRefGoogle Scholar
Chou, M., Creutz, C. &Sutin, N. (1977). Rate constants and activation parameters for outer-sphere electron transfer reactions and comparisons with the predictions of Marcus theory. J. Am. chem. Soc. 99 56155623.CrossRefGoogle Scholar
Christov, ST. G. (1958). Die Rolle des Tunnelubergangs der lonen in der Kinetik der Elektrodenvorgange. Z. Elektrochem. 62, 567581.Google Scholar
Christov, ST. G. (1960). Die anwendung der parabolischen PotentialSChWelle auf die Untersuchung der Quanteneffekte in der Elektrochemic. Z.Elektrochem. 64, 840848.Google Scholar
Christov, ST. G. (1975). Quantum theory of electron-transfer processes in solution. Ber. Buns. Gesellschaft 79, 357371.CrossRefGoogle Scholar
Clarke, J. (1974). Josephson junction detectors. Science, N.Y. 184, 12341242.CrossRefGoogle Scholar
Clayton, R. K. (1979). Some data of possible relevance to tunneling in photosynthetic reaction centers. T, pp. 377386.CrossRefGoogle Scholar
Clayton, R. K. &Devault, D. (1972). Effects of high pressure on photo- chemical reaction centers from Rhodopseudomoflas spheroides. Photochem.& Photobiol. 15, 165–75.CrossRefGoogle Scholar
Clayton, R. K. &Wang, R. T. (1971). Photochemical reaction centers from Rhodopseudomonas spheroides. In Methods in EnzymologY, 23 (ed. Colwick, S. P., Kaplan, N. and Pietro, A. San), pp. 696704. New York: Academic.Google Scholar
Clayton, R. K. &Yau, H. F. (1972). Photochemical electron transport in photosynthetic reaction centers from Rhodopseudomonas spheroides. I. Kinetics of the oxidation and reduction of P-870 as affected by external factors. Biophys. J. 12, 867881.CrossRefGoogle ScholarPubMed
Cohen, M. H., Falicov, L. M. &Phillips, J. C. (1962).Superconductive tunneling. Phys. Rev. Lett. 8, 316318.CrossRefGoogle Scholar
Coleman, R. V. (1979). Detection of molecular vibrations with electron tunneling. T, pp. 6776.CrossRefGoogle Scholar
Condon, E. U. (1926). A theory of intensity distribution in band systems. Phys. Rev. 28, 11821201.CrossRefGoogle Scholar
Condon, E. U. (1928). Nuclear motions associated with electron transitions in diatomic molecules. Phys. Rev. 32, 858872.CrossRefGoogle Scholar
Condon, E. U. &Morse, P. M. (1929). Quantum Mechanics. New York: McGraw-Hill.Google Scholar
Cope, F. W. (1965 a). A generalized theory of particulate electron conduction enzymes applied to cytochrome oxidase. A theory of coupled electron and/or ion transport applied to pyruvate carboxylase. Bull, math. Biophys. 27,237252.CrossRefGoogle ScholarPubMed
Cope, F. W. (1965b). A kinetic theory of electron and ion transport in particulate and membraneous systems, with applications to cytochrome oxidase, melanin free radical and pyruvate carboyxylase reactions, and to control of enzymes by hormones and radiation. In Oxidases and Related Redox Systems (ed. King, T., Mason, H. and Morrison, M.), pp. 5171. New York: Wiley.Google Scholar
Cope, F. W. &Straub, K. D. (1969). Calculation and measurement of semi- conduction activation energy and electron mobility in cytochrome oxidase, with evidence that charge carriers are polarons, which may couple oxidation to phosphorylation. Bull, math. Biophys. 31, 761772.CrossRefGoogle Scholar
Cramer, W. A. &Whitmarsh, J. (1979). An application of electron transfer theory to a problem in chloroplast membrane topography. T, pp. 363370.CrossRefGoogle Scholar
Cramer, W. A., Whitmarsh, J. &Horton, P. (1979). Cytochrome b in energy-transducing membranes. In The Porphyrins, vol. VII (ed. Dolphin, D.), pp. 71106. New York: Academic Press.CrossRefGoogle Scholar
Creutz, C. &Sutin, N. (1977). Vestiges of the ‘inverted region’ for highly exergonic electron-transfer reactions. J. Am. chem. Soc. 99,241243.CrossRefGoogle Scholar
Cribb, P. H., Nordholm, S. &Hush, N. S. (1979). A general theoretical approach to tunneling transfer and dissociation. T, pp. 139144.CrossRefGoogle Scholar
Cusanovich, M. A. &Bartsch, R. G. (1969). A high potential cytochrome c from Chromatium chromatophores. Biochim. biophys. Acta 189, 245255.CrossRefGoogle ScholarPubMed
Cusanovich, M. A. &Mizrahi, I. A. (1979). Electron transfer between c-type cytochromes and high potential iron-sulfer proteins. T, pp. 355362.Google Scholar
DeVault, D. (1979). Introduction to biological aspects. T, pp. 303316.CrossRefGoogle Scholar
Devault, D. &Chance, B. (1966). Studies of photosynthesis using a pulsed laser. L Temperature dependence of cytochrome oxidation rate in chromatium. Evidence for tunneling. Biophys. J. 6, 825847.Google Scholar
Devault, D., Parkes, J. H. &Chance, B. (1967). Electron tunnelling in cytochromes. Nature, Lond. 215, 642644.CrossRefGoogle ScholarPubMed
Dexter, D. L. (1953). A theory of sensitized luminescence in solids J. chem.Phys. 21, 836850.CrossRefGoogle Scholar
Dirc, P. A. M. (1927). The physical interpretation of the quantum dynamics. Proc. R. Soc. Lond. A 113, 621641.Google Scholar
Dirc, P. A. M. (1935). Quantum Mechanics. New York: Oxford University Press.Google Scholar
Dgonaze, R. R., Kharkats, Yu. I. &Ulstrup, J. (1976). A dynamic quantum mechnical model for the elementary act of spontaneous and induced mutations. Chem. Phys. Lett. 37, 360364.Google Scholar
Dogonadze, R. R., Kuznetsov, A. &Chernenko, A. (1965). Teoriya gomogennikh i geterogennikh elektronikh protsessov v shidkostyakh. Usp. Khim. 34, 17791812.Google Scholar
Dogonadze, R. R., Kuznetsov, A. M. &Vorotyntsev, M. A. (1972 a). On the theory of nonradiative transitions in polar media. I. Processes without ‘mixing’ of quantum and classical degrees of freedom. Phys. Status Solids B 54, 125134.CrossRefGoogle Scholar
Dogonadze, R. R., Kuznetsov, A. M. &Vorotyntsev, M. A. (1972 b). II. Processes with ‘mixing’ of quantum and classical degrees of freedom. Phys. Status Solids B 54, 425433.CrossRefGoogle Scholar
Dogonadze, R. R., Kuznetsov, A. M., Zakaraya, M. G. &Ulstrup, J. (1979). A quantum theory of low-temperature chemical and biological rate processes in condensed media. T, pp. 145171.CrossRefGoogle Scholar
Dogonadze, R. R., Ulstrup, J. &Kharkats, Yu. I. (1973 a). A theory of polar medium electron transfer reactions through bridge groups with a quasicontinuous energy spectrum. J. theor. Biol. 40, 259277.CrossRefGoogle ScholarPubMed
Dogonadze, R. R., Ulstrup, J. &Kharkats, Yu. I. (1973 b). A theory of bridge-assisted polar medium electron transfer reactions between molecules having quasi continuous electronic energy spectra. J. theor. Biol. 40, 279283.CrossRefGoogle Scholar
Douglass, D. H. Jr, (1961). Direct experimental measurement of the magnetic field dependence of the superconducting energy gap of aluminum. Phys. Rev. Lett. 7, 1416.CrossRefGoogle Scholar
Douzou, P. (1977). Cryobiochemistry. New York: Academic Press.Google Scholar
Duke, C. B. (1969). Tunneling in Solids. New York: Academic Press.Google Scholar
Duke, C. B. (1979). Concepts in quantum mechanical tunneling in systems of biological and chemical interest. T, pp. 3165.CrossRefGoogle Scholar
Dunham, J. L. (1932). The Wentzel-Brillouin-Kramers method of solving the wave equation. Phys. Rev. 41, 713720.CrossRefGoogle Scholar
Dutton, P. L. (1971). Oxidation-reduction potential dependence of the interaction of cytochromes, bacteriochlorophyll and carotenoids at 77K in chromatophores of Chromatium D and Rhodopseudomonas gelatinosa. Biochim. biophys. Acta 226, 6380.CrossRefGoogle Scholar
Dutton, P. L., Kaufmann, K. J., Chance, B. &Rentzepis, P. M. (1975). Picosecond kinetics of the 1250 nm band of the Rps. sphaeroides reaction center: the nature of the primary photochemical intermediary state. FEBS Lett. 60, 275280.CrossRefGoogle Scholar
Dutton, P. L., Kihara, T., Mccray, J. A. & Thornber, J. P. (1971). Cytochrome C553, and bacteriochiorophyll interaction at 77 °K in chromatophores and a subchromatophore preparation from Chromatium D. Biochim. biophys. Acta 226, 8187CrossRefGoogle Scholar
Dutton, P. L., Leigh, J. S. Jr, Prince, R. C. &Tiede, D. M. (1979).Cytochrome reaction center-quinone interactions: models for biological electron transfer. T, pp. 319352.CrossRefGoogle Scholar
Dutton, P. L., Leigh, J. S. &Seibert, M. (1972). Primary processes in photosynthesis: in situ ESR studies on the light induced oxidized and triplet state of reaction center bacteriochiorophyll. Biochem. biophys. Res.Comm. 46, 406413.CrossRefGoogle Scholar
Dutton, P. L., Prince, R. C., Tiede, D. M., Petty, K. M., Kaufmann, K. J., Netzel, T. L. &Rentzepis, P. M. (1976). Electron transfer in the photosynthetic reaction center. In Chlorophyll-proteins, Reaction Centers and Photosynthetic Membranes (ed. Olson, J. M. and Hind, G. H.), pp. 213236. Brookhaven Symposia in Biology, no. 28. Brookhaven National Laboratory, New York.Google Scholar
Dynes, R. C. (1979). Tunneling in physical systems. T, pp. 1728.CrossRefGoogle Scholar
Eckart, K. (1930). The penetration of a potential barrier by electrons. Phys.Rev. 35, 13031309.CrossRefGoogle Scholar
Eigen, M. (1930). Uber die Kinetik sehr schnell verlaufender Ionenreaktionen in wasseriger Losung. Z. phys. Chem. (N.F.) I, 176200.Google Scholar
Eley, D. D. &Parfitt, G. D.(1955). The semiconductivity of organic substances, part 2. Trans. Faraday Soc. 51, 15291539.CrossRefGoogle Scholar
Eley, D. O., Parfitt, G. D., Perry, M. H. &Taysum, D. H. (1953). The semiconductivity of organic substances, part i. Trans. Faraday Soc. 49, 7986.CrossRefGoogle Scholar
Eley, D. D. &Willis, M. R. (1961). The electrical conductivity of solid free radicals and the electron tunneling mechanism. In Symposium on Electrical Conductivity in Organic Solids (ed. Kallman, H. and Silver, M.), pp. 257276. New York: Wiley.Google Scholar
Emin, D. (1975). Phonon-assisted transition rates. I. Optical phonon-assisted hopping in solids. Adv. Phys. 24, 305348.CrossRefGoogle Scholar
Englman, R. & Jortner, J. (1970). The energy gap law for radiationless transitions in large molecules. Molec. Phys. 18, 145164.CrossRefGoogle Scholar
Erecinska, M. (1979). Mitochondrial electron transfer at phosphorylation sites 2 and T, pp. 453470.CrossRefGoogle Scholar
Erecinska, M., Blasie, J. K. &Wilson, D. F. (1977). Orientation of the hemes of cytochrome c oxidase and cytochrome c in mitochondria. FEBS Lett. 76, 235239.CrossRefGoogle ScholarPubMed
Erecinska, M. &Chance, B. (1972). Studies on the electron transport chain at subzero temperatures: electron transport at site III. Archs Biochem. Biophys. 151, 304315.CrossRefGoogle Scholar
Erecjnska, M., Wilson, D. F. &Blasie, J. K. (1978). Studies on the orientations of the mitochondrial redox carriers. L Orientation of the hemes of cytochrome c oxidase with respect to the plane of a cytochrome oxidase-lipid model membrane. Biochim. biophys. Acta 501, 5362.CrossRefGoogle Scholar
Esaki, L. (1958). New phenomenon in narrow germanium p-n junctions. Phys. Rev. 109, 603604.CrossRefGoogle Scholar
Esaki, L. (1974). Long journey into tunneling. Science, N.Y. 183, 11491155.CrossRefGoogle ScholarPubMed
Esaki, L. &Miyahara, Y. (1960). New device using the tunneling process in narrow P-N junctions. Solid-St. Electron I, 1321.CrossRefGoogle Scholar
Evans, M. C. W., Reeves, S. G. &Cammack, R. (1974). Determination of the oxidation-reduction potential of the bound iron-sulphur proteins of the primary electron acceptor complex of photosystem I in spinach chloroplasts. FEBS Lett. 49, 1111144.CrossRefGoogle ScholarPubMed
Evans, M. C. W., Sihra, C. K. &Cammack, R. (1976). The properties of the primary electron acceptor in photosystem I reaction centre of spinach chloroplasts and its interaction with P700 and the bound ferredoxin in Various oxidation-reduction states. Biochem. J. 158, 7177.CrossRefGoogle ScholarPubMed
Ewall, R. X. &Bennett, L. E. (1974). Reactivity characteristics of cytochrome c (III) adduced from its reduction by hexammineruthenium (11) ion. J. Am. chem. Soc. 96, 940942.CrossRefGoogle Scholar
Eyring, H. (1935 a). The activated complex in chemical reactions. J. chem. Phys. 3, 107115.CrossRefGoogle Scholar
Eyring, H. (1935b). The activated complex and the absolute rate of chemical reactions. Chem. Rev. 17, 6577.CrossRefGoogle Scholar
Fawcett, A. H. (1975). Formaldehyde polymers in intersteller space. Nature, Lond. 257, 159.CrossRefGoogle Scholar
Feher, G. (1971). Some chemical and physical properties of a bacterial reaction center particle and its primary photochemical reactants. Photochem. & Photobiol. 14, 373387.CrossRefGoogle ScholarPubMed
Feinberg, B. A., Aprahamia, N G., Neeck, L., Ryan, M. D. &Wet, J-F. (1979). Overall charge control of the ionic strength effects upon the redox kinetics of small molecule-protein and protein-protein reactions. T, pp. 569–57.CrossRefGoogle Scholar
Feinberg, B. A., Ryan, M. D. &Wet, J. F.(1977). Comparative kinetic- ionic strength study of two differently charged cytochromes c: effects are limited to overall charge. Biochem. biophys. Res. Commun. 79, 769775.CrossRefGoogle Scholar
Ferguson-miller, S., Brautigan, D. L. &Margoliasfi, E. (1978). Defintion of cytochrome c binding domains by chemical modification. III. Kinetics of reaction of carboxydinitrophenyl cytochromes c with cyto chrome c oxidase. J. blot. Chem. 253, 149159.Google Scholar
Ferguson-miller, S., Brautigan, D. L. &Margoliash, E. (1979). Definition of the surface of cytochrome c interacting with cytochrome oxidase. T, pp. 513521.CrossRefGoogle Scholar
Feynman, R. P., Leighton, R. B. &Sands, M. (1965). The Feynman lectures on physics. Vol. III. Quantum Mechanics. New York: Addison-Wesley.Google Scholar
Fischer, H., Tom, G. M. &Taube, H. (1976). Intramolecular electron transfer mediated by 4,4'-bipyridine and related bridging groups. J. Am. chem. Soc. 98, 55125527CrossRefGoogle Scholar
Fischer, S. F. &Van DUYNE, R. P. (1977). On the theory of electron transfer reactions. The naphthalene /TCNQ system. Chem. Phys. 26, 916.CrossRefGoogle Scholar
Fiske, M. D. (1964). Temperature and magnetic field dependences of the Josephson tunneling current. Rev, mod. Physics 36, 221222.CrossRefGoogle Scholar
Floyd, R. A., Bronsdon, A. &Commoner, B. (1973). ESR signals during X-irradiation of tissue: their characteristics and relationship to the cancerous state. Ann. N.Y. Acad. Sci. 222, 10771086.CrossRefGoogle Scholar
Floyd, R. A., Chance, B. &Devault, D. (1971). Low temperature photo- induced reactions in green leaves and chloroplasts. Biochim. biophys. Acta 226, 103112.CrossRefGoogle ScholarPubMed
Floyd, R. A. &Soong, L. M. (1977). Obligatory free radical intermediate in the oxidative activation of the carcinogen N-hydroxy-2-acetylamino-fluorene. Biochim. biophys. Acta 498, 244249.CrossRefGoogle Scholar
Floyd, R. A., Soong, L. M., Stuart, M. A. &Reigh, D. C. (1978). Free radicals and carcinogenesis. Some properties of the nitroxyl free radicals produced by covalent binding of z-nitrosofluorene to unsaturated lipids of membranes. Archs Biochem. Biophys. 185, 460467.Google ScholarPubMed
Förster, T. (1946). Energiewanderung und F luoreszenz. Nat urwissenschaften 33, 166175.Google Scholar
Fowler, R. H. &Nordheim, L. (1928). Electron emission in intense electric fields. Proc. R. Soc. Lond. A 119, 173181.Google Scholar
Franck, J. (1925). Elementary processes of photochemical reactions. Trans.Faraday Soc. 21, 536542.CrossRefGoogle Scholar
Frank, A. J., Gratzel, M., Henglein, A. &Janata, E. (1976). Electron transfer reactions of singlet and triplet pyrene in micelles with various radical anions in aqueous solution. Ber. Bungsenges Phys. Chem. 80, 294300.CrossRefGoogle Scholar
Franz, W. (1967). Duration of the tunneling single process. Phys. Status Solids 22, K 139140.CrossRefGoogle Scholar
Frauenfelder, H. (1978). Principles of ligand binding to heme proteins. In Methods in Enzymology 54 E (ed. Fleischer, S. and Packer, L.), pp. 506532. New York: Academic Press.Google Scholar
Frauenfelder, H. (1979). Molecular tunneling in heme proteins. T, pp. 627646.CrossRefGoogle Scholar
Frauenfelder, H., Petsko, G. A. &Tsernoglou, D. (1979). X-ray diffraction reveals protein structural dynamics. Nature, Lond. 280, 558563.CrossRefGoogle Scholar
Freed, K. F. (1978). Radiationless transitions in molecules. Acc. Chem. Res.II, 7480.CrossRefGoogle Scholar
Frenkel, A. W. (1970). Bacterial photosynthesis. Biol. Rev. 45, 569616.CrossRefGoogle ScholarPubMed
Frenkel, J. &Joff, A. (1932). On the electric and photoelectric properties of contacts between a metal and a semiconductor. Physik. Z. Sowji, 1 60–7.Google Scholar
Fröhlich, H. (1968). Long-range coherence and energy storage in biological systems. hit. J. Quantum Chem. 2, 641649.Google Scholar
Frumkin, A. N. (1933). Diskussionsbemerkungen. Following R. W. Gunrszy: Quantum mechanics and overpotential. Phys. Z. SowjU 4, 360364.Google Scholar
Fulton, T. A., Dynes, R. C. &Anderson, P. W. (1973). The flux shuttle - a Josephson junction shift register employing single flux quanta. Proc.IEEE 61, 2835.CrossRefGoogle Scholar
Fuoss, R. M. (1958). lonic association. III. The equilibrium between ion pairs and free ions. J. Am. chem. Soc. 80, 50595061.CrossRefGoogle Scholar
Gamow, G. (1928). Zur Quanten theorie des Atom kernes. Z. Plzys. 51, 204212.Google Scholar
Giaever, I. (1960 a). Energy gap in superconductors measured by electron tunneling. Phys. Rev. Lett. 5, 147148.CrossRefGoogle Scholar
Giaever, I. (1960b). Electron tunneling between two superconductors. Phys. Rev. Lett. 5, 464466.CrossRefGoogle Scholar
Giaever, I. (1974). Electron tunneling and superconductivit, Science, N.Y. 183, 12531258.CrossRefGoogle Scholar
Giaever, I., Hart, H. R. Jr, & Megerle, K. (1962). Tunneling into super- conductors at temperatures below K. Phys. Rev. 126, 941948.CrossRefGoogle Scholar
Glaeser, R. M. &Berry, R. S. (1966). Mobilities of electrons and holes in organic molecular solids. Comparison of band and hopping models. J. chem. Phys. 44, 37973810.CrossRefGoogle Scholar
GoldanskII, V. I. (1976). Chemical reactions at very low temperatures. A. Rev. phys. Chem. 27, 85126.CrossRefGoogle Scholar
Goldanskh, V. I. (1979 a). Quantum chemical reactivity near absolute zero: biological, chemical and astrophysical aspects. T, pp. 663–711.CrossRefGoogle Scholar
Goldanskii, V. L (1979 b). Facts and hypotheses of molecular chemical tunneling. Nature, Lond. 279, 109115.CrossRefGoogle Scholar
Goldanskii, V. I., Frank-kamenetskii, M. D. &Barkalov, I. M. (1973). Quantum low-temperature limit of a chemical reaction rate. Science, N.Y. 182, 13441345.CrossRefGoogle ScholarPubMed
Gouterman, M. (1962). Radiationless transitions: a semiclassical model. J. chem. Phys. 36, 28462853.CrossRefGoogle Scholar
Govindjee, (ed.) (1975). Bioenergetics of Photosynthesis. New York: Academic Press.Google Scholar
Govindjee, R., Smith, W. R. & Govindjee, (1974). Interaction of viologen dyes with chromatophores and reaction-center preparations from Rhodospirillum rubrum. Photochem. & Photobiol. 20, 191199.CrossRefGoogle Scholar
Govindjee, R. &Sybesma, C. (1972). The photoreduction of nicotinamideadenine dinucleotide by chromatophore fractions from Rhodospirillum rubrum. Biophys. J. 12, 897908.CrossRefGoogle ScholarPubMed
Grätzel, M., Henglein, A. &Janata, E. (1975). Mechanism of electron transfer from e -aq to acceptors in micelles. Ber. Bunsenges Phys. Chem. 79, 475480.Google Scholar
Grigorov, L. N. &Chernavskii, D. S. (1972). Quantum mechanical model of electron transfer from cytochrome to chlorophyll in photosynthesis. Biofizika 17, 195202 (202–209 in English translation).Google ScholarPubMed
Grigorov, L. N., Kononenko, A. A. & amp Rubin, A. B. (1970). Issledovanie nigkotemperaturnikh fotoindutsirovannikh okislitelnovosstanovitelnikh reaktsii tsitokhromov v kletkakh serobakterii rhodopseudomonas sp. Mol. Biol. USSR 4, 483490.Google Scholar
Gupta, R. K. &Yonetani, T. (1973). Nuclear magnetic resonance study of the interaction of cytochrome c with cytochrome c peroxidase. Biochim.biophys. Acta 292, 502508.CrossRefGoogle ScholarPubMed
Gurney, R. W. (1931). The quantum mechanics of electrolysis. Proc. R. Soc. Lond. A 134, 137154.Google Scholar
Gurney, R. W. &Condon, E. U. (1928) Wave mechanics and radioactive disintegration. Nature, Lond. 122, 439CrossRefGoogle Scholar
Gutmann, F. (1968). Electron tunneling in biological structures. Nature, Lond. 218, 1359.CrossRefGoogle Scholar
Hales, B. J. (1976). Temperature dependency of the rate of electron transport as a monitor of protein motion. Biophys. J. 16, 471480.CrossRefGoogle ScholarPubMed
Hansma, P. K. &Coleman, R. V. (1974). Spectroscopy of biological compounds with inelastic electric tunneling. Science, N.Y. 184, 13691371.CrossRefGoogle ScholarPubMed
Hart, E. J. &Anbar, M. (1970). The Hydrated Electron. New York: Wiley Interscience.Google Scholar
Hayashi, T., Mataga, N., Umemoto, T., Sakata, Y. &Misumi, S. (1977 a). Solvent-induced polarization phenomena in the excited state of composite systems with identical halves. 2. Effects of polarity upon the fluorescence of [2.2] (1,3) pyrenophane. J. phys. Chem. 81, 424429.CrossRefGoogle Scholar
Hayashi, T., Suzuki, T., Mataga, N., Sakata, Y. &Misumi, S. (1977 b). Solvent-induced polarization phenomena in the excited state of composite systems with identical halves. I. Effects of solvent medium on the fluorescence spectra of 1,2-dianthrylethanes. J. phys. Chem. 81, 420423.CrossRefGoogle Scholar
Heitler, W. &London, F. (1927). Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Z. Phys. 44, 455472.CrossRefGoogle Scholar
Henglein, A. 1974 Estimated distributions of electronic redox levels in aq/eāaq, H+aq/Haq and some other systems. Ber. Buns. Gesell. 78, 10781084CrossRefGoogle Scholar
Henglein, A. (1975). Estimated distribution functions of electronic redox levels and the rate of chemical reactions of excess electrons in dielectric liquids. Ber. Bunsenges Ges. phys. Chem. 79, 129135.CrossRefGoogle Scholar
Henry, B. R. &Siebrand, W. (1950). Radiationless transitions. In Organic Molecular Photophysics, vol. 1 (ed. Birks, J. B.). New York: Wiley.Google Scholar
Herzberg, G. (1950). Molecular spectra and molecular structure. New York: Van Nostrand.Google Scholar
Hinatu, J., Masuhara, H., Mataga, N., Sakata, Y. & Misumi, S. (1978). Absorption spectra of inter- and intramolecular exciplex systems o pyrene and N, N-dimethylanaline in alcoholic solutions. Bull. chem. Soc. Japan 51, 10321036.CrossRefGoogle Scholar
Hiyama, T. &Ke, B. (1971). A new photosynthetic pigment, ‘P430’: its possible role as the primary acceptor of photosystem I. Proc. natn. Acad. Sci. U.S.A. 68, 10101013.CrossRefGoogle ScholarPubMed
Hobey, W. D. &Mclachlan, A. D. (1960). Dynamical Jahn-Teller effect in hydrocarbon radicals. J. chem. Phys. 33, 16951703.CrossRefGoogle Scholar
Hodges, H. L., Holwerda, R. A. &Gray, H. B. (1974). Kinetic studies of of the reduction of ferricytochrome c by Fe(EDTA)2. J. Am. chem. SOC. 96, 31323137.CrossRefGoogle ScholarPubMed
Hoff, A. J., Rademaker, H., Van, Grondelle R. &Duysens, L. N. M. (1977). On the magnetic field dependence of the yield of the triplet state in reaction centers of photosynthetic bacteria. Biochim. biophys. Acta 460, 547554CrossRefGoogle Scholar
Holonyak, N., Lesk, A., Hall, R. N., Tiemann, J. J. & Ehrenreich, (1959). Direct observation of phonons during tunneling in narrow junction diodes. Phys. Rev. Lett. 3, 167168.CrossRefGoogle Scholar
Holstein, T. (1952). Mobilities of positive ions in their parent gases. J. Phys. Chem. 56, 832836.CrossRefGoogle Scholar
Holstein, T. (1959 a). Studies of polaron motion. I. The molecular crystal model. Ann. Phys. (N. Y.) 8, 325342.CrossRefGoogle Scholar
Holstein, T. (1959 b). Studies of polaron motion. II. The ‘small’ polaron. Ann. Phys. (N. Y.) 8, 343389.CrossRefGoogle Scholar
Holstein, T. (1979). Chemical-rate theory of small-polaron hopping. T, pp. 129136.CrossRefGoogle Scholar
Holten, D., Gouterman, M., Parson, W. W., Windsor, M. W. &Rockley, M. G. (1976). Electron transfer from photoexcited singlet and triplet bacteriopheophytin. Photochem. & Photobiol. 23, 415423.CrossRefGoogle ScholarPubMed
Holten, D., Windsor, M. W., Parson, W. W. &Gouterman, M. (1978 a). Models for bacterial photosynthesis: electron transfer from photo- excited singlet bacteriopheophytin to methyl viologen and m−dinitro-benzene. Photochem. & Photobiol. 28, 951961.CrossRefGoogle Scholar
Holten, D., Windsor, M. W., Parson, W. W. &Thornber, J. P. (1978 b). Primary photochemical processes in isolated reaction centers of Rhodo pseudomonas viridis. Biochim. biophys. Acta 501, 112126.CrossRefGoogle Scholar
Honig, B., Ebrey, T., Callender, R. H., Dinur, U. &Ottolenghi, M. (1979). Photoisomerization, energy storage, and charge separation: A model for light energy transduction in visual pigments and bacteriorhodopsin. Proc. natn. Acad. Sci. U.S.A. 76, 25032507.CrossRefGoogle Scholar
Hopfield, J. J. (1974). Electron transfer between biological molecules by thermally activated tunneling. Proc. natn. Acad. Sci. U.S.A. 71, 36403644.CrossRefGoogle ScholarPubMed
Hopfield, J. J. (1976). Fundamental aspects of electron transfer in biological membranes. In Phénomènes électrique au niveau des membrane biologique. Proc. 29th Int. Congr. Société Chimie Physique (ed. Roux, E.), pp. 471492. Amsterdam: Elsevier.Google Scholar
Hopfield, J. J. (1979). Photo-induced charge transfer. A critical test of the mechanism and range of biological electron transfer processes. Biophys. J. 18, 311321.CrossRefGoogle Scholar
Hopfield, J. J. (1979). Nonadiabatic electron tunneling: implications for bacterial photosynthesis and for critical tests of the mechanism. T, pp. 417430.CrossRefGoogle Scholar
Horiuti, J. &Polanyi, M. (1935). Grundlinien einer Theorie der Protonübertragung. Elektrolytische Dissoziation; Prototropie; spontane lonisation und elektrolytische Abscheidung von Wasserstoff an Elektroden; Wasserstoffionenkatalyse. Acta Electrochemica USSR 2, 505532.Google Scholar
Hornbeck, J. A. (1952). Charge transfer and the mobility of rare gas ions. J. phys. Chem. 56, 829831CrossRefGoogle Scholar
Horne, R. A. (1963). Kinetics of the iron (II)-iron (III) electron exchange reaction in ice media. J. inorg. nucl. Chem. 25, 11391146.CrossRefGoogle Scholar
Hsi, E. S. P. &Bolton, J. R. (1974). Flash photolysis-electron spin resonance study of the effect of o-phenanthroline and temperature on the decay time of the ESR signal Bi in reaction-center preparations and chromatophores of mutant and wild strains of Rhodopseudomonas spheroides and Rhodospirillum rubrum. Biochim. biophys. Acta 347, 126133.CrossRefGoogle Scholar
Huang, K. &Rhys, A. (1950). Theory of light absorption and non-radiative transitions in F-centres. Proc. R. Soc. Lond. A 204, 406423.Google Scholar
Hui, Bon Hoa G., Begard, E., Debey, P. &Gunsalus, I. C. (1978). Two univalent electron transfers from putidaredoxin to bacterial cytochrome P-450 at subzero temperature. Biochemistry 17, 28352839.Google Scholar
Hund, F. (1927). Zur Deutung der Molekelspektren. III. Bemerkungen über das Schwingungs- und Rotationsspectrum bei Molekeln mit mehr als zwei Kernen. Z. Phys. 43, 805826.CrossRefGoogle Scholar
Hunt, J. W. (1976). Early events in radiation chemistry. In Advances in Radiation Chemistry 5 (ed. Burton, M. and Magee, J. L.), pp. 185315. New York: Wiley-Interscience.Google Scholar
Huppert, D., Rentzepis, P. M. &Tollin, G. (1976). Picosecond kinetics of chlorophyll and chlorophyll/quinone solutions in ethanol. Biochim. biophys. Acta 440, 356364.CrossRefGoogle ScholarPubMed
Hush, N. S. (1958). Adiabatic rate processes at electrodes. I. Energy–charge relationships. J. chem. Phys. 28, 962–72.CrossRefGoogle Scholar
Hush, N. S. (1961). Adiabatic theory of outer sphere electron-transfer reactions in solution. Trans. Faraday Soc. 57, 557580.CrossRefGoogle Scholar
Hush, N. S. (1967). Intervalence-transfer absorption. 2. Theoretical considerations and spectroscopic data. Prog. Inorg. Chem. 8, 391444.Google Scholar
lsied, S. S. &Kuehn, C. (1979). Electron transfer properties of the imidazolate anion. T, pp. 229236.Google Scholar
Isied, S. S. &Taube, H. (1973). Rates of intramolecular electron transfer. J. Am. chem. Soc. 95, 81988200.CrossRefGoogle Scholar
Itoh, S. (1978). Membrane surface potential and the reactivity of the system II primary electron acceptor to charged electron carriers in the medium. Biochim. biophys. Acta 504, 324340.CrossRefGoogle ScholarPubMed
Jacks, C. A., Bennett, L. E., Raymond, W. N. &Lovenberg, W. (1974). Electron transfer to clostridial rubredoxin: kinetics of the reduction by hexaamineruthenium (II); vanadous and chromous ions. Proc. natn. Acad. Sci. U.S.A. 71, 11181122.CrossRefGoogle Scholar
Jaklevic, R. C. &Lambe, J. (1966). Molecular vibration spectra by electron tunneling. Phys. Rev. Lett. 17, 11391140.CrossRefGoogle Scholar
Jordan, P. (1927 a). Über eine neue Begründung der Quantenmechanik. Z. Phys. 40, 809838.CrossRefGoogle Scholar
Jordan, P. (1927 b). Über eine neue Begrundung der Quantenmechanik: II. Z. Phys. 44, 125.CrossRefGoogle Scholar
Jortner, J. (1976). Temperature dependent activation energy for electron transfer between biological molecules. J. chem. Phys. 64, 48604867.CrossRefGoogle Scholar
Jortner, J., Rice, S. A. &Hochstrasser, R. M. (1969). Radiationless transitions in photochemistry. Adv. Photochem. 7, 149309.CrossRefGoogle Scholar
Jortner, J. &Ulstrup, J. (1979). Dynamics of non-adiabatic atom transfer in biological systems. Carbon monoxide binding to hemoglobin. J. Am. them. Soc. 101, 77447754.CrossRefGoogle Scholar
Josephson, B. D. (1962). Possible new effects in superconductive tunneling. Phys. Lett. I, 251253.CrossRefGoogle Scholar
Josephson, B. D. (1974). The discovery of tunneling supercurrents. Science, N.Y. 184, 527530.CrossRefGoogle ScholarPubMed
Junge, W. &Devault, D. (1975). Symmetry, orientation and rotational mobility in the a3 heme of cytochrome c oxidase in the inner membrane of mitochondria. Biochim. biophys. Acta 408, 200214.CrossRefGoogle ScholarPubMed
Jursinic, P. & Govindjee, (1977). Temperature dependence of delayed light emission in the 6 to 340 microsecond range after a single flash in chloroplasts. Photochem. & Photobiol. 26, 617628.CrossRefGoogle Scholar
Kakitani, T. &Kakitani, H. (1980). Possible new mechanism of temperature dependence of electron transfer in photosynthetic system. Submitted to Biochim. biophys. Acta.Google Scholar
Kampars, V. &Neilands, O. (1977). The electron affinities of organic electron acceptors. Russ. chem. Revs 46, 503513. (Usp. Khim. 46,945966.)CrossRefGoogle Scholar
Kano, K., Takuma, K., Ikeda, T., Nakajima, D., Tsutsui, Y. &Matsuo, T. (1978). Zinc tetraphenylporphyrin-sensitized photoreduction of anthraquinonesulfonate in acqueous micellar solutions. Photochem. & Photobiol. 27, 695701.CrossRefGoogle Scholar
Kaufmann, K. J., Dutton, P. L., Netzel, T. L., Leigh, J. S. &Rentzepis, P. M. (1975). Picosecond kinetics of events leading to reaction center bacteriochiorophyll oxidation. Science, N.Y. 188, 13011304.CrossRefGoogle Scholar
Kaufmann, K. J., Petty, K. M., Dutton, P. L. &Rentzepis, P. M. (1976). Picosecond kinetics in reaction centers of Rps. sphaeroides and the effects of ubiquinone extraction and reconstitution. Biochem. biophys. Res. Commun. 70, 839845.CrossRefGoogle ScholarPubMed
Ke, B., Demeter, S., Zamaraev, K.I. &Khairutdinov, R. F. (1979 a). Electron tunneling in Photosystem-1 charge recombination at low temperatures. T, pp. 371376.CrossRefGoogle Scholar
Ke, B., Demeter, S., Zamaraev, K. I. &Khairutdinov, R. F. (1979 b). Charge recombination in hotosystem I at low temperatures:kinetics of electron tunneling. Biochim. biophys. Acta 545, 265284.Google ScholarPubMed
Ke, B., Hansen, R. E. &Beinert, H. (1973). Oxidation-reduction potentials of bound iron-sulfur proteins of photosystem I. Proc. natn. Acad. Sci. U.S.A. 70, 29412945.CrossRefGoogle ScholarPubMed
Kennel, S. J. &Kamen, M. D. (1971). lron-containing proteins in Chromatium. II. Purification and properties of cholate-solubilized cytochrome complex. Biochem. biophys. Acta 253, 153166.Google ScholarPubMed
Kestner, N. R., Logan, J. &Jortner, J. (1974). Thermal electron transfer reactions in polar solvents. J. Phys. Chem. 78, 21482166.CrossRefGoogle Scholar
Kevan, K. (1974). Trapped electrons in arganic glasses. In Advances in Radiation Chemistry 4 (ed. Burton, M. and Magee, J. L.), pp. 181305. New York: Wiley-Interscience.Google Scholar
Kihara, T. &Chance, B. (1969). Cytochrome photooxidation at liquid nitrogen temperatures in photosynthetic bacteria. Biochim. biophys. Acta 189, 116124.CrossRefGoogle Scholar
Kihara, T., Devault, D. &Chance, B. (1969). Light-induced reactions at liquid nitrogen temperatures in photosynthetic bacteria. 13th Biophys. Soc. Mtg. (Los Angeles), Abstr. WPM-D5.Google Scholar
Kihara, T. &Dutton, P. L. (1970). Light-induced reactions of photosynthetic bacteria. I. Reactions in whole cells and in cell-free extracts at liquid nitrogen temperatures. Biochim. biophys. Acta 205, 196204.CrossRefGoogle ScholarPubMed
Kihara, T. &Mccray, J. A. (1973). Water and cytochrome oxidation- reduction reactions. Biochim. biophys. Acta 292, 297309.CrossRefGoogle ScholarPubMed
Kitagawa, T., Ozaki, Y. &Kyogoku, Y. (1978). Resonance Raman studies on the ligand–iron interactions in hemoproteins and metallo–porphyrins. Adv. Biophys. II, 153196.Google Scholar
Klein, J., Léger, A., Belin, M., Défourneau, D. &Sangster, M. J. L. (1973). Inelastic-electron-tunneling spectroscopy of metal-insulator-metal junctions. Phys. Rev. B 7, 23362348.CrossRefGoogle Scholar
Klingenberg, M. &Schollmeyer, P. (1963). Redox reactions in mitochondria under the control of ATP. Proc. 5th Int. Congr. Biochem., Moscow 5, pp. 4665. London: Pergamon.Google Scholar
Knaff, D. B. &Arnon, D. I. (1969). Light-induced oxidation of a chloroplast b-type chtochrome at – 189 °C. Proc. natn. Acad. Sci. U.S.A. 63, 956962.CrossRefGoogle Scholar
Knaff, D. B. &Malkin, R. (1974). The effect of temperature on the primary reaction of chloroplast photosystem II. Evidence for a temperature- dependent back reaction. Biochim. biophys. Acta 347, 395403.CrossRefGoogle ScholarPubMed
Knox, R. S.(1979). Localized and delocalized tunneling states. T, pp. 9194.CrossRefGoogle Scholar
Kononenko, A. A., Lukashev, E. P., Rubin, A. B. &Venedlktov, P. S. (1972). On the interaction of photoactive bacteriochlorophyll with the primary electron acceptor in the reaction centre of Ectothiorhodospira shaposhnikovii. Biochim. biophys. Acta 275, 130133.CrossRefGoogle ScholarPubMed
Koppenol, W. H., Vanburen, K. J. H., Butler, J. &Braams, R. (1976). The kinetics of the reduction of cytochrome c by the superoxide anion radical. Biochem. biophys. Acta 449, 457468.Google ScholarPubMed
Korman, C. S. &Coleman, R. V. (1977). Inelastic electron tunneling spectroscopy of single ring compounds adsorbed on alumina. Phys. Rev. B 15, 18771893.CrossRefGoogle Scholar
Kowalsky, A. (1965). Nuclear magnetic resonance studies of cytochrome c. Possible electron delocalization. Biochemistry 4, 23822388.CrossRefGoogle Scholar
Kramers, H. A. (1926). Wellenmechanik und halbzahlige Quantisierung. Z. Phys. 39, 828840.CrossRefGoogle Scholar
Kramers, H. A. (1934). L'interaction entre les atomes magnétogènes dans un cristal paramagnétique. Physica,'s Grav. I, 182192.Google Scholar
Krebs, H. &Johnson, W. A. (1937). The role of citric acid in intermediate metabolism in animal tissues. Enzymologia 4, 148156.Google Scholar
Kubo, R. (1952). Thermal ionization of trapped electrons. Phys. Rev. 86, 929–93.CrossRefGoogle Scholar
Kubo, R. &Toyozawa, Y. (1955). Application of the method of generating function to radiative and non-radiative transitions of a trapped electron in a crystal. Prog. theor. Phys. 13, 160182.CrossRefGoogle Scholar
Kuhn, H., Möbius, D. &Bucher, H. (1972). Spectroscopy of monolayer assemblies. I: Principles and applications. II: Experimental procedure. In Physical Methods of Chemistry, part IIIB (ed. Weissberger, A. and Rossiter, B. W.), pp. 577702. New York: Wiley Interscience.Google Scholar
Kung, M. C. &Devault, D. (1976). Carotenoid triplet state in R. Spheroides GA chromatophores. Photochem. & Photobiol. 24, 8789.CrossRefGoogle Scholar
Kurtin, S. L., Mcgill, T. C. &Mead, C. A. (1971). Direct inter-electrode tunneling in GaSe. Phys. Rev. B 3, 33683379.CrossRefGoogle Scholar
Kuznetsov, A. M., S/ndergård, N. C. &Ulstrup, J. (1978) Low-temperature electron transfer in bacterial photosynthesis. Chem. Phys. 29, 383390.CrossRefGoogle Scholar
Land, E. J. &Swallow, A. J. (1971). One-electron reactions in biochemical systems as studied by pulse radiolysis. V. Cytochrome C. Archs Biochem. Biophys. 145, 365372CrossRefGoogle ScholarPubMed
Landau, L. (1932). Zur Theorie der Energieübertragung bei Stössen. Physik Z. SowjU i, 8898.Google Scholar
Lax, M. (1952). The Franck–Condon principle and its application to crystals. J. chem. Phys. 20, 17521760.CrossRefGoogle Scholar
Leigh, J. S. Jr&Wilson, D. F. (1972). Heme–heme interactions in cytochrome c oxidase; effects of photodissociation of the CO compound. Biochem. biophys. Res. Commun. 48, 12661272.CrossRefGoogle ScholarPubMed
Leigh, J. S. Jr, Wilson, D. F., Owen, C. S. &King, T. E. (1974). Heme–heme interaction in cytochrome c oxidase: the cooperativity of the hemes of cytochrome c oxidase as evidenced in the reaction with CO. Archs Biochem. Biophys. 160, 476486.CrossRefGoogle ScholarPubMed
Levich, V. G. (1966). Present state of the theory of oxidation-reduction in solution (bulk and electrode reactions). Adv. Electrochem. & Electrochem. Eng. 4, 249371.Google Scholar
Levich, V. G. (1970). Kinetics of reactions with charge transport. In Physical Chemistry and Advanced Treatise. Vol. IX. B/Electrochemistry (ed. Eyring, H.), pp. 9861074.Google Scholar
Levich, V. G. &Dogonadze, R. R. (1959). Teoriya bezizluchatelnikh electronnikh perekhodov mezhdu ionami v rastvorakh. Doki. Acad. Nauk. SSSR 124, 123126.Google Scholar
Levich, V. G. &Dogonadze, R. R. (1961). Adiabaticheskaya teoriya elektronnikh protsessov v rastorakh. Coil. Czech. chem. Commun. 26, 193214.CrossRefGoogle Scholar
Libby, W. F. (1940). Reactions of high energy atoms produced by slow neutron capture. J. Am. chem. Soc. 62, 19301943.CrossRefGoogle Scholar
Libby, W. F. (1952). Theory of electron exchange reactions in aqueous solution. J. Phys. Chem. 56, 63–8.CrossRefGoogle Scholar
Libby, W. F. (1979). My tunneling experiences. T, pp. 38.CrossRefGoogle Scholar
Liboff, A. R. &Shamos, M. H. (1973). Solid state physics of bone. In Biological Mineralization (ed. Zipkin, I.), pp. 335395. New York: Wiley.Google Scholar
Lin, S. H. (1966). Rate of interconversion of electronic and vibrational energy. J. chem. Phys. 44, 37593767.CrossRefGoogle Scholar
Lin, L. &Thornber, J. P. (1975). Isolation and partial characterization of the photochemical reaction center of Chromatium uinosum (Strain D). Photochem. & Photobiol. 22, 3740.CrossRefGoogle ScholarPubMed
Loach, P. A., Kung, M. C. &Hales, B. J. (1975). Characterization of the phototrap in photosynthetic bacteria. Ann. N. Y. Acad. Sci. 244, 297319.CrossRefGoogle ScholarPubMed
Löwdin, P-O. (1963). Proton tunneling in DNA and its biological implications. Rev, mod. Physics 35, 724732.CrossRefGoogle Scholar
Lozier, R. H. &Butler, W. L. (1974). Light-induced absorbance changes in chloroplasts mediated by photosystem I and photosystem II at low temperature. Biochim. biophys. Acta 333, 465480.CrossRefGoogle ScholarPubMed
Lukashev, E. P., Timofeev, K. N., Kononenko, A. A., Venediktov, P. S. &Rubin, A. B. (1976). Temperature dependence of the reduction kinetics of photooxidized reaction center bacteriochlorophyll in dark and light adapted chromatophores of purple bacteria. Photosynthetica 10, 423430.Google Scholar
Malkin, R. &Bearden, A. J. (1971). Primary reactions of photosynthesis: photoreduction of a bound chloroplast ferredoxin at low temperature as detected by ESR spectroscopy. Proc. natn. Acad. Sci. U.S.A. 68, 1619.CrossRefGoogle Scholar
Mann, B. &Kuhn, H. (1971). Tunneling through fatty acid salt monloayers. J. appl. Phys. 42, 43984405.CrossRefGoogle Scholar
Manneback, C. (1951). Computation of the intensities of vibrational spectra of electronic bands in diatomic molecules. Physica, 's Gray 17, 10011010.Google Scholar
Marcolin, H. E., Reschke, B.. & Trautwein, A. (1977). Untersuchung der Recombinations kinetik von photodissoziiertem Myoglobin-CO bei tiefen Temperaturen mittels Mössbauerspektroskopie. Z. Naturf. 32 C, 683695.CrossRefGoogle Scholar
Marcus, R. A. (1956). On the theory of oxidation-reduction reactions involving electron transfer: I. J. chem. Phys. 24, 966978.CrossRefGoogle Scholar
Marcus, R. A. (1965). On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions. J. chem. Phys. 43, 679701.CrossRefGoogle Scholar
Marcus, R. A. (1968). Electron transfer reactions. In Chemische Elementarprozesse (ed. Hartmann, H.), pp. 348356. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Marcus, S. A. (1979 a). Electron and nuclear tunneling in chemical and biological systems. T, pp. 109127.CrossRefGoogle Scholar
Marcus, R. A. (1979b). Electron transfer and tunneling in chemical and biological systems. In Light-induced Charge Separation in Biology and Chemistry (ed. Gerischer, H. and Katz, J. J.), pp. 1543. Berlin: Dahlem Konferenzen, Verlag Chemie.Google Scholar
Marcus, R. J., Zwolinski, B. J. &Eyring, H. (1954) The electron tunneling. hypothesis for electron exchange reactions. J. Phys. Chem. 58, 432437.CrossRefGoogle Scholar
Mason, R. (1959). Charge transfer processes in biological systems. Disc. Faraday Soc. 27, 129133.CrossRefGoogle Scholar
Mataga, N., Migita, M. &Nishimura, T. (1978). Picosecond chemistry of some exciplex systems. J. Mol. Struct. 47, 199219.CrossRefGoogle Scholar
Mathews, J. &Walker, R. L. (1965). Mathematical Methods of Physics. New York: Benjamin.Google Scholar
Mathis, P. (1969). Triplet–triplet energy transfer from chlorophyll-a to carotenoids in solution and in chloroplasts. In Progress in Photosynthesis Research, vol. II (ed. Metzner, H.), pp. 818–22. Tubingen.Google Scholar
Mathis, P. &Conjeaud, H. (1979). Rapid reduction of P-700 photooxidized by a flash at low temperature in spinach chloroplasts. Photochem. & Photobiol. 29, 833837.CrossRefGoogle Scholar
Mathis, P., Haveman, P. &Yates, M. (1976). The reaction center of photo- system II. In Brookhaven Symp. Biol. 28 (ed. Olson, J. M. and Hind, G.), pp. 267277.Google Scholar
Mathis, P., Sauer, K. &Remy, R. (1978). Rapidly reversible flash-induced electron transfer in a P-700 chlorophyll–protein complex isolated with SDS. FEBS Lett. 88, 275278.CrossRefGoogle Scholar
Matsuura, K., Masamoto, K., Itoh, S. &Nishimura, M. (1979). Effect of surface potential on the intramembrane electrical field measured with carotenoid spectral shift in chromatophores from Rhodopseudomonas sphaeroides. Biochim. biophys. Acta 547, 91102.CrossRefGoogle ScholarPubMed
Mauk, A. G., Scott, R. A. &Gray, H. B. (1980). Electron transfer distances to and from metalloprotein redox sites in reactions with inorganic complexes. J. Am. chem. Soc. 102, 43604363.CrossRefGoogle Scholar
Mcconnell, H. M. (1961). Intramolecular charge transfer in aromatic free radicals. J. chem. Phys. 35, 508515.CrossRefGoogle Scholar
Mccray, J. A. &Kihara, T. (1979). Rates of reduced cytochrome c–ferri- cyanide binding and electron transfer. Biochim. biophys. Acta 548, 417426CrossRefGoogle Scholar
Mcelroy, J. D., Feher, G. &Mauzerall, D. C. (1969). On the nature of the free radical formed during the primary process of bacterial photosynthesis. Biochim. biophys. Acta 172, 180183.CrossRefGoogle ScholarPubMed
Mcelroy, J. D., Mauzerall, D. C. &Feher, G. (1974). Characterization of primary reactants in bacterial photosynthesis. II. Kinetic studies of the light-induced EPR signal (g = 2.0026) and the optical absorbance changes at cryogenic temperatures. Biochim. biophys. Acta 333, 261277.CrossRefGoogle ScholarPubMed
Mead, C. A. (1969). Some properties of exponentially damped wave functions. In Tunneling phenomena in solids (ed. Burstein, E. and Lundqvist, S.), pp. 127134. New York: Plenum.CrossRefGoogle Scholar
Merzbacher, E. (1961). Quantum Mechanics. New York: Wiley.Google Scholar
Migita, M., Kawai, M. &Mataga, N. (1978). Picosecond laser photolysis studies of intramolecular charge transfer and heteroexcimer formation processes. Chem. Phys. Lett. 53, 6770.CrossRefGoogle Scholar
Miller, J. R. (1972). Scavenging kinetics of electrons produced by irradiation of Organic glasses; experimental evidence for long range tunneling. J. chem. Phys. 56, 51735183.CrossRefGoogle Scholar
Miller, J. R. (1973). Fast electron transfer reactions in a rigid matrix: further evidence for quantum mechanical tunneling. Chem. Phys. Lett. 22, 180182.CrossRefGoogle Scholar
Miller, J. R. (1975). Reactions of trapped electrons by quantum mechanical tunneling observed by pulse radiolysis of an aqueous glass. J. Phys. Chem. 79, 10701078.CrossRefGoogle Scholar
Miller, J. R. (1978). Tunneling reactions of trapped electrons with added electron acceptors in alcohol glasses at 77 °K. J. Phys. Chem. 82, 767774.CrossRefGoogle Scholar
Miller, J. R. &Willard, J. E. (1972). Time-dependent scavenging of trapped electrons in 2-methyl-tetrahydrofuran glass at 77°K. J. Phys. Chem. 76, 26412642.CrossRefGoogle Scholar
Monger, T. G., Cogdell, R. J. &Parson, W. W. (1976). Triplet states of the bacteriochlorophyll and carotenoids in chromatophores of photosynthetic bacteria. Biochim. biophys. Acta 449, 136153.CrossRefGoogle ScholarPubMed
Morrison, L. E. &Loach, P. A. (1978). Complex charge recombination kinetics of the photo-trap in Rhodospirillum rubrum. Photochem. & Photobiol. 27, 751757.CrossRefGoogle Scholar
Moscowitz, E. &Malley, M. M. (1978). Energy transfer and photooxidation kinetics in reaction centers on the picosecond time scale. Photochem. & Photobiol. 27, 5559.CrossRefGoogle Scholar
Mott, N. F. (1939). A theory of the formation of protective oxide films on metals. Trans. Faraday Soc. 35, 11751177CrossRefGoogle Scholar
Mott, N. F. (1940). The theory of the formation of protective oxide films on metals: II. Trans. Faraday Soc. 36, 472483.CrossRefGoogle Scholar
Mueller, P. &Rudin, D. O. (1963). Induced excitability in reconstituted cell membrane structure. J. theor. Biol. 4, 268280.CrossRefGoogle ScholarPubMed
Müller, A. &Witt, H. T. (1961). Trapped primary product of photosynthesis in green plants. Nature, Lond. 189, 944945.CrossRefGoogle Scholar
Mulliken, R. S. (1952). Molecular compounds and their spectra: II. J. Am. chem. Soc. 74, 811824.CrossRefGoogle Scholar
Nakashima, N., Murakawa, M. &Mataga, N. (1976). Picosecond flash spectroscopy of solvent-induced intramolecular electron transfer in the excited 9,9'-bianthryl. Bull. chem. Soc. Japan 49, 854858.CrossRefGoogle Scholar
Neiss, M. A., Sprague, E. D. &Willard, J. E. (1975). Decay mechanisms of CH3 in 3-methylpentane and 3MP-d14 glasses at 77 °K as indicated by methane yields. J. chem. Phys. 63, 11181121.CrossRefGoogle Scholar
Nicol, J., Shapiro, S. &Smith, P. H. (1960). Direct measurement of the superconducting energy gap. Phys. Rev. Lett. 5, 461464.CrossRefGoogle Scholar
Nikitin, E. (1968). Theory of non-adiabatic transitions. Recent development of the Landau-Zener (linear) model. IN Chemische Elementarprozesse (ed. Hartmann, H.), pp. 4377. New York: Springer-Verlag.CrossRefGoogle Scholar
Nikitin, E. E. (1974). Theory of Elementary Atomic and Molecular Processes in Gases (trans. Kearsley, M. J.), p.115Oxford: Clarendon.Google Scholar
Noks, P. P., Pukashev, E. P., Kononenko, A. A., Venediktov, P. S. &Rubin, A. B. (1977). O vozmoskonoi roli macromolekulyarnikh komponentov v funktsionirovannii fotosinteticheskikh reaktsionnikh tsentrovpurpurnikh bakterii. Mol. Bio1USSR II, 10901099.Google Scholar
Nordheim, L. (1928). Zur Theorie der thermischen Emission und der Reflexion von Electronen an Metallen. Z. Phyz. 46, 833855.CrossRefGoogle Scholar
Nordheim, L. (1932). Zur Theorie der Detector wirkung. Z. Phys. 75, 434441.CrossRefGoogle Scholar
Norton, K. A., Hulett, L. G., Halko, D. J. &Hurst, J. K. (1979). Electron transfer in (NH3), Ru(IU)-4-alkylpyridine-Cu(I) binuclear ions. T, pp. 237241.Google Scholar
Ohnishi, T. (1979). Mitochondrial iron sulfur flavo-dehydrogenases. In Membrane Proteins in Energy Transduction (ed. Capaldi, R. A.), pp. 187. New York: Marcell-Decker.Google Scholar
Okada, T., Saito, T., Mataga, N., Sakata, Y. &Misumi, S. (1977). Solvent effects upon dynamic behavior of intramolecular heteroexcimers. Bull. chem. Soc. Japan 50, 331336.CrossRefGoogle Scholar
Okamura, M. Y., Fredkin, D. R., Isaacson, R. A. &Feher, G. (1979 a). Magnetic interactions and electron transfer kinetics of the reduced intermediate acceptor in reaction centers (RC's) of Rhodopseudomonas sphaeroides R-26. Evidence for thermally induced tunneling. T, pp. 729743.CrossRefGoogle Scholar
Okamura, M. Y., Isaacson, R. A. &Feher, G. (1979 b). Spectroscopic and kinetic properties of the transient intermediate acceptor in the reaction centers of Rhodopseudomonas sphaeroides. Biochim. biophys. Acta 546, 394417.CrossRefGoogle ScholarPubMed
Olson, J. M. &Chance, B. (1960). Oxidation-reduction reactions in the photosynthetic bacterium Chromatium. I Absorption spectrum changes in whole cells. Archs Biochem. Biophys. 88, 2639.CrossRefGoogle ScholarPubMed
Oppenheimer, J. R. (1928). Three notes on the quantum theory of aperiodic effects Phys. Rev. 13, 6681.CrossRefGoogle Scholar
Parak, F., Frolov, E. N., Kononenko, A. A., Mössbauer, R. L., Goldanskii, V. I. &Rubin, A. B. (1980). Evidence for a correlation between the photoinduced electron transfer and dynamic properties of the chromatophore membranes from Rhodospirillum rubrum. FEBS Lett. (In the Press).CrossRefGoogle Scholar
Parson, W. W. (1967). Flash-induced absorbance changes in Rhodospirillum rubrum chromatophores. Biochim. biophys. Acta 131, 154172.CrossRefGoogle Scholar
Parson, W. W. (1968). The role of P870 in bacterial photosynthesis. Biochim. biophys. Acta 153, 248259.CrossRefGoogle ScholarPubMed
Parson, W. W. (1969 a). The reaction between primary and secondary electron acceptors in bacterial photosynthesis. Biochim. biophys. Acta 189, 384396.CrossRefGoogle ScholarPubMed
Parson, W. W. (1969 b). Cytochrome photooxidations in Chromatium chromatophores. Each P870 oxidizes two cytochrome C2 hemes. Biochim. biophys. Acta 189, 397403.CrossRefGoogle Scholar
Parson, W. W. &Case, G. D. (1970). In Chromatium, a single photochemical reaction center oxidizes both cytochrome C552 and cytochrome C555. Biochim. biophys. Acta 205, 232245.CrossRefGoogle ScholarPubMed
Parson, W. W., Clayton, R. K. &Cogdell, R. J. (1975). Excited states of photosynthetic reaction centers at low redox potentials. Biochim. biophys. Acta 387, 265278.CrossRefGoogle Scholar
Pauling, L. (1928). The application of the quantum mechanics to the structure of the hydrogen molecule and hydrogen molecule ion and to related problems. Chem. Rev. 5, 173213.CrossRefGoogle Scholar
Pauling, L. (1930). The rotational motion of molecules in crystals. Phys. Rev. 36, 430443.CrossRefGoogle Scholar
Pauling, L. &Wilson, E. B. (1935). Introduction to Quantum Mechanics. New York: McGraw-Hill.Google Scholar
Pekar, S. I. (1951). Investigations on the Electronic Theory of Crystals. Moscow: Fizmatgiz. (In Russian.)Google Scholar
Pekar, S. I. (1954). Untersuchungen Uber die Electronen-theorie der Kristalle. Berlin: Akademie-Verlag.CrossRefGoogle Scholar
Peters, K., Avouris, P. &Rentzepis, P. M. (1978). Picosecond dynamics of primary electron-transfer process in bacterial photosynthesis. Biophys. J. 23, 207217.CrossRefGoogle ScholarPubMed
Pethig, R. &Szent-Györgyi, A. (1977). Electronic properties of the caseinmethylglyoxal complex. Proc. natn. Acad. Sci. U.S.A. 74, 226228.CrossRefGoogle ScholarPubMed
Petrov, E. G. (1979). Mechanisms of electron transfer through proteins. Int J. Quantum Chem. 16, 133152.CrossRefGoogle Scholar
Potasek, M. J. (1979). Dynamics of electron transport in macromolecules. T, pp. 433438.CrossRefGoogle Scholar
Potasek, M. J. &Hopfield, J. J. (1977 a). An experimental test of the vibronically coupled tunneling description of biological electron transfer. Proc. natn. Acad. Sci. U.S.A. 74, 229233.CrossRefGoogle ScholarPubMed
Potasek, M. J. &Hopfield, J. J. (1977 b). Fundamental aspects of electron transfer: experimental verification of vibronically coupled electron tunneling. Proc. natn. Acad. Sci. U.S.A. 74, 38173820.CrossRefGoogle ScholarPubMed
Prince, R. C., Leigh, J. S. Jr, & Dutton, P. L. (1976). Thermodynamic properties of the reaction center of Rhodopseudomonas viridis. In vivo measurement of the reaction center bacteriochlorophyll-primary acceptor intermediary electron carrier. Biochim. biophys. Acta 440, 622636.CrossRefGoogle ScholarPubMed
Proceedings of the International Conference in Fluids. (09 1976) (1977). Can. J. Chem. 55, 17952277.Google Scholar
Pullman, B. (1979). Recent developments on the mechanism of chemical carcinogenesis by aromatic hydrocarbons. Int. J. Quantum Chem. 16, 669689.CrossRefGoogle Scholar
Pullman, B. &Pullman, A. (1958). Electron-donor and acceptor properties of biologically important purines, pyrimidines, pteridines, flavins and aromatic amino acids. Proc. natn. Acad. Soc. U.S.A. 44, 11971202.CrossRefGoogle ScholarPubMed
Pullman, B. &Pullman, A. (1963). Quantum Biochemistry. New York: Wileydnterscience.Google Scholar
Pyt'eva, N. F., Andreenko, T. I. &Rubin, A. B. (1976). Existence of cyclic and non-cyclic electron transport systems in bacterial photosynthetic apparatus. 2. Experimental evidence for the scheme of electron-transport reactions in the chromatophores of photosynthesizing bacteria Ectothiorhodospira shaposhnikovii. Photosynthetica 10 (1), 1419.Google Scholar
Pyt'eva, N. F., Ratyni, A. I. &Rubin, A. B. (1976). Existence of cyclic and non-cyclic electron transport systems in bacterial photosynthetic apparatus. I. Theoretical differences in kinetic characteristics of cyclic and non-cyclic systems of electron transport. Photosynthetica 10 (I), 713.Google Scholar
Randles, J. E. B. (1952). Kinetics of rapid electrode reactions. 2. Rate constants and activation energies of electrode reactions. Trans. Faraday Soc. 48, 828832.CrossRefGoogle Scholar
Reed, D. W. &Clayton, R. K. (1968). Isolation of a reaction center fraction from Rhodopseudomonas spheroides. Biochem. biophys. Res. Commun. 30, 471475.CrossRefGoogle ScholarPubMed
Rehm, D. &Weller, A. (1970). Kinetics of fluorescence quenching by electron and H-atom transfer. Israel J. Chem. 8, 259271.CrossRefGoogle Scholar
Rice, O. K. (1967). Statistical Mechanics, Thermodynamics and Kinetics. San Francisco: Freeman.Google Scholar
Rice, S. A. &Pilling, M. J. (1978). Tunneling reactions of solvated electrons in liquids and glasses. Prog. React. Kinet. 9, 93194.Google Scholar
Rieder, K. &Taube, H. (1977). Intramolecular electron transfer. 3. Bis(pyridyl) methane as a bridging group. J. Am. chem. Soc. 99, 78917894.CrossRefGoogle Scholar
Robin, M. B. &Day, P. (1967). Mixed valence chemistry – a survey and classification. Adv. inorg. Chem. Radiochem. 10, 247422.CrossRefGoogle Scholar
Robinson, G. W. &Frosch, R. P. (1962). Theory of electronic energy relaxation in the solid phase. J. Chem. Phys. 37, 19621973.CrossRefGoogle Scholar
Robinson, G. W. &Frosch, R. P. (1963). Electronic excitation transfer and relaxation. J. Chem. Phys. 38, 11871203.CrossRefGoogle Scholar
Rockley, M. G., Windsor, M. W., Cogdell, R. J. &Parson, W. W. (1975). Picosecond detection of an intermediate in the photochemical reaction of bacterial photosynthesis. Proc. natn. Acad. Sci. U.S.A. 72, 22512255.CrossRefGoogle ScholarPubMed
Romijn, J. C. &Amesz, J. (1976). Photochemical activities of reaction centers from Rhodopseudomonas sphaeroides at low temperature and in the presence or chaotropic agents. Biochim. biophys. Acta 423, 164173.CrossRefGoogle ScholarPubMed
Rosenberg, B. (1965). Some problems in electrical conductivity of proteins. In Oxidases and Related Redox Systems (ed. H., T. KingMason, and Morrison, M.), pp. 7287. New York: Wiley.Google Scholar
Rowell, J. M. (1963). Magnetic field dependence of the Josephson tunnel current. Phys. Rev. Lett. 11, 200202.CrossRefGoogle Scholar
Rowell, J. M., Anderson, P. W. &Thomas, D. E. (1963). Image of the phonon spectrum in the tunneling characteristic between superconductors. Phys. Rev. Lett. 10, 334336.CrossRefGoogle Scholar
Rowell, J. M., Chynoweth, A. G. &Phillips, J. C. (1962). Multiphonon effects in tunneling between metals and superconductors. Phys. Rev. Lett. 9, 5961.CrossRefGoogle Scholar
Ruff, I. (1965). The role of water in electron-transfer reactions: I. J. Phys. Chem. 69, 31833186.CrossRefGoogle Scholar
Salemme, F. R. (1976). An hypothetical structure for an intermolecular electron transfer complex of cytochromes c and b 5. J. molec. Biol. 102, 563568.CrossRefGoogle ScholarPubMed
Salemme, F. R. (1977). Structure and function of cytochromes c. A. Rev. Biochem. 46, 299329.CrossRefGoogle ScholarPubMed
Salemme, F. R. (1979). Structure/function relationships in biological electron transport proteins. T, pp. 523540.CrossRefGoogle Scholar
Salerno, J. C., Harmon, H. J., Blum, H., Leigh, J. S. &Ohnishi, T. (1977). A transmembrane quinone pair in the succinate dehydrogenase– cytochrome b region. FEBS Lett. 82, 179182.CrossRefGoogle ScholarPubMed
Ssalerno, J. C. &Ohnishi, T. (1979). Electron transport in the succinateubiquinone segment of the respiratory chain. T, pp. 473482.Google Scholar
Sarai, A. (1979). Energy-gap and temperature dependence of electron and excitation transfer in biological systems. Cheni. Phys. Lett. 63, 360366.CrossRefGoogle Scholar
Sarai, A. (1980). Possible role of protein in photosynthetic electron transfer. Biochem. biophys. Acta 589, 7183.Google ScholarPubMed
Sauer, K., Mathis, P., Acker, S. &Vanbest, J. best, J. (1978). Electron acceptors associated with P-700 in triton solubilized photosystem I particles from spinach chioroplasts. Biochim. biophys. Acta 50, 120134.CrossRefGoogle Scholar
Schrieffer, D. J. &Marcus, S. M. (1967). Theory of inelastic electron-molecule interactions in tunnel junctions. Phys. Rev. Lett. 18, 459461.Google Scholar
Schrieffer, J. R. (1979). Introductory comments. T, pp. 916.CrossRefGoogle Scholar
Schrieffer, J. R., Scalapino, D. J. &Wilkins, J. W. (1963). Effective tunneling density of states in superconductors. Phys. Rev. Lett. 10, 336339.CrossRefGoogle Scholar
Seibert, M. (1971). Spectral, kinetic and potentiometric studies of the laser-induced primary photochemical reactions in the photosynthetic bacterium, Chromatium D. Dissertation, Molecular Biology, University of Pennsylvania, Philadelphia.Google Scholar
Seibert, M. &DeVault, D. (1970). Relations between the laser-induced oxidations of the high and low potential cytochromes of Chromatium D. Biochim. biophys. Acta 205, 220231.CrossRefGoogle ScholarPubMed
Seibert, M. &DeVault, D. (1971). Photosynthetic reaction center transients, P435 and P424, in Chromatium D. Biochim. biophys. Acta 253, 396411.CrossRefGoogle ScholarPubMed
Shapiro, S., Smith, P. H., Nicol, J., Miles, J. L. &Strong, P. F. (1962). Superconductivity and electron tunneling. IBM J. Res. Develop. 6, 3443.CrossRefGoogle Scholar
Shuvalov, V. A., Ke, B. &Dolan, E. (1979). Kinetic and spectral properties of the intermediary electron acceptor A, in photosystem I. Subnanosecond spectroscopy. FEBS Lett. 100, 58.CrossRefGoogle ScholarPubMed
Siebrand, W. (1967). Radiationless transitions in polyatomic molecules.I. Calculations of Franck-Condon factors. J. chem. Phys. 46, 440447.CrossRefGoogle Scholar
Slater, E. C. (1953). Biological oxidations. A. Rev. Biochem. 22, 1756.CrossRefGoogle ScholarPubMed
Soules, T. F. &Duke, C. B. (1971). Resonant energy transfer between localized electronic states in a crystal Phys. Rev. B 3, 262274.CrossRefGoogle Scholar
Sutin, N. (1962). Electron exchange reactions. A. Rev. nuci. Sci. 2, 285328.CrossRefGoogle Scholar
Sutin, N. (1979). Electron transfer reactions of metal complexes in solution, T, pp. 201224.CrossRefGoogle Scholar
Sybesma, C. (1969). Two light-induced reactions in photosynthetic bacteria. In Progress in Photosynthesis Research (ed. Metzner, H.), pp. 10911100. Tübingen.Google Scholar
Szent-Györgyi, A. (1941). Towards a new biochemistry? Science, N.Y. 93, 609611.CrossRefGoogle ScholarPubMed
Szwarc, M. &Jagur-Grodzinski, J. (1974). Ions and ion pairs in electron transfer reactions of radical anions, carbanions and solvated electrons. In Ions and Ion Pairs in Organic Reactions (ed. Szwarc, M.), pp. 1150. New York: Wiley.Google Scholar
Tafel, J. (1905). Über die Polarisation bei kathodischer Wasserstoffentwicklung. Z. Phys. Chem. 50, 641712.CrossRefGoogle Scholar
Takano, T., Kallai, O. B., Swanson, R. &Dickerson, R. E. (1973). The structure of ferrocytochrome c at 2.45 A resolution. J. biol. Chem. 248, 52345255.CrossRefGoogle ScholarPubMed
Takuma, K., Shuto, Y. &Matsuo, T. (1978). Studies on photoactivated electron-transport systems. II. Electron-transfer quenching of photo- excited ruthenium (II) complexes by various bipyridinium ions. Chem. Lett. (Japan), 983986.Google Scholar
Taube, H. (1975). Intramolecular electron transfer. Pure appl. Chem. 44, 2542.CrossRefGoogle Scholar
Taube, H. (1979). Experimental approaches to electronic coupling in metalion redox systems. T, pp. 173197.Google Scholar
Taylor, P. D. (1959). General discussion. Disc. Faraday Soc. 27, 237239.Google Scholar
Thornber, J. P. (1970). Photochemical reactions of purple bacteria as revealed by studies of three spectrally different carotenobacteriochlorophyll–protein complexes isolated from Chromatium, strain D. Biochemistry 9, 26882698.CrossRefGoogle ScholarPubMed
Thurnauer, M. C., Katz, J. J. &Norris, J. R. (1975). The triplet state in bacterial photosynthesis: Possible mechanisms of the primary photo-act. Proc. natn. Acad. Sci. U.S.A. 72, 32703274.CrossRefGoogle Scholar
Tiede, O. M., Leigh, J. S. &Dutton, P. L. (1978). Structural organization of the Chromatium vinosum reaction center associated c−cytochromes. Biochim. biophhys. Acta 503, 524544.CrossRefGoogle ScholarPubMed
Toyozawa, Y. (1967). Vibration-induced structures in the absorption spectra of localized electrons in solids. In Dynamical Processes in Solid State Optics (ed. Kubo, R. and Kamimura, H.), pp. 90115. Tokyo: Syokabo; New York: Benjamin.Google Scholar
Tric, C. (1971). Nonradiative transitions: A unified Green's function formalism. J. chem. Phys. 55, 43034309.CrossRefGoogle Scholar
Ulstrup, J. (1977). Relationship between the energy of activation and the overall free energy of bridge-assisted electron transfer reactions in polar media. Acta chem. scand. 27, 10671072.CrossRefGoogle Scholar
Ulstrup, J. (1977). Catalysis of the electrochemical reduction of molecular dioxygen by metal phthalocyanins. J. electroanal. Chem. 79, 191197.CrossRefGoogle Scholar
Ulstrup, J. (1979). Charge Transfer Processes in Condensed Media. 419 pp. Berlin: Springer–Verlag. (No. 10 in series: Lecture Notes in Chemistry.)CrossRefGoogle Scholar
Ulstrup, J. &Jortner, J. (1975). The effect of intramolecular quantum modes on free energy relationships for electron transfer reactions. J. chem. Phys. 63, 43584368.CrossRefGoogle Scholar
Vanderkooi, J. M. (1976). Photoreduction of membrane bound cytochrome c by excited-state phenothiazine. Biochem. biophys. Res. Comm. 69, 10431049.CrossRefGoogle ScholarPubMed
Vanderkooi, J. M. &Erecinska, M. (1975). Cytochrome c interaction with membranes. Absorption and emission spectra and binding characteristics of iron-free cytochrome c. Eur. J. Biochem. 60, 199207.CrossRefGoogle ScholarPubMed
Vanderkooi, J. M. &Landsberg, R. (1977). Characterization of the cytochrome c binding site in mitochondria using metallocytochrome c derivatives. Biophys. J. 17, 249 a. Abstract F-POS-N3.Google Scholar
Van, Duyne R. P. &Fischer, S. F. (1974). A nonadiabatic description of electron transfer reactions involving large free energy changes. Chem.Phy. 5, 183197.Google Scholar
Van, Gelder B. F. &Beinert, H. (1969). Studies of the heme components of cytochrome c oxidase by EPR spectroscopy. Biochim. biophys. Acta 189, 124.Google Scholar
Van, Gelder B. F., Orme-Johnson, W. H., Hansen, R. E. &Beinert, H. (1967). Electron paramagnetic resonance of heme at intermediate oxidation states of cytochrome c oxidase. Proc. natn. Acad. Sci. U.S.A. 58, 10731079.Google Scholar
Vendeneyev, V. I., Gurvich, L. V., Kondrat'yev, V. N., Medvedev, V. A. &Frankevich, Ye. L. (1966). Bond Energies Ionization Potentials and Electron Affinities. London: Edward Arnold.Google Scholar
Vermeglo, A. &Mathis, P. (1973 a). Photooxidation of cytochrome b-559 and the electron donors in chioroplast photosystem II. Biochim. biophys. Acta 292, 763771.CrossRefGoogle Scholar
Vermeglio, A. &Mathis, P. (1973 b). Photoreduction of C-550 and oxidation of cytochrome b-559 in chioroplasts. Dependence on the state of photosystem II. Biochim. biophys. Acta 314, 5765.CrossRefGoogle ScholarPubMed
Vernon, L. P. &Shaw, E. R. (1971). Subchloroplast fragments: Triton X-100 method. In Methods in Enzymology 23 (ed. Pietro, A. San), pp. 277289. New York: Academic Press.Google Scholar
Visser, J. W. M., Rijgersberg, K. P. &Amesz, J. (1974). Light-induced reactions of ferredoxin and P700 at low temperatures. Biochim. biophys. Acta 368, 235246.CrossRefGoogle ScholarPubMed
Visser, J. W. M., Rijgersberg, K. P. &Gast, P. (1977). Photo-oxidation of chlorophyll in spinach chloroplasts between 10 and 180 K. Biochim.biophys. Acta 460, 3646.CrossRefGoogle Scholar
Voevodskii, V. V., Solodovnikov, S. P. &Chibrikin, V. M. (1959). Issledovanie spektrov elektronnovo paramagnitnovo resonansa (EPR) otritsatelnik ionov nekotorik aromaticheskik i heterotsiklicheskik soedinenii. Doki. Acad. Nauk SSSR, 129, 10821084.Google Scholar
Vredenberg, W. J. &Duysens, L. N. M. (1964). Light-induced oxidation of cytochromes in photosynthetic bacteria between 20 and – 170°. Biochim. biophys. Acta 79, 456463.Google ScholarPubMed
Waka, Y., Hamamoto, K. &Mataga, N. (1978). Pyrene-N, N-dimethylaniline heteroexcimer systems in aqueous micellar solutions. Chem. Phys. Lett. 53, 242246.CrossRefGoogle Scholar
Walker, E. H. (1977). Quantum mechanical tunneling in synaptic and ephaptic transmission. Int. J. Quantum Chem. II, 103127.CrossRefGoogle Scholar
Watson, G. N. (1945). A Treatise on the Theory of Bessel Functions. Cambridge: University Press; New York: Macmillan.Google Scholar
Wei, L. Y. (1967) Possibility of electron tunneling through a nerve membrane. Bull. Math. Biophys. 29, 411418.CrossRefGoogle ScholarPubMed
Weiss, J. (1954). On the theory of electron-transfer processes in aqueous solutions. Proc. R. Soc. Lond. A 222, 128141.Google Scholar
Weissman, S. I. (1958). Intramolecular electron exchange in anions of paracyclophanes. J. Am. che, n. Soc. 80, 64626463.CrossRefGoogle Scholar
Wentzel, G. (1926). Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik. Z. Phys. 38, 518529,CrossRefGoogle Scholar
Waver, R., Van, Gelder B. F. &DerVartanian, D. V. (1975). Biochemical and biophysical studies on cytochrome c oxidase. XX. Reaction with sulphide. Biochim. biophys. Ada 387, 189193.CrossRefGoogle Scholar
Wherland, S. &Gray, H. B. (1976). Metalloprotein electron transfer reactions: Analysis of reactivity of horse heart cytochrome c with inorganic complexes. Proc. natu. Acad. Sci. U.S.A. 73, 29502954.CrossRefGoogle ScholarPubMed
Wherland, S. &Pecht, I. (1978). Protein-protein electron transfer. A Marcus theory analysis of reactions between c type cytochromes and and blue copper proteins. Biochemistry 17, 25852591.CrossRefGoogle ScholarPubMed
Whitmarsh, J. &Cramer, W. A. (1977). Kinetics of the photoreduction of cytochrome b−559 by photosystem II in chloroplasts. Biochim. biophys.Ada 460, 280289.CrossRefGoogle Scholar
Whitmarsh, J. &Cramer, W. A. (1979 a). Cytochrome f function in photosynthetic electron transport. Biophys. J. 26, 223234.CrossRefGoogle ScholarPubMed
Whitmarsh, J. &Cramer, W. A. (1979 b). Theoretical time dependence of oxidation-reduction reactions in photosynthetic electron transport: Reduction of a linear chain by the plastoquinone pool. In Photosynthesis and Nitrogen Fixation (ed. A. San Pietro). Vol. 69 of Methods in En- zymology.Google Scholar
Wichramasinghe, N. C. (1974). Formaldehyde polymers in interstellar space. Nature, Lond. 252, 462463.CrossRefGoogle Scholar
Wickramaswinghe, N. C. & Santhanan, (1975). Reply to Fawcett, A. H. (1975). Nature, Lond. 257, 159.CrossRefGoogle Scholar
Wiener, N. (1948). Cybernetics. New York: Wiley.Google ScholarPubMed
Wilkey, D. D. &Willard, J. E. (1976). Search for low activation energy abstraction of H from C-H bands by D atoms in hydrocarbons at 77 K. J. chem. Phys. 64, 39763977.CrossRefGoogle Scholar
Williams, W. S. (1974). Sources of piezo-electricity in tendon and bone. In CRC Critical Reviews in Bioengineering. pp. 95118.Google Scholar
Wilson, A. H. (1932). A note on the theory of rectification. Proc. R. Soc. Lond. A 136, 487498.Google Scholar
Wilson, D. F., Erecinska, M. &Owen, C. S. (1975). Some properties of the redox components of cytochrome c oxidase and their interactions. Archs Biochem. Biophys. 175, 160172.CrossRefGoogle Scholar
Winfield, M. E. (1965). Electron transfer within and between haemoprotein molecules. J. molec. Biol. 12, 600611.CrossRefGoogle ScholarPubMed
Witt, H. T., Moraw, R., Müller, A., Rrumberg, B. &Zieger, G. (1960 a). Kinetische Untersuchungen über die Primärvorgänge der Photosynthese. Z. Electrochem. 64, 181187.Google Scholar
Witt, H. T., Moraw, R.Muller, A., Rumberg, B. &Zieger, G. (1960 b). Zwei chlorophyllreaktionen in vivo. Z. phys. Chem. N.F. 23, 133138.CrossRefGoogle Scholar
Witt, H. T., Müller, A. &Rumberg, B. (1961). Oxidized cytochrome and chlorophyll C+2 in photosynthesis. Nature, Lond. 192, 967969.CrossRefGoogle Scholar
Witt, K. &Wolff, C. H. (1970). Rise time of the absorption changes of chlorophyll-a, and carotenoids in photosynthesis. Z. Naturf. 25b, 387388.CrossRefGoogle ScholarPubMed
Wolff, C.(1975) Formation of carotenoid triplets in photosynthesis bacteria. Vth Int. Biophys. Congress, Copenhagen, Abstr. p, 75.Google Scholar
Yamosa, S. (1978). On the basic equation for the equilibrium electronic states in polar solvents – broken symmetry. J. physical Soc. Japan 44, 602610.CrossRefGoogle Scholar
Yamosa, S. (1980). Theory of electron transfer in photosynthetic system. J. chern. Phys. (submitted).Google Scholar
Zener, C. (1932). Non-adiabatic crossing of energy levels. Proc. R. Soc. Loud. A 137, 696702.Google Scholar
Zener, C. (1934). A theory of the electrical breakdown of solid dielectrics. Proc. R. Soc. Lond. A 145, 523529.Google Scholar