Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T13:17:54.915Z Has data issue: false hasContentIssue false

Modification of memory systems: some neurobiological aspects

Published online by Cambridge University Press:  17 March 2009

James L. McGaugh
Affiliation:
Department of Psychobiology, School of Biological Sciences, Uiversity of California
Steven F. Zornetzer
Affiliation:
Department of Psychobiology, School of Biological Sciences, Uiversity of California
Paul E. Gold
Affiliation:
Department of Psychobiology, School of Biological Sciences, Uiversity of California
Philip W. Landfield
Affiliation:
Department of Psychobiology, School of Biological Sciences, Uiversity of California

Extract

The findings of clinical and experimental studies conducted over the past 25 years provide extensive evidence that in both laboratory animals and man memory can be modified by treatments which affect the central nervous system. Patients with head injuries may suffer from retrograde amnesia, a loss of memory for experiences which occur just prior to the onset of the injury. Findings of laboratory studies using animal subjects indicate that retrograde amnesia can be produced by a wide variety of experimental treatments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agranoff, B. W. (1968). Biological effects of antimetabolites used in behavioral studies. In Efron, D. H. et al. (eds.), Psychopharmacology: A Review of Progress, 1957–1967, PHS Publ. 1836, PP. 909–17. Washington, D.C.: U.S. Government Printing Office.Google Scholar
Agranoff, B. W. (1972). Further studies on memory formation in the goldfish. Chemistry of Mood, Motivation and Memory. New York: Plenum Publishing Corp. (In the Press.)Google Scholar
Alpern, H. P. & McGaugh, J. L. (1968). Retrograde amnesia as a function of duration of electroshock stimulation. J. comp. physiol. Psychol. 65, 265–9.CrossRefGoogle ScholarPubMed
Barcik, J. D. (1969). Hippocampal afterdischarges and memory disruption. Proc. 77th Annual Convention of the American Psychological Association 4, 185–6.Google Scholar
Barondes, S. (1968). Effects of inhibitors of cerebral protein synthesis on ‘long-term’ memory in mice. In Efron, D. H. et al. (eds.), Psychopharmacology: A Review of Progress, 1957–1967, PHS Publ. 1836, pp. 905–8. Washington, D.C.: U.S. Government Printing Office.Google Scholar
Barondes, S. H. (1970). Multiple steps in the biology of memory. In Schmitt, F. O. (ed.), The Neurosciences, pp. 272–8. New York: Rockefeller University Press.Google Scholar
Boggan, W. O. & Schlesinger, K. (1972). Pharmacological correlates of ECS induced retrograde amnesia in mice. Psychopharmacologia (In the Press).Google Scholar
Buckholtz, N. S. & Bowman, R. E. (1972). Incubation and retrograde amnesia studied with various ECS intensities and durations. Physiol. & Behav. (In the Press.)CrossRefGoogle Scholar
Cherkin, A. (1969). Kinetics of memory consolidation: Role of amnesic treatment parameters. Proc. natn. Acad. Sci. U.S.A. 63, 1094–101.CrossRefGoogle ScholarPubMed
Chorover, S. L. & Schiller, P. H. (1965). Short-term retrograde amnesia in rats. J. comp. physiol. Psychol. 59, 73–8.CrossRefGoogle ScholarPubMed
Cohen, H. D. & Barondes, S. H. (1967). Puromycin effect on memory may be due to occult seizures. Science, N.Y. 157, 333–4.CrossRefGoogle ScholarPubMed
Cotman, C., Banker, G., Zornetzer, S. & McGaugh, J. L. (1971). Electroshock effects on brain protein synthesis: Relation to brain seizures and retrograde amnesia. Science, N.Y. 173, 454–6.CrossRefGoogle ScholarPubMed
Davis, R. E. & Agranoff, B. W. (1966). Stages of memory formation in goldfish: Evidence for an environmental trigger. Proc. natn. Acad. Sci. U.S.A. 55, 555–9.CrossRefGoogle ScholarPubMed
Deadwyler, S. A. & Wyers, E. J. (1972). Disruption of habituation by caudate nuclear stimulation in the rat. Behav. Biol. 7, 5564.CrossRefGoogle ScholarPubMed
Dorfman, L. J. & Jarvik, M. E. (1968). Comparative amnesic effects of transcorneal and transpinnate ECS in mice. Physiol. & Behav. 3, 815–18.CrossRefGoogle Scholar
Dunn, A. (1971). Brain protein synthesis after electroshock. Brain Res., Osaka 35, 254–9.CrossRefGoogle ScholarPubMed
Essman, W. B. (1970). Some neurochemical correlates of altered memory consolidation. Trans. N.Y. Acad. Sci. 32, 948–73.CrossRefGoogle ScholarPubMed
Fishbein, W., McGaugh, J. L. & Swarz, J. R. (1971). Retrograde amnesia: ECS effects after termination of a rapid eye movement sleep deprivation.Science, N.Y. 172, 80–2.CrossRefGoogle Scholar
Flexner, J. B., Flexner, L. B. & Stellar, E. (1963). Memory in mice as affected by intracerebral puromycin. Science, N.Y. 141, 57–9.CrossRefGoogle ScholarPubMed
Flexner, L. B. & Flexner, J. B. (1968). Intracerebral saline: Effect on memory of trained mice treated with puromycin. Science, N. Y. 159,330–1.CrossRefGoogle ScholarPubMed
Glickman, S. E. (1961). Perseverative neural processes and consolidation of the memory trace. Psychol. Bull. 58, 218–33.CrossRefGoogle ScholarPubMed
Gold, P. E., Farrell, W. & King, R. A. (1971). Retrograde amnesia after localized brain shock in passive avoidance learning. Physiol. & Behav. 7,709–12.CrossRefGoogle ScholarPubMed
Gold, P. E., Macri, J. E., McGaug, J. L. Retrograde amnesia gradients: Effects of direct cortical stimulation. (In preparation, a.)Google Scholar
Gold, P. E., Macri, J. E., McGaugh, J. L. Time-dependent changes in amnesia thresholds: A brief amnesia gradient. (In preparation, b.)Google Scholar
Gold, P. E. & McGaugh, J. L. Relations between amnesia and brain seizure thresholds in rats. (In preparation.)Google Scholar
Herz, M. J. & Peeke, H. V. S. (1968). ECS-produced retrograde amnesia:Permanence vs. recovery over repeated testing. Physiol. & Behav. 3,517–21.CrossRefGoogle Scholar
Herz, M. J. & Peeke, H. V. S. (1971). Impairment of extinction with caudate nuclear stimulation. Brain Res., Osaka 33, 519–22.CrossRefGoogle Scholar
Jarvik, M. E. & Kopp, R. (1967 a). An improved one-trial passive avoidance learning situation. Psychol. Rep. 21, 221–4.CrossRefGoogle ScholarPubMed
Jarvik, M. E. & Kopp, R. (1967 b). Transcorneal electroconvulsive shock and retrograde amnesia in mice. J. comp. physiol. Psychol. 64, 431–3.CrossRefGoogle ScholarPubMed
Kopp, R., Bohdanecky, Z. & Jarvik, M. E. (1966). Long temporal gradient of retrograde amnesia for a well-discriminated stimulus. Science, N. Y. 63, 1547–9.CrossRefGoogle Scholar
Landfield, P. W., McGaugh, J. L. & Tusa, R. J. (1972). Theta rhythm: A temporal correlate of posttrial memory storage processes in the rat. Science, N.Y. 175, 87–9.CrossRefGoogle Scholar
Lee-Teng, E. (1969). Retrograde amnesia in relation to subconvulsive and convulsive currents in chicks. J. comp. physiol. Psychol. 67, 135–9.CrossRefGoogle ScholarPubMed
Lewis, D. J. (1969). Sources of experimental amnesia. Psychol. Rev. 76, 461–72.CrossRefGoogle ScholarPubMed
Lewis, D. J., Miller, R. R. & Misanin, J. R. (1968 a). Control of retrograde amnesia. J. comp. physiol. Psychol. 66, 4852.CrossRefGoogle Scholar
Lewis, D. J., Misanin, J. R. & Miller, R. R. (1968 b). Recovery of memory following amnesia. Nature, Lond. 220, 704–5.CrossRefGoogle ScholarPubMed
Lidsky, A. & Slotnick, B. N. (1970). Electrical stimulation of hippocampus and electroconvulsive shock produce similar amnestic effects in mice. Neuropsychologia 8, 363–9.CrossRefGoogle ScholarPubMed
Luttges, M. W. & McGaugh, J. L. (1967). Permanence of retrograde amnesia produced by electroconvulsive shock. Science, N.Y. 156, 408–10.CrossRefGoogle ScholarPubMed
McDonough, J. H. & Kesner, R. P. (1971). Amnesia produced by brief electrical stimulation of amygdala or dorsal hippocampus in cats. J. comp. physiol. Psychol. 77, 171–8.CrossRefGoogle ScholarPubMed
MacInnes, J. W., McConkey, E. H. & Schlesinger, K. (1970). Changes in brain polyribosomes following an electro-convulsive seizure. J. Neurochem. 17, 457–60.CrossRefGoogle ScholarPubMed
McGaugh, J. L. (1966). Time-dependent processes in memory storage. Science, N.Y. 153, 1351–8.CrossRefGoogle ScholarPubMed
McGaugh, J. L. & Alpern, H. P. (1966). Effects of electroshock on memory: Amnesia without convulsions. Science, N. Y. 152, 66–6.CrossRefGoogle ScholarPubMed
McGaugh, J. L. & Dawson, R. G. (1971). Modification of memory storage processes. Behavl Sci. 16, 4563.CrossRefGoogle Scholar
McGaugh, J. L., Dawson, R. G., Coleman, R. & Rawie, J. (1971). Amnesia without convulsions: A test of the CER-incubation hypothesis. Commun. Behav. Biol. 6, 227–32.Google Scholar
McGaugh, J. L. & Herz, M. J. (1972). Memory Consolidation. San Francisco: Albion Publishing Company.Google ScholarPubMed
McIntyre, D. C. (1970). Differential amnesic effect of cortical vs. amygdaloid elicited convulsions in rats. Physiol. & Behav. 5, 747–53.CrossRefGoogle Scholar
Miller, A. J. (1968). Variations in retrograde amnesia with parameters of electroconvulsive shock and time of testing. J. comp. physiol. Psychol. 66,40–7.CrossRefGoogle ScholarPubMed
Orsingher, O. A. & Fulginiti, S. (1971). Effects of alpha-methyl-tyrosine and adrenergic blocking agents on the facilitating action of amphetamine and nicotine on learning in rats. Psychopharmacologia 19, 231–40.CrossRefGoogle ScholarPubMed
Pagano, R. R., Bush, D. F., Martin, G. & Hunt, E. B. (1969). Duration of retrograde amnesia as a function of electroconvulsive shock intensity. Physiol. & Behav. 4, 1921.CrossRefGoogle Scholar
Peeke, H. V. S. & Herz, M. J. (1971). Caudate nucleus stimulation retroactively impairs complex maze learning in the rat. Science, N. Y. 173,80–2.CrossRefGoogle ScholarPubMed
Quarterman, D., McEwen, B. S. & Azmitia, E. C. Jr, (1970). Amnesia produced by electroconvulsive shock or cycloheximide: Conditions for recovery. Science, N.Y. 169, 683–6.CrossRefGoogle Scholar
Randt, C. T., Quartermain, D., Goldstein, M. & Anagnoste, B. (1971). Norepinephrine biosynthesis inhibition: Effects on memory in mice Science, N.Y. 172, 498–9.CrossRefGoogle ScholarPubMed
Roberts, R. B. (1971). Involvement of protein synthesis in memory formation. Presented at meetings of the Society for Neurosciences.Google Scholar
Roberts, R. B., Flexner, J. B. & Flexner, L. B. (1970). Some evidence for the involvement of adrenergic sites in the memory trace. Proc. natn. Acad. Sci. U.S.A. 66, 310–3.CrossRefGoogle ScholarPubMed
Rosenbaum, M., Cohen, H. D. & Barondes, S. H. (1968). Effects of intracerebral saline on amnesia produced by inhibition of cerebral protein synthesis. Commun. Behav. Biol. 2, 4750.Google Scholar
Routtenberg, A., Zechmeister, E. B. & Benton, C. (1970). Hippocampal activity during memory disruption of passive avoidance by electroconvulsive shock. Life Sci. 9, 909–18.CrossRefGoogle ScholarPubMed
Russell, W. R. & Nathan, P. W. (1946). Traumatic amnesia. Brain 69, 280300.CrossRefGoogle ScholarPubMed
Van Buskirk, R. & McGaugh, J. L. Retrograde amnesia in mice: Strain differences. (In preparation.)Google Scholar
Vardaris, R. M. & Gehres, L. D. (1970). Brain seizure patterns and ESBinduced amnesia for passive avoidance. Physiol. & Behav. 5, 1271–5.CrossRefGoogle ScholarPubMed
Weissman, A. (1965). Effects of anticonvulsant drugs on electroconvulsive shock-induced retrograde amnesia. Archs int. Pharmacodyn. 154, 122–30.Google ScholarPubMed
Whitty, C. W. M. & Zangwill, O. L. (eds.) (1966). Amnesia. London: Butterworth.Google Scholar
Wyers, E. J. & Deadwyler, S. A. (1971). Duration and nature of retrograde amnesia produced by stimulation of caudate nucleus. Physiol. & Behav. 6, 97103.CrossRefGoogle ScholarPubMed
Wyers, E. J., Peeke, H. V. S., Williston, J. S. & Herz, M. J. (1968). Retroactive impairment of passive avoidance learning by stimulation of the caudate nucleus. Expl Neurol. 22, 350–66.CrossRefGoogle ScholarPubMed
Zinkin, S. & Miller, A. J. (1967). Recovery of memory after amnesia induced by electroconvulsive shock. Science, N.Y. 155, 102–4.CrossRefGoogle ScholarPubMed
Zornetzer, S. F. (1972). Brain stimulation and retrograde amnesia in rats: A neuroanatomical approach. Physiol. & Behav. (In the Press.)CrossRefGoogle Scholar
Zornetzer, S. F. & McCaugh, J. L. (1970). Effects of frontal brain electroshock stimulation on EEG activity and memory in rats: Relationship to ECS-produced retrograde amnesia. J. Neurobiol. 1, 379–94.CrossRefGoogle ScholarPubMed
Zornetzer, S. F. & McGaugh, J. L. (1971a). Retrograde amnesia and brain seizures in mice. Physiol. & Behav. 7, 401–8.CrossRefGoogle ScholarPubMed
Zornetzer, S. F. & McGaugh, J. L. (1971 b). Retrograde amnesia and brain seizures in mice: Further analysis. Physiol. & Behav. 7,841–5CrossRefGoogle ScholarPubMed
Zornetzer, S. F. & McGaugh, J. L. (1972). Electrophysiological correlates of frontal cortex-induced retrograde amnesia in rats. Physiol. & Behav. (In the Press.)CrossRefGoogle Scholar