Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T13:28:41.332Z Has data issue: false hasContentIssue false

Coupling of quanta, electrons, fields, ions and phosphorylation in the functional membrane of photosynthesis. Results by pulse spectroscopic methods

Published online by Cambridge University Press:  17 March 2009

H. T. Witt
Affiliation:
Max- Volmer-Institut, I. Institut für Physikalische Chemie, Technische Universität Berlin

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Review Article
Copyright
Copyright © Cambridge University Press 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, F. L. & Franck, J. (1955). Photosynthetic evolution of oxygen by flashes of light. Archs Biochem. Biophys. 58, 124.CrossRefGoogle ScholarPubMed
Amesz, J. (1964). Spectrophotometric evidence for the participation of a quinone in photosynthesis of intact blue-green algae. Biochim. biophys. Acta 79, 257.CrossRefGoogle ScholarPubMed
Arnon, D. I. (1951). Extracellular photosynthetic reactions. Nature, Land. 167, 1008.CrossRefGoogle ScholarPubMed
Arnon, D. I., Allen, M. B. & Whatley, F. R. (1954). Photosynthesis by isolated chloroplasts. Nature, Lond. 174, 394.CrossRefGoogle ScholarPubMed
Arnon, D. I., Chain, R. K., McSwain, B. D., Tsujimoto, H. Y. & Knaff, D. B. (1970). Evidence from Chloroplast Fragments for Three Photo-Synthetic Light Reactions. Proc. natn. Acad. Sci. USA. 67, 1404.CrossRefGoogle Scholar
Arntzen, C. J., Dilley, R. A. & Crane, F. L. (1969). A comparization of chloroplast membrane surfaces visualized by freeze-etch and negative stationing techniques; and ultrastructural characterization of membrane fractions from digitonin treated spinach chloroplasts. J. Cell Biol. 43, 16.CrossRefGoogle Scholar
Avron, A. & Shavit, N. (1965). Inhibitors and uncouplers of photophosphorylation. Biochim. biophys. Acta 109, 317.CrossRefGoogle ScholarPubMed
Avron, M. & Neumann, J. (1968). Photophosphorylation in chloroplasts. A. Rev. Pl. Physiol. 19, 137.CrossRefGoogle Scholar
Baltscheffsky, H. & Baltscheffsky, M. (1960). Inhibitor studies on lightinduced phosphorylation in extracts of Rhodospirillum rubrum. Acta chem. scand. 14, 257.CrossRefGoogle Scholar
Baltscheffsky, M. (1969). Energy conversion–linked changes of carotenoid absorbance in Rhodospirillum rubrum. chromatophores. Archs. Biochem.Biophys. 130, 646.Google Scholar
Bangham, A. D., Standish, M. M. & Watkins, J. C. (1965). Diffusion of univalent ions across the lamellae of swollen phospholipids. J. molec. Biol. 13, 238.CrossRefGoogle ScholarPubMed
Beinert, H. & KOK, B. (1963). Relationship between light-induced EPR signal and pigment P 700. In Photosynthetic Mechanisms of Green Plants. Natn. Acad. Sci.-Natn. Res. Council Publ.no. 1145, p. 131.Google Scholar
Ben-Hayyim, G. & Avron, M. (1966). Enhancement in isolated chloroplasts. Israel J. Chem. 4, 73 p.Google Scholar
Bennun, A. (1971). Hypothesis for Coupling Energy Transduction with ATP Synthesis of ATP Hydrolysis. Nature, Land. (New Biology) 233, 5.CrossRefGoogle ScholarPubMed
Bishop, N. I. (1958). The influence of the herbicide, DCMU, on the oxygenevolving system of photosynthesis. Biochim. biophys. Acta 27, 205.CrossRefGoogle ScholarPubMed
Bishop, N. I. (1959). The reactivityof anaturallyoccurringquinone (Q-255) in photochemical reactions of isolated chloroplasts. Biochem. N.Y. 45, 1696.Google ScholarPubMed
Blinks, L. R. (1959). Chromatic transient in the photosynthesis of the green alga. Pl. Physiol., Lancaster 34, 200.CrossRefGoogle ScholarPubMed
Boardman, N. K. (1968). The photochemical systems of photosynthesis. In Advances in Enzymology, vol. 30 (ed. Nord, F. F.), p. 1. New York, London: Interscience Publ., Wiley and Sons.Google Scholar
Boardman, N. K. & Anderson, J. M. (1967). Fractionation of the photochemical systems of photosynthesis. II. Cytochrome and carotenoid contents of particles isolated from spinach chloroplasts. Biochem. biophys. Acta 143, 187.Google ScholarPubMed
Boeck, M. & Witt, H. T. (1972a). Phosphorylation as function of electrical field changes in the absence of proton gradients. Eur. J. Biochem.(in the press).Google Scholar
Boeck, M. & Witt, H. T. (1972b). Phosphorylation as function of proton gradient at constant electrical field changes. Eur. J. Biochem. (in the press).Google Scholar
Boeck, M. & Witt, H. T. (1972c). Titration of the function unit of phosphorylation by ionophores. Eur. J. Biochem. (in the press).Google Scholar
Boeck, M. & Witt, H. T. (1972d). Type of ion which is driven electrically across the thylakoid membrane. Eur. J. Biochem.(in the press).Google Scholar
Bohme, H. & Trebst, A. (1969). On the properties of ascorbate photooxidation in isolated chloroplasts. Evidence for two ATP sites in noncyclic photophosphorylation. Biochim. biophys. Acta 180, 137.CrossRefGoogle ScholarPubMed
Boyer, P. D. (1965). Carboxyl activation as a possible common reaction in substrate-level and oxidative phosphorylation and in muscle contraction. In Oxidases and Related Redox Systems, vol. 2 (ed. King, T. E.Mason, H. S. and Morrison, M.), p. 994. New York: John Wiley.Google Scholar
Buchwald, H-E. & Rüppel, H. (1968). Suppression of disturbing light signals in rapid flash kinetic measurements. Nature, Lond. 220, 57.CrossRefGoogle ScholarPubMed
Buchwald, H-E. & Wolff, C. (1971). Further evidence for carotenoids engaged in a metastable state in photosynthesis. Z. Naturf. 26 b, 51.CrossRefGoogle Scholar
Budzikiewicz, H., Eckan, H. & Inhoffen, H. H. (1969). Zur Photosynthese grüner Pflanzen. I. Versuche mit H218O und K2C18O3 an Chlorella pyrenoidosa Chick. Z. Naturf. 24 b, 1147.Google Scholar
Calvin, M. (1962). Der Weg des Kohlenstoffs in der Photosynthese. Angew. Chem. 74, 165.CrossRefGoogle Scholar
Calvin, M. & Benson, A. A. (1948). The path of carbon in photosynthesis Science, N.Y. 107, 476.CrossRefGoogle ScholarPubMed
Carmeli, C. (1970). Proton translocation induced by ATPase activity in chloroplasts. FEBS Lett. 7, 297.CrossRefGoogle ScholarPubMed
Chance, B. (1954). Spectrophotometry of intracellular respiratory pigments. Science, N.Y. 120, 767.CrossRefGoogle ScholarPubMed
Chance, B. (1967). In Fast Reactions and Primary Processes in Chemical Kinetics (Nobel Symposium V) (ed. Claesson, S.), p. 310. Stockholm: Almqvist and Wiksell; New York, London, Sydney: Interscience Publ.Google Scholar
Chance, B., Devault, D., Hildreth, W. W., Parson, W. W. & Nishimura, M. (1966). Early chemical events in photosynthesis: Kinetics of oxidation of cytochromes of types c or f in cells, chloroplasts and chromatophores. Brookhaven Symp. Biol. no. 19, 115. Ed. Brookhaven Natl. Lab. Ass. Univ. Inc.Google ScholarPubMed
Chance, B., McCray, J. A. & Bunkenburg, J. (1970). Fast spectrophotometric measurements of H+ changes in chromatium chromatophores activated by a liquid dye laser. Nature, Lond. 225, 705.CrossRefGoogle ScholarPubMed
Chance, B. & Mela, L. (1966). Intramitochondrial pH changes and cation accumulation. Proc. natn. Acad. Sci. U.S.A. 55, 1243.CrossRefGoogle ScholarPubMed
Chance, B. & Nishimura, M. (1970). On the mechanism of chlorophyll cytochrome interaction: the temperature insensitivity of light-induced cytochrome oxidation in chromatium. Proc. natn. Acad. Sci. U.S.A. 46, 19.CrossRefGoogle Scholar
Chappell, J. B. & Crofts, A. T. (1966). Ion transport and reversible volume changes of isolated mitochrondria. Biochim. biophys. Acta 7, 293.Google Scholar
Cheniae, G. M. (1970). Photosystem II and O2 evolution. An. Rev. Pl. Physiol. 21, 467.CrossRefGoogle Scholar
Chessin, M., Livingston, R. & Truscott, T. G. (1966). Direct evidence for the sensitized formation of a metastable state of β-carotene. Trans. Faraday Soc. 62, 1519.CrossRefGoogle Scholar
Cockrell, R. S., Harris, E. J. & Pressman, B. C. (1966). Energetics of potassium transport in mitochondria induced by valinomycin. Biochem., N.Y. 5, 2326.CrossRefGoogle ScholarPubMed
Cramer, W. A. & Butler, W. L. (1967). Light-induced absorbance changes of two cytochrome b components in the electron-transport system of spinach chloroplasts. Biochim. biophys. Acta 143, 332.CrossRefGoogle ScholarPubMed
Crofts, A. R. (1966). Uptake of ammonium ion by chloroplasts, and the mechanism of amine uncoupling. Biochem. biophys. Res. Commun. 24, 127.CrossRefGoogle ScholarPubMed
Crofts, A. R., Wraight, C. A. & Fleischmann, D. E. (1971). Energy conservation in photochemical reactions of photosynthesis and its relation to delayed fluorescence. FEBS Lett. 15, 89.CrossRefGoogle ScholarPubMed
Davenport, H. E., Hill, R. & Whatley, F. R. (1952). A natural factor catalyzing reduction of methaemoglobin by isolated chloroplasts. Proc. R. Soc. B 139, 346.Google ScholarPubMed
Deamer, D. W., Crofts, A. R. & Packer, L. (1967). Mechanisms of lightinduced structural changes in chloroplasts. I. Light-scattering increments and ultrastructural changes mediated by proton transport. Biochim. biophys. Acta 131, 81.CrossRefGoogle Scholar
Dekouchovsky, Y. & Fork, D. C. (1964). A possible functioning in vivo of plastocyanin in photosynthesis as revealed by a light-induced absorbance change. Proc. natn. Acad. Set. U.S.A. 52, 232.CrossRefGoogle Scholar
De Vault, D. & Chance, B. (1966). Studies of photosynthesis using a pulsed laser. Biophys. J. 6, 825.CrossRefGoogle ScholarPubMed
Dilley, R. A. & Vernon, L. P. (1965). Ion and water transport processes related to the light-dependent shrinkage of spinach chloroplasts. Archs Biochem. Biophys. 111, 365.CrossRefGoogle Scholar
Döring, G., Stiehl, H. H. & Witt, H. T. (1967). A second chlorophyll reaction in the electron chain of photosynthesis. Z. Natur. 22b, 639.Google ScholarPubMed
Döring, G., Bailey, J. L., Kreutz, W., Weikard, J. & Witt, H. T. (1968a). The action of two chlorophyll-a1 molecules in light reaction I of photosynthesis. Naturwissenschaften 55, 219.CrossRefGoogle Scholar
Döring, G., Bailey, J. L., Kreutz, W. & Witt, H. T. (1968b). The active chlorophyll-11 in light reaction II of photosynthesis. Naturwissenschaften 55, 220.Google ScholarPubMed
Döring, G., Renger, G., Vater, J. & Witt, H. T. (1969). Properties of the photoactive chlorophyll-a11 in photosynthesis. Z. Naturf. 24 b, 1139.CrossRefGoogle ScholarPubMed
Dutton, H. J., Manning, W. M. & Duggar, B. M. (1943). Chlorophyll fluorescence and energy transfer in the diatom nitzschia closterium. J. phys. Chem. Ithaca 47, 308.CrossRefGoogle Scholar
Duysens, L. N. M.(1952). Transfer of excitation in photosynthesis. Thesis: University of Utrecht.Google Scholar
Duysens, L. N. M. (1954). Reversible photo-oxidation of a cytochrome pigment in photosynthetizing Rhodospirillum rubrum. Nature, Lond. 173, 692.CrossRefGoogle Scholar
Duysens, L. N. M.(1959). The dependence of the maximum efficiency of photochemical reactions upon light intensity. In Brookhaven Symp. Biol. II, 18. Ed. Brookhaven National Lab., Upton N.Y.Google Scholar
Duysens, L. N. M., Amesz, J. & Kamp, B. M. (1961). Two photochemical systems in photosynthesis. Nature, Lond. 190, no. 4775, pp. 510.CrossRefGoogle ScholarPubMed
Duysens, L. N. M. & Sweers, H. E. (1963). Mechanism of two photochemical reactions in algae as studies by means of fluorescence. In Microalgae and Photosynthetic Bacteria, p. 353.Google Scholar
Emerson, R. (1958). The quantum yield of photosynthesis. A. Rev. Pl. Physiol. 9, 1.CrossRefGoogle Scholar
Emerson, R. & Arnold, W. (1932). The photochemical reaction in photosynthesis. J. gen. Physiol. 16, 191.CrossRefGoogle ScholarPubMed
Emerson, R. & Chalmers, R. (1955). Transient changes in cellular gas exchange and the problem of maximum efficiency of photosynthesis. Pl. Physiol., Lancaster 30, 504.CrossRefGoogle ScholarPubMed
Emrich, H. M., Junge, W. & Witt, H. T. (1969a). An artificial indicator for electric phenomena in biological membranes and interfaces. Naturwissenschaften, 56, 514.CrossRefGoogle ScholarPubMed
Emrich, H. M., Junge, W. & Witt, H. T. (1969b). Further evidence for an optical response of chloroplast bulk pigments to a light induced electrical field in photosynthesis. Z. Naturf. 24 b, 1144.CrossRefGoogle Scholar
Forbush, B. & Kok, B. (1968). Reaction between primary and secondary electron acceptors of photosystem II of photosynthesis. Biochim. biophys. Acta 162, 243.CrossRefGoogle ScholarPubMed
Fork, D. C. & Amesz, J. (19661967). Light-induced shifts in the absorption spectrum of carotenoids in red, brown, and yellow-green algae and in a Barley mutant. Carnegie Inst. Yrbk 66, 160.Google Scholar
Fork, D. C. & Amesz, J. (1970). Spectrophotometrie studies of the mechanism of photosynthesis. Photophysiology, vol. v, 97, ed. by Giese, D.. New York, London: Academic Press.Google Scholar
Fork, D. C.Amesz, J. & Anderson, J. M. (1966). Light-induced reactions of chlorophyll-b. Yb. Carnegie Instn Wash. 1965/1966, p. 473.Google ScholarPubMed
Förster, TH. (1947). Ein Beitrag zur Theorie der Photosynthese. Z. Naturf. 2 b, 174.CrossRefGoogle Scholar
Frenkel, A. (1954). Light-induced phosphorylation by cell-free preparations of photosynthetic bacteria. J. Am. Chem. Soc. 76, 5568.CrossRefGoogle Scholar
Gaffron, H. & Wohl, K. (1936). Zur Theorie der Assimilation. Naturwissenschaften 24, 81.CrossRefGoogle Scholar
Gibbs, S. P. (1960). The fine structure of Euglena gracilis with special reference to the chloroplasts and pyrenoids. J. Ultrastruct. Res. 4, 127.CrossRefGoogle Scholar
Giraud, G. (1963). The structure, pigments, and functional characteristics of the photosynthetic apparatus of diverse algae. Physiolog. Veg. 1, 203.Google Scholar
Greville, G. D. (1969). A scrutiny of Mitchell's chemiosmotic hypothesis of respiratory chain and photosynthetic phosphorylation. Curr. Top. Bioenerg. 3, 1. New York: Academic Press, Inc.Google Scholar
Griffiths, M., Sistrom, W. R., Cohen-Bazire, G. & Stanier, R. Y. (1955). Function of carotenoids in photosynthesis. Nature, Lond. 176, 1211.CrossRefGoogle ScholarPubMed
Gromet-Elhanan, Z. (1970). Differences in sensitive to valinomycin and nonactin of various photophosphorylating and photoreducing systems of Rhodospirillum rubrum chromatophores. Biochim. biophys. Acta 223, 174.CrossRefGoogle Scholar
Grünhagen, H. H. & Witt, H. T. (1970). Primary ionic events in the functional membrane of photosynthesis. Z. Naturf. 25 b, 373.CrossRefGoogle Scholar
Haehnel, W., Döring, G. & Witt, H. T. (1971). The reaction between chlorophyll-a1 and its primary electron donators in photosynthesis. Z. Naturf. 26 B, 1171.CrossRefGoogle Scholar
Hager, A. (1969). Lichtbedingte pH-Erniedrigung in einem Chloroplasten Kompartiment als Ursache der enzymatischen Violaxanthin-Zeaxanthin Umwandlung; Beziehungen zur Photophosphorylierung. Planta 89, 224.CrossRefGoogle Scholar
Heath, R. L. & Hind, G. (1969). The role of chloride ion in photosynthesis. II. The effect of chloride upon fluorescence. Biochim. biophys. Acta 172, 290.CrossRefGoogle ScholarPubMed
Henninger, M. D. & Crane, F. D. (1964). Isolation of plastoquinones C and D from spinach chloroplasts. Pl. Physiol., Lancaster 39, 598.CrossRefGoogle Scholar
Hildreth, W. W. (1968). Laser-induced kinetics of cytochrome oxidation and the 518 mμ absorption change in spinach leaves and chloroplasts. Biochim. biophys. Acta 153, 197.CrossRefGoogle Scholar
Hildreth, W. W. (1970). The 520-nm absorption change in barley and a chlorophyll b-deficient mutant. Archs. Biochem. Biophys. 139, 18.CrossRefGoogle Scholar
Hill, R. (1939). Oxygen produced by isolated chloroplasts. Proc. R. Soc. B 127, 192.Google Scholar
Hill, R. (1954). The cytochrome b component of chloroplasts. Nature, Land. 174, 501.CrossRefGoogle ScholarPubMed
Hill, R. & Bendall, F. (1960). Function of the two cytochrome components in chloroplasts: a working hypothesis. Nature, Lond. 186, 136137.CrossRefGoogle Scholar
Hill, R. & Scarisbrick, R. (1951). The haematin compounds of leaves. New Phytol. 50, no. 1, 98.CrossRefGoogle Scholar
Hind, G. & Nakalani, N. Y. (1970). Determination of the concentration and the redox potential of chloroplast cytochrome 559. Biochim. biophys. Acta 216, 223.CrossRefGoogle ScholarPubMed
Hind, G. & Olson, J. M. (1966). Light-induced changes in cytochrome b 6 in spinach chloroplasts. Brookhaven Symp. Biol. 19, 188.Google ScholarPubMed
Howell, St H. & Moudrianakis, N. (1967). Hill reaction site in chloroplast membranes: non-participation of the quantasome particle in photoreduction. J. molec. Biol. 27, 323.CrossRefGoogle ScholarPubMed
Izawa, S. & Hind, G. (1967). The kinetics of the pH rise in illuminated chloroplast suspensions. Biochim. biophys. Acta 143, 377.CrossRefGoogle Scholar
Jackson, J. B. & Crofts, A. R. (1968). Ion transport in chromatophores. Eur. J. Biochem. 6, 41.CrossRefGoogle ScholarPubMed
Jackson, J. B. & Crofts, A. R. (1969). The high energy state in chromatophores from Rhodopseudomonas spheroides FEBS Lett. 4, 185.CrossRefGoogle Scholar
Jackson, J. B. & Crofts, A. R. (1971). The kinetics of light induced carotenoid changes in Rhodopseudomonas spheroides and their relation to electrical field generation across the chromatophore membrane. Eur. J. Biochem. 18, 120.CrossRefGoogle ScholarPubMed
Jagendorf, A. T. & Hind, G. (1963). Studies on the mechanism of photophosphorylation. In Photosynthetic Mechanisms of Green Plants. Natn. Acad. Sci.–Natn. Res. Counc. Publ. no. 1145, p. 599.Google Scholar
Jagendorf, A. T. & Neumann, J. (1965). Effect of uncouplers on the lightinduced pH rise with spinach chloroplasts. J. biol. Chem. 240, 3210.CrossRefGoogle ScholarPubMed
Jagendorf, A. T. & Uribe, E. (1966a). ATP formation caused by acid-base transition of spinach chloroplasts. Proc. natn. Acad. Sci. U.S.A. 55, 170.CrossRefGoogle ScholarPubMed
Jagendorf, A. T. & Uribe, E. (1966b). Photophosphorylation and the chemiosmotic hypothesis. Brookhaven Symp. Biol. 14, 215.Google Scholar
Joliot, P. (1965). Cinétiques des réactions liées à l'émission d'oxygène photosynthétique. Biochim. biophys. Acta 102, 116.CrossRefGoogle Scholar
Joliot, P. (1966). Oxygen evolution in algae illuminated by modulated light. Brookhaver Symp. Biol. 19, 418.Google ScholarPubMed
Joliot, P. (1968). Kinetic studies of photosystem II in photosynthesis. Photochem. & Photobiol. 8, 451.CrossRefGoogle ScholarPubMed
Joliot, P., Barbieri, G. & Chabaud, R. (1969). Un nouveau modéle des centres photochimiques du systeme II. Photochem. & Photobiol. 10, 309.CrossRefGoogle Scholar
Junge, W. (1970). The critical electric potential difference for photophos phorylation. Eur. J. Biochem. 14, 582.CrossRefGoogle Scholar
Junge, W., Emrich, H. M. & Witt, H. T. (1970). The indication of a light induced electrical field by pigments incorporated in chloroplast membranes. In Proc. Corral Gables Conf. on the Princ. of Biol. Membrane, 1968, p. 383. New York: Gordon and Breach.Google Scholar
Junge, W., Reinwald, E., Rumberg, B., Siggel, U. & Witt, H. T. (1968). Further evidence for a new function unit of photosynthesis. Naturwissenschaften 55, 36.CrossRefGoogle ScholarPubMed
Junge, W., Rumberg, B. & Schröder, H. (1970). The necessity of an electric potential difference and its use for photophosphorylation in short flash groups. Eur. J. Biochem. 14, 575.CrossRefGoogle ScholarPubMed
Junge, W. & Schmid, R. (1971a). The mechanism of action of valinomycin on the thylakoid membrane. J. Membrane Biol. 4, 179.CrossRefGoogle ScholarPubMed
Junge, W. & Schmid, R. (1971 b). On the molecular mechanism of ion transport across thylakoid membranes: Evidence for a fixed rest place mechanism of Valinomycin. In First Europ. Biophysics Congr. Baden, Abstracts IV, 87. Ed. Verlag der Wiener Mediz. Akademie, Vienna.Google Scholar
Junge, W. & Witt, H. T. (1968). On the ion transport system of photosynthesis. Investigations on a molecular level. Z. Naturf. 23 b 244.CrossRefGoogle ScholarPubMed
Junge, W. & Witt, H. T. (1969). Analysis of electrical phenomena in membranes and interfaces by absorption changes. Nature, Lond. 222, 1062.CrossRefGoogle ScholarPubMed
Karlish, St J. D. & Avron, M. (1967). Biochemistry-relevance of proton uptake induced by light to the mechanism of energy coupling in photophosphorylation. Nature, Lond. 216, 1107.CrossRefGoogle Scholar
Karlish, S. J. T. & Avron, M. (1968). Dinitrophenol and valinomycin as uncouplers in isolated chloroplasts. FEBS Lett. 1, 21.CrossRefGoogle ScholarPubMed
Katoh, S. (1960). A new copper protein from Chlorella ellipsoidea. Nature, Lond. 186, no. 4724, 533.CrossRefGoogle ScholarPubMed
Kautzky, H., Appel, W. & Amann, H. (1960). Chlorophyllfluoreszenz und Kohlensäureassimilation. XIII. Mitteilung: Die Fluoreszenzkurve und die Photochemie der Pflanze. Biochem. Z. 332, 277.Google Scholar
Ke, B., Treharne, R. W. & McKibben, C. (1964). Flashing-light spectrophotometer for studying the fast reactions occurring during photosynthesis. Rev. Scient. Instrum. 35, 296.CrossRefGoogle Scholar
Kessler, E. (1957). Stoffwechselphysiologische Untersuchungen an Hydrogenase enthaltenden Grünalgen. Planta 49, 435454.CrossRefGoogle Scholar
Klaayenhof, R. (1969). ‘State 3 – State 4 transition’ and phosphate potential in ‘Class I’ spinach chloroplasts. Biochim. biophys. Acta 180, 213.CrossRefGoogle Scholar
Klingenberg, M., Müller, A., Schmidt-Mende, P. & Witt, H. T. (1962). Changes in absorption during photosynthesis in the ultraviolet spectrum. Nature, Lond. 194, 379.CrossRefGoogle Scholar
Knaff, D. B. & Arnon, D. I. (1969). Light-induced oxidation of a chloroplastb-type cytochrome at –189 °C. Proc. natn. Acad. Sci. U.S.A. 63, 956.CrossRefGoogle ScholarPubMed
Knox, R. S. (1969). Thermodynamics and the primary processes of photosynthesis. Biophys. J. 9, 1351.CrossRefGoogle ScholarPubMed
Kok, B. (1957). Light-induced absorption changes in photosynthetic organisms. Acta hot. neerl. 6, 316.CrossRefGoogle Scholar
Kok, B. (1961). Partial purification and determination of oxidation reduction potential of the photosynthetic chlorophyll complex absorbing at 700 nm. Biochim. biophys. Acta 48, 527.CrossRefGoogle Scholar
Kok, B. (1963 a). Photosynthetic electron transport. Plants. Natn. Acad. Sci.–Natn. Res. Council Pub., no. 1145, p. 35.Google Scholar
Kok, B. (1963b). Fluorescence studies. In Photosynthetic Mechanisms of Green Plants. Natn. Acad. Sci.-Natn. Res. Council Publ., no. 1145, p. 45.Google Scholar
Kok, B. & Forbush, B. & McGloin, M. (1970). Cooperation of charges in photosynthetic 02 evolution. I. A linear four step mechanism. Photochem. & Photobiol. 11, 457.CrossRefGoogle Scholar
Kok, B. & Gott, W. (1960). Activation spectra of 700 mμ absorption change in photosynthesis. Pl. Physiol., Lancaster 35, no. 6, 802808.CrossRefGoogle ScholarPubMed
Kok, B. & Hoch, G. (1961). Spectral changes in photosynthesis. In Light and Life, pp. 397416. Johns Hopkins Press, Baltimore.Google Scholar
Krasnovsky, A. A. (1965). Photochemistry and spectroscopy of chlorophyll, bacteriochlorophyll and bacterioviridin in model systems and photosynthetizing organisms. Photochem. & Photobiol. 4, 641.CrossRefGoogle Scholar
Kreutz, W. (1968). On the state of chlorophyll in vivo. Z. Naturf. 23b, 520.CrossRefGoogle ScholarPubMed
Kreutz, W. (1970a). On the molecular mechanism of the proton pump in photosynthesis. Z. Naturf. 25 b, 88.CrossRefGoogle ScholarPubMed
Kreutz, W. (1970b). X-ray research on the photosynthetic membrane. In Adv. Bot. Res. 3, 53.CrossRefGoogle Scholar
Kreutz, W. & Menke, W. (1962). Strukturuntersuchungen an Plastiden (III). Z. Naturf. 17 b, 675.CrossRefGoogle Scholar
Krinsky, N. I. (1968). The protective function of carotenoid pigments. In Photophysiology, vol. 3 (ed. Giese), p. 123. London, New York: Academic Press.CrossRefGoogle Scholar
Labhart, H. (1967). Electrochromism. In Advances in Chemical Physics, vol. xiii, 179(ed. Prigogine, I.). London, New York, Sydney: Interscience Publ.CrossRefGoogle Scholar
Lester, R. L. & Crane, F. L. (1959). The natural occurrence of coenzyme Q and related compounds. J. biol. Chem. 234, 2169.CrossRefGoogle ScholarPubMed
Levine, R. P. & Gorman, D. S. (1966). Photosynthetic electron transport chain of Chlamydomonas reinhardi. III. Light-induced absorbance changes in chloroplast fragments of the wild type and mutant strains. Pl. Physiol., Lancaster, 41, 1293.Google ScholarPubMed
Lipmann, F. (1946). Metabolic process patterns. In Currents in Biochemical Research (ed. Green, D. E.), p. 137. New York: Wiley & Sons, Intersc. Publ.Google Scholar
Liptay, W. (1969). Electrochemie-Solvatochemie. Angew. Chem. 81, 195.CrossRefGoogle Scholar
Livingston, R., Porter, G. & Windsor, M. (1954). Phototropy of chlorophyll solutions. Nature, Lond. 173, 485.CrossRefGoogle Scholar
Losada, M., Whatley, F. R. & Arnon, D. I. (1961). Separation of two light reactions in noncyclic photophosphorylation of green plants. Nature, Lond. 190, 606.CrossRefGoogle ScholarPubMed
Lundegardh, H. (1954). On the oxidation of cytochrome f by light. Physiologia Pl. 7, 375.CrossRefGoogle Scholar
Lynn, W. S. (1968). H+ and electron poising and photophosphorylation in chloroplasts. Biochemistry, N.y. 7, 3811.CrossRefGoogle ScholarPubMed
McCarty, R. E. (1968). Relation of photophosphorylation to hydrogen ion transport. Biochim. biophys. Res. Commun. 32, 37.CrossRefGoogle ScholarPubMed
McEvoy, F. A. & Lynn, W. S. (1970). Proton uptake and phosphorylation in digitonin-treated chloroplast particles. FEBS Lett. 10, 299.CrossRefGoogle ScholarPubMed
Malkin, S. & Kok, B. (1966). Fluorescence induction studies in isolated chloroplasts. I. Number of components involved in the reaction and quantum yields. Biochim. biophys. Acta 126, 413.CrossRefGoogle ScholarPubMed
Mathis, P. & Galmiche, J. M. (1967). Action des gaz paramagnétiques sur un état transitoire induit par un éclair laser dans une suspension de chloroplastes. C. r. hebd. Séanc. Acad. Sci., Paris 264, 1903.Google Scholar
Mela, L. (1966). Intramitochondrial pH changes. Fedn Proc. Fedn Am. Socs exp. biol. 25, 414. Abstr. 1271.Google Scholar
Menke, W. (1960). Weitere Untersuchungen zur Entwicklung der Plastiden von Oenothera hookeri. Z. Naturf. 15 b, 479.CrossRefGoogle Scholar
Menke, W. (1966). The structure of chloroplasts. In Biochemistry of Chloroplasts, vol. 1, 1 (ed. Goodwin, T. W.). New York and London: Academic Press.Google Scholar
Mitchell, P. (1961). Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature, Lond. 191, 144.CrossRefGoogle ScholarPubMed
Mitchell, P. (1966). Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. 41, 445.CrossRefGoogle ScholarPubMed
Moraw, R. & Witt, H. T. (1961 a). IV. Über eine photochemische Reaktion bei der Photosynthese. Z. phys. Chetn. 29, 1.CrossRefGoogle Scholar
Moraw, R. & Witt, H. T. (1961b). VI. Zusammenhang zwischen Zellstruktur, Energiewanderung und Chlorophyllreaktion. Z. phys. Chem. 29, 25.CrossRefGoogle Scholar
Mühlethaler, K. (1960). Die Struktur der Grana- und Stomalamellen in Chloroplasten. Z. wiss. Mikrosk. 64, 444.Google Scholar
Mühlethaler, K., Moor, H. & Szarkowski, J. W. (1965). The ultrastructure of the chloroplast lamellae. Planta 67, 305.CrossRefGoogle Scholar
Müller, A., Fork, D. C. & Witt, H. T. (1963). The function of different chlorophylls in photosynthesis and the action spectra of separated light reactions I and II. Z. Naturf. 18 b 142.CrossRefGoogle Scholar
Müller, A., Rumberg, B. & Witt, H. T. (1963). On the mechanism of photosynthesis. Proc. R. Soc.B 157, 313.Google Scholar
Müller, A. & Witt, H. T. (1961). Trapped primary product of photosynthesis in green plants. Nature, Lond. 189, 944.CrossRefGoogle Scholar
Neumann, B. & Jagendorf, A. T. (1964a). Dinitrophenol as an uncoupler of photosynthetic phosphorylation. Biochem. biophys. Res. Commun. 16, 562.CrossRefGoogle ScholarPubMed
Neumann, J. & Jagendorf, A. T. (1964b). Light-induced pH changes related to phosphorylation by chloroplasts. Archs Biochem. Biophys. 107, 109.CrossRefGoogle ScholarPubMed
Neumann, J., Ke, B. & Dilley, R. A. (1970). The relation of 515 nanometers absorbance change to adenosine triphosphate formation in chloroplasts and digitonin subchloroplast particles. Pl. Physiol., Lancaster 46, 86.CrossRefGoogle ScholarPubMed
Norrish, R. G. W. & Porter, G. (1949). Chemical reactions produced by very high light intensities. Nature, Lond. 164, 658.CrossRefGoogle Scholar
Olson, J. M. & Smillie, R. M. (1963). Light-driven cytochrome reactions in anacystis and euglena. In Photosynthetic Mechanisms of Green Plants. Natn. Acad. Sci.-Natn. Res. Council Publ. no. 1145, p. 56.Google Scholar
Packer, L., Murakami, A. & Mehard, C. W. (1970). Ion transport in chloroplasts and plant mitochondria. A. Rev. PI. Physiol. 21, 271.CrossRefGoogle Scholar
Park, R. B. (1965). The chloroplast. In Plant Biochemistry (ed. Bonner, J. and Varner, J. E.), p. 124. New York and London: Academic Press.CrossRefGoogle Scholar
Phillips, R. C., George, P. & Rutman, R. J. (1969). Thermodynamic data for the hydrolysis of adenosine triphosphate as a function of pH, Mg2+ion concentration, and ionic strength. J. biol. Chem. 12, 3330.CrossRefGoogle Scholar
Pressman, B. C. (1965). Induced active transport of ions in mitochondria. Proc. natn. Acad. Sci. U.S.A. 53, 1076.CrossRefGoogle ScholarPubMed
Racker, E. (1970). Function and structure of the inner membrane of mitochondria and chloroplasts, in Membranes of Mitochondria and Chloroplasts, 127, edited by Racker, E.. New York: Van Nostrand Reinhold Co.Google Scholar
Reinwald, E. & Rumberg, B. (1972). FEBS Lett, (in the press).Google Scholar
Reinwald, E., Siggel, U. & Rumberg, B. (1968). Further results on the correlation between proton translocation and electron flow in chloroplasts. Naturwissenschaften 55, 221.Google ScholarPubMed
Reinwald, E., Stiehl, H. H. & Rumberg, B. (1968). Correlation between plastoquinone reduction, field formation and proton translocation in photosynthesis, Z. Naturf. 23 b, 1616.CrossRefGoogle ScholarPubMed
Renger, G. (1970). The watersplitting system of photosynthesis. A postulated model. Z. Naturf. 25 b, 966.CrossRefGoogle ScholarPubMed
Renger, G. (1971). The acceleration of the deactivation reactions in the watersplitting system by certain chemicals. Z. Naturf. 26 b, 149.CrossRefGoogle Scholar
Ross, R. T. & Calvin, M. (1967). Thermodynamics of light emission and free-energy storage in photosynthesis. Biophys. J. 7, 595.CrossRefGoogle ScholarPubMed
Ruben, S., Randall, M., Kamen, M. D. & Hyde, J. L. (1941). Heavy oxygen (O18) as a tracer in the study of photosynthesis. J. Am. Chem. Soc. 63, 877.CrossRefGoogle Scholar
Rumberg, B. (1964a). Die Eigenschaften des Reaktionszyklus von Chlorophyll- a1-430–703. Z. Naturf. 19 b, 707.CrossRefGoogle Scholar
Rumberg, B. (1964b). Evidence for the participation of chlorophyll-b in the primary reaction of photosynthesis. Nature, Lond. 204, 860.CrossRefGoogle Scholar
Rumberg, B. (1965). Evidence for the participation of cytochrome-i in the electron transport system of photosynthesis. Biochim. biophys. Acta 102, 354.CrossRefGoogle Scholar
Rumberg, B., Reinwald, E., Schröder, H. & Siggel, U. (1968). Correlation between electron flow, proton translocation and phosphorylation in chloroplasts. Naturwissenschaften 55, 77.CrossRefGoogle ScholarPubMed
Rumberg, B., Reinwald, E., Schröder, H. & Siggel, U. (1969). Correlations between electron transfer, proton translocation and phosphorylation in chloroplasts. Progress in Photosynthesis Res. 3, 1374.Google Scholar
Rumberg, B., Schmidt-Mende, R., Siggel, U. & Witt, H. T. (1966). Correlation between phosphorylation and chlorophyll-b dissociation in photosynthesis. Angew. Chem. 5, 522. (Intern, ed. in English.)CrossRefGoogle Scholar
Rumberg, B., Schmidt-Mende, P., Skerra, B., Vater, J., Weikard, J.& Witt, H. T. (1965). Der Reaktionszyklus II der Photosynthese. Z. Naturf. 20 b, 1086.CrossRefGoogle Scholar
Rumberg, B., Schmidt-Mende, P., Weikard, J. & Witt, H. T. (1963). Correlation between absorption changes and electron transport in photosynthesis. In ‘Photosynthesis mechanisms in green plants’. Publs. natn. Res. Council, Wash.no. 1145, p. 18.Google Scholar
Rumberg, B., Schmidt-Mende, P. & Witt, H. T. (1964). Different demonstrations of the coupling of two light reactions in photosynthesis. Nature, Lond. 201, 466.CrossRefGoogle ScholarPubMed
Rumberg, B. & Siggel, U. (1968). Quantitative Zusammenhänge zwischen Chlorophyll-b-Reaktion, Elektronentransport und Phosphorylierung bei der Photosynthese. Z. Naturf. 23 b, 239.CrossRefGoogle Scholar
Rumberg, B. & Siggel, U. (1969). pH changes in the inner phase of the thylakoids during photosynthesis. Naturwissenschaften 56, 130.CrossRefGoogle ScholarPubMed
Rumberg, B. & Witt, H. T. (1964). Die Photooxydation von Chlorophyll-ar- 430–703. Z. Naturf. 19 b, 693.CrossRefGoogle Scholar
Rüppel, H. (1962). Thesis, Technische Universität Berlin.Google Scholar
Rüppel, H., Bültemann, V. & Witt, H. T. (1962). Periodische chemische Relaxation. Z. Elektrochem. 66, 760.Google Scholar
Rüppel, H., Bültemann, V. & WITT, H. T. (1964 a). Periodische Anregung und Messung schneller chemischer Reaktionen. Z. Elektrochem. 68, 340.CrossRefGoogle Scholar
Rüppel, H., Bültemann, V. & Witt, H. T. (1964 b). Anwendung der periodischen chemischen Relaxation auf die Photosynthese. Z. Elektrochem. 68, 752.CrossRefGoogle Scholar
Rüppel, H. & Witt, H. T. (1970). Measurement of fast reactions by single and repetitive excitation with pulses of electromagnetic radiation. In ‘Fast Reactions’. Meth. Enzym. 16, 316.CrossRefGoogle Scholar
Saha, S., Izawa, S. & Good, N. E. (1970). Photophosphorylation as a function of light intensity. Biochim. biophys. Acta 223, 158.CrossRefGoogle ScholarPubMed
San Pietro, A. & Lang, H. M. (1956). Accumulation of reduced pyridine nucleotides by illuminated grana. Science, N. Y., 124, 118.CrossRefGoogle Scholar
Schäfer, F. P. & Röllig, K. (1964). Einfache apparatur zur Ermittlung von Fluoreszenz-Abklingfunktionen. Z. phys. Chem. 40, 197.CrossRefGoogle Scholar
Schliephake, W., Junge, W. & Witt, H. T. (1968). Correlation between field formation, proton translocation and the light reactions in photosynthesis. Z. Naturf. 23 b, 1571.CrossRefGoogle ScholarPubMed
Schmidt, S., Reich, R. & Witt, H. T. (1971 a). Electrochomism of chlorophylls and carotenoids in multilayers and in chloroplasts. Naturwis-senschqften 8, 414.CrossRefGoogle Scholar
Schmidt, S., Reich, R. & Witt, H. T. (1971 b). Electrochromic measurements in vitro as a test for the interpretation of field indicating absorption changes in photosynthesis. Second Int. Congr. Photosynthesis Res., Stresa, ed. G. Forti, Naples. (In the press.)Google Scholar
Schmidt-Mende, P. & Rumberg, B. (1968). Zur Plastochinonreduktion bei der Photosynthese. Z. Naturf. 23 b, 225.CrossRefGoogle Scholar
Schmidt-Mende, P. & Witt, H. T. (1968). Zur Plastochinonoxydation bei der Photosynthese. Z. Naturf. 23 b, 228.CrossRefGoogle Scholar
Schröder, H., Siggel, U., Muhle, H. & Rumberg, B. (1971). Relationship between ion transport phenomena and phosphorylation in chloroplasts. Second Int. Congr. Photosynthesis Res., Stresa, ed. G. Forti, Naples. (In the press.)Google Scholar
Schwartz, M. (1968). Light-induced proton gradient links electron transport and phosphorylation. Nature, Lond. 219, 915.CrossRefGoogle ScholarPubMed
Seifert, K. & Witt, H. T. (1968). Light induced redox reaction between chlorophyll and quinone in iso-butanol. Naturwissenschaften 55, 222.Google ScholarPubMed
Seifert, K. & Witt, H. T. (1969). Flash spectroscopic investigation of the photoreduction of quinone by chlorophyll in iso-butanol. Progr. In Photosynthesis Res., 2, 750.Google Scholar
Shin, M., Tagawa, K. & Arnon, D. (1963). Crystallization of ferredoxin-TPN-reductase and its role in the photosynthetic apparatus of chloroplasts. Biochem. Z. 338, 84.Google ScholarPubMed
Siggel, U. (1972). Thesis, Technische Universität Berlin.Google Scholar
Siggel, U., Renger, G., Stiehl, H. H. & Rumberg, B. (1972). Evidence for electronic and ionic interaction between electron transport chains in chloroplasts. Biochem. biophys. Acta 256, 328335.Google ScholarPubMed
Slater, E. C. (1953). Mechanism of phosphorylation in the respiratory chain. Nature, Lond. 172, 975.CrossRefGoogle ScholarPubMed
Stiehl, H. H. (1969). Thesis, Technische Universität Berlin.Google Scholar
Stiehl, H. H. & Witt, H. T. (1968). Die kurzzeitigen ultravioletten Differenzspektren bei der Photosynthese. Z. Naturf. 23 b, 220.CrossRefGoogle Scholar
Stiehl, H. H. & Witt, H. T. (1969). Quantitative treatment of the function of plastoquinone in photosynthesis. Z. Naturf. 24 b, 1588.CrossRefGoogle Scholar
Tagawa, K. & Arnon, D. I. (1962). Ferredoxins as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas. Nature, Lond. 195, 537.CrossRefGoogle ScholarPubMed
Tollin, G. & Green, G. (1962). Light-induced single electron transfer reactions between chlorophyll-a and quinones in solution. I. Some general features of kinetics and mechanism Biochim. biophys. Acta 60, 524.CrossRefGoogle Scholar
Tolmach, L. J. (1951). Effects of triphosphopyridine nucleotide upon oxygen evolution and carbon dioxide fixation by illuminated chloroplasts. Nature, Lond. 167, 946.CrossRefGoogle ScholarPubMed
Trebst, A. (1963). Zur Hemmung photosynthetischer Reaktionen in isolierten Chloroplasten durch Salicylaldoxin. Z. Naturf. 186, 817.CrossRefGoogle Scholar
Vambutas, V. K. & Racker, E. (1965). Partial resolution of the enzymes catalyzing photophosphorylation by a preparation of a latent, Ca++− dependent adenosine triphosphatase from chloroplasts. J. biol. Chem. 240, 2660.CrossRefGoogle Scholar
Van Niel, C. B. (1941). The bacterial photosynthesis and their importance for the general problem of photosynthesis. Adv. Enzymol. 1, 263.Google Scholar
Vater, J. (1971). Thesis, Technische Universität Berlin.Google Scholar
Vater, J., Renger, G., Stiehl, H. H. & Witt, H. T. (1968). Intermediates and kinetics in the water splitting part of photosynthesis. Naturwissen-schaften 55, 220.Google ScholarPubMed
Vishniak, W. & Ochoa, S. (1951). Photochemical reduction of pyridine nucleotides by spinach grana and coupled carbon dioxide fixation. Nature, Lond. 167, 768.CrossRefGoogle Scholar
Walker, D. A. & Crofts, A. R. (1970). Photosynthesis. A. Rev. Biochem. 39, 389.CrossRefGoogle ScholarPubMed
Wang, J. H. (1970). Oxidative and photosynthetic phosphorylation mechanism. Science N.Y. 167, 25.CrossRefGoogle Scholar
Warburg, O. (1919). Über die Geschwindigkeit der photochemischen Kohlensäurezersetzung in lebenden Zellen. Biochem. Z. 100, 230.Google Scholar
Warburg, O. & Krippahl, G. (1958). Hill-Reaktionen. Z. Naturf. 13 b, 509.CrossRefGoogle Scholar
Warburg, O. & Negelein, E. (1922). Über den Energieumsatz bei der Kohlensäureassimilation. Z. phys. Chem. 102, 235.CrossRefGoogle Scholar
Weikard, J. (1968). Cytochrom-b-563 als natürlicher Elektronenüberträger in einem zyklischen Elektronentransport der Photosynthese. Z. Naturf. 23 b, 235.CrossRefGoogle Scholar
Witt, H. T. (1955 a). Kurzzeitige Absorptionsänderungen beim Primärprozeß der Photosynthese. Naturwissenschaften 42, 72.CrossRefGoogle Scholar
Witt, H. T. (1955 b). Experimente zum Primärprozeß der Photosynthese. Z. Elektrochem. 59, 981.Google Scholar
Witt, H. T. (1960). Untersuchungen der Photosynthese bei Anregung mit Blitzlicht. Handb. PflPhysiol. 5, 634, Springer, Berlin, Göttingen, Heidelberg.Google Scholar
Witt, H. T. (1967 a). Direct measurements of reactions in the 10−1 to 10−8 second range by single and repetitive excitations with pulses of electromagnetic waves (flashes, microwaves, giant laser pulses). In ‘Fast reactions and primary processes in chemical kinetics’, Nobel Symp. V (ed. Claesson, S.), p. 81. Stockholm: Almqvist and Wiksell; New York London, Sydney: Interscience.Google Scholar
Witt, H. T. (1967 b). On the analysis of photosynthesis by the pulse techniques in the 10−1 to 10−8 second range. In ‘Fast reactions and primary processes in chemical kinetics’, Nobel Symp.V (ed. Claesson, S.), p. 261. Stockholm: Almqvist and Wiksell; New York, London, Sydney: Interscience.Google Scholar
Witt, H. T., DVring, G., Rumberg, B., Schmidt-Mende, P., Siggel, U. & Stiehl, H. H. (1966). Electron transport in photosynthesis. Rep. of Symp., Energy Conversion by the Photosynthetic Apparatus; Brookhaven Ntl. Lab. Upton, New York.Google Scholar
Witt, H. T. & Moraw, R. (1959 a). I. Untersuchungen über die Primärvorgänge bei der Photosynthese. Z. phys. Chem. 20, 253.CrossRefGoogle Scholar
Witt, H. T. & Moraw, R. (1959 b). II. Untersuchungen über die Primärvorgänge bei der Photosynthese. Z. phys. Chem. 20, 283.CrossRefGoogle Scholar
Witt, H. T., Moraw, R. & Müller, A. (1956). Zum Primärprozeß der Photosynthese an Chlorophyllkörnern außerhalb der pflanzlichen Zelle. Z. Elektrochem. 60, 1148.Google Scholar
Witt, H. T., Moraw, R. & Müller, A. (1959). Blitzlichtphotometrie. Z. phys. Chem. 20, 193.CrossRefGoogle Scholar
Witt, H. T. & Müller, A. (1959). III. Quantitative Untersuchungen über die Primärvorgänge der Photosynthese an isolierten Chloroplasten. Z. phys. Chem. 21, 1.CrossRefGoogle Scholar
Witt, H. T., Müller, A. & Rumberg, B. (1961 a). Experimental evidence for the mechanism of photosynthesis. Nature, Lond. 191, 194.CrossRefGoogle ScholarPubMed
Witt, H. T., Müller, A. & Rumberg, B. (1961 b). Oxidized cytochrome and chlorophyll in photosynthesis. Nature, Lond. 192, 967.CrossRefGoogle ScholarPubMed
Witt, H. T., Müller, A. & Rumberg, B. (1963 a). Electron transport system in photosynthesis of green plants analysed by sensitive flash photometry. Nature, Lond. 197, 987.CrossRefGoogle Scholar
Witt, H. T., Müller, A. & Rumberg, B. (1963 b). On the electron transfer in photosynthesis. Colloques int. Cent. natn. Rech. scient.p. 43. Paris.Google Scholar
Witt, H. T., Rumberg, B. & Junge, W. (1968). Electron transfer, field changes, proton translocation and phosphorylation in photosynthesis. 19. Mosbach Koll., p. 262. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Witt, H. T., Rumberg, B., Schmidt-Mende, P., Siggel, U., Skerra, B., Vater, J. & Weikard, J. (1965). On the analysis of photosynthesis by flashlight techniques. Angew. Ckem. (Int. Ed.) 4, 799.CrossRefGoogle ScholarPubMed
Witt, H. T., Skerra, B. & Vater, J. (1966). Conditions for the isolation of reaction cycle II. Rate of water splitting. Location of the rate determining step of the over-all reaction. The electron carrier Y. In ‘Currents in Photosynthesis’, Proc. Second Western Europe Conf. Photosynthesis, 1965. Woudshoten. Rotterdam: A. D. Donker-Publ.Google Scholar
Witt, K. & Wolff, Ch. (1970). Rise time of the absorption changes of chlorophyll-a1 and carotenoids in photosynthesis. Z. Naturf 25 b, 387.CrossRefGoogle Scholar
Wolff, CH., Buchwald, H. E., Rüppel, H. & Witt, H. T. (1967). Direkt-Messungen von Reaktionen im Zeitbereich von 10−6 bis 10−8 sec. Naturwissenschaften 54, 489.CrossRefGoogle Scholar
Wolff, CH., Buchwald, H. E., Rüppel, H., Witt, K. & Witt, H. T. (1969). Rise time of the light induced electrical field across the function membrane of photosynthesis. Z. Naturf. 24 b, 1038.CrossRefGoogle ScholarPubMed
Wolff, CH. & Witt, H. T. (1969). On metastable states of carotenoids in primary events of photosynthesis. Z. Naturf. 24 b, 1031.CrossRefGoogle ScholarPubMed
Yamashita, T. & Butler, W. L. (1968). Donation of electrons to photosystem II in chloroplasts by p-phenylene diamine. In Comparative Biochemistry and Biophysics of Photosynthesis (ed. Shibata, K. et al. ), p. 179. University of Tokyo Press.Google Scholar
Zieger, G., Müller, A. & Witt, H. T. (1961). V. Über eine photochemische Reaktion bei der Photosynthese. Z. phys. Chem. 29, 13.CrossRefGoogle Scholar