Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T07:54:34.378Z Has data issue: false hasContentIssue false

Biochemistry and measurement of Environmental lead intoxication

Published online by Cambridge University Press:  17 March 2009

Josef Eisinger
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974

Extract

Lead is probably the oldest and most widely distributed environmental intoxicant, but unlike many of the synthetic agents which cause the greatest concern in industrial societies today, it occurs naturally at low levels in the environment and was present during evolutionary times. Galena (PbS), the most important lead-bearing mineral, is abundant and it is readily smelted. The metal is easily shaped and does not corrode and its compounds have found innumerable uses, particularly as pigments. This explains, in brief, why lead has had great economic importance since ancient times and why lead disease has plagued civilized societies for thousands of years and continues to be a serious concern to health authorities today. (Grandjean, 1975; Eisinger, 1977).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Addis, G. & MooreM, R. M, R. (1974). Lead levels in the water of suburban Glasgow. Nature, Lond. 252, 120121CrossRefGoogle Scholar
Baumhardt, G. R. & Welch, L. J. (1972). Lead uptake and corn growth with soil-applied lead. J. environ. Qual. 1, 9294CrossRefGoogle Scholar
Blumberg, W. E. (1978). Enzymic modification of environmental intoxicants: the role of cytochrome P-450. Q. Rev. Biophys. 11, 481542.CrossRefGoogle ScholarPubMed
Blumberg, W. E., Eisinger, J., Lamola, A. A. & Zuckerman, D. M. (1977). Zinc photoporphyrin level in blood determined by a portable haematofluorometer: a screening device for lead poisoning. J. Lab. clin. Med. 89, 712723.Google Scholar
Bogden, J. D., Singh, N. P. & Joselow, M. M. (1974). Cadmium, lead, and zinc concentrations in whole blood samples of children. Environ. Sci. & Technol. 8, 740742.CrossRefGoogle Scholar
Borsook, H., Fischer, E. H. & Keighley, G. (1957). Factors affecting protein synthesis in vitro in rabbit reticulocytes. J. biol. Chem. 229, 10591070CrossRefGoogle ScholarPubMed
Browder, A. A., Joselow, M. M. & Little, D. B. (1973). The problem of lead poisoning. Medicine 52, 121139.CrossRefGoogle ScholarPubMed
Chamberlain, A. C., Heard, M. J., Little, P., Newton, D., Wells, A. C. & Wiffen, R. D. (1978). Investigation into lead from motor vehicles AERE Report (R 9198), Harwell, England oxii ora.Google Scholar
Chow, T. J. & Patterson, C. C. (1966). Concentration profiles of barium and lead in Atlantic waters off Bermuda. Sci. Lett. 1, 397.Google Scholar
Cramér, K. & Selander, S. (1965). Studies in lead poisoning: comparison between different laboratory tests. Br. J. ind. Med. 22, 311.Google ScholarPubMed
David, O., Clark, J. & Voeller, K. (1972). Lead and hyperactivity. Lancet ii, no. 7783, 900903CrossRefGoogle Scholar
De, Treville F. (1964). Natural occurrence of lead. Archs. envir. Hlth. 8, 212221Google Scholar
Eisinger, J. (1977). Lead and man. Trends in Biochem. Sci. 2, 147150.CrossRefGoogle Scholar
Eisinger, J. & Flores, J. (1979). Front face fluorometry of liquid samples. Analyt. Biochem. 93, (in the Press).Google Scholar
Eisinger, J., Fischbein, A., Blumberg, W. E., Lilis, R. & Selikoff, I. J. (1978). Zinc protoporphyrin in blood as a biological indicator of chronic lead intoxication. J. Environ Path. Tox. 1, 897910.Google ScholarPubMed
Farkas, W. R. (1975). The effect of plumbous ion on messenger RNA. Chem-Biol Interactions 11, 253263.CrossRefGoogle ScholarPubMed
Farkas, W. R. (1968). Depolymerization of ribonucleic acid by plumbous ion. Biochem. biophys. Acta 155, 401409Google ScholarPubMed
Farkas, W. R., Hewins, S. & Welch, J. W. (1972). Effects of plumbous ion on some functions of transfer RNA. Chem-Biol. Interactions. 5, 191200.CrossRefGoogle ScholarPubMed
Gibson, S. M. & Goldberg, A. (1970). Defects in haem synthesis in mammalian tissues in experimental lead poisoning and experimental porphyria. Clin. Sci. 38, 6372CrossRefGoogle ScholarPubMed
Grandjean, P. (1975) Lead in Danes, historical and toxicological studies. In Environmental Quality and Safety. (Eds. Coulston, F. & Korte, F.). Suppl. 2, Vol. 2. Academic Press, New York. Environ. Qual. & Saf. Supp. 2, 6075.Google Scholar
Grandjean, P., Nielsen, D. V. & Shapiro, I. M. (1979). Lead retention in ancient Nubian and contemporary populations. J. Environ. Path. Tox. (in the press).Google Scholar
Granick, J. L., Sassa, S. & Kappas, A. (1978). Some biochemical and clinical aspects of lead intoxication. Adv. clin. Chem. 20, 287339.CrossRefGoogle ScholarPubMed
Harrison, R. M. & Laxen, D. P. H. (1978). Natural source of tetraalkyllead in air. Nature, Lond. 275, 738740.CrossRefGoogle ScholarPubMed
Hernberg, S. & Nikkanen, J. (1972). Effect of lead on α–amino leulinic acid dehydratase: A selective review. Prakov. Lek. 24, 7783Google Scholar
Hopkins, A. (1970). Experimental lead poisoning in the baboon. Bri. J. Ind. Med. 27, 130.Google ScholarPubMed
Lamola, A. A., Eisinger, J., Blumberg, W. E., Kometaeni, T. & Burnham, B. F. (1977). Quantitative determination of erythrocyte zinc protoporphyrin. J. Lab. clin. Med. 89, 881890Google ScholarPubMed
Lamola, A. A., Piomiilli, S., Poh-Fitzpatrick, M. B., Yamane, T. & Harber, L. C. (1975). Erythropoietic protoporphyrin and Pb intoxication: The molecular basis for difference in cutaneous photosensitivity. II. Different binding of erythrocyte protoporphyrin to hemoglobin. J. Lab. Clin. Invest. 56, 15281535.CrossRefGoogle Scholar
Lamola, A. A. & Yamane, T. (1974) Zinc protoporphyrin in the erythrocytes of patients with lead poisoning and iron deficiency anemia. Science N.Y. 186, 936938.CrossRefGoogle ScholarPubMed
Lilis, R., Flschbien, A., Eisinger, J., Blumberg, W. E., Diamond, S., Anderson, H. A., Rom, W., Rice, C., Sarkozi, K., Kon, S. & Selikoff, I. J. (1977). Prevalence of lead disease among secondary lead smelter workers and biological indicators of lead exposure. Environ. Res. 14, 255285.CrossRefGoogle ScholarPubMed
Maines, M. D. & Kappas, A. (1976). Studies on the mechanism of induction of haem oxygenase by cobalt and other metal ions. Biochem. J. 154, 125131.CrossRefGoogle ScholarPubMed
Mellaart, J. (1969). Çatal Hüyük, p. 217. Thames & Hudson.Google Scholar
Murozumi, M., Chow, T. J. & Patterson, C. C. (1969). Chemical concentrations of pollutant lead aerosols, terrestrial dusts and sea salts in Greenland and Antarctic snow strata. Geochim cosmochim Acta 33, 1247.CrossRefGoogle Scholar
Nathanson, J. A. & Bloom, F. E. (1975) Lead-induced inhibition of brain adenyl cyclase. Nature, Lond. 255, 419420.CrossRefGoogle ScholarPubMed
Patterson, C. C. (1965). Contamination and natural lead environments of man. Archs. envir. Hlth. 2, 344360.CrossRefGoogle Scholar
Piomelli, S. (1970). A micromethod of free erythrocyte porphyrins: the FEP test. J. Lab. clin. Med. 81, 932940.Google Scholar
Piomelli, S., Lamola, A. A., Poh-Fitzpatrick, M. B., Seaman, C. & Harber, L. C. (1975). Erythropoietic protoporphyrin and lead intoxication: the molecular basis for difference in cutaneous photosensitivity: I. J. Lab. Clin. Invest. 56, 15191527.CrossRefGoogle ScholarPubMed
Rabinowitz, M. B., Wetherill, G. W. & Kopple, J. D. (1973). Lead metabolism in the normal human: stable isotope studies. Science, N. Y. 182, 725727CrossRefGoogle ScholarPubMed
Roels, H. A., Buchet, J. P. & Lauwerys, R. R. (1974). Inhibition of human erythrocyte delta-aminolevulinate dehydratase by lead. In vitro artifact or real phenomenon in vivo? Int. Arch. Arbeitsined. 33, 277284.CrossRefGoogle ScholarPubMed
Roels, H. A., Lauwerys, R. R. & Sonnet, J. (1975). Comparison of in vivo effect of inorganic lead and cadium on glutathione reductase system and 6-aminolevulinate dehydratase in human erythrocytes. Br. J. ind. Med. 32, 181192Google Scholar
Rose, M. S. & Aldridge, W. N. (1972). Oxidative phosphorylation: the effect of anions on the inhibition by triethyltin of various mitochrondrial functions, and the relationship between this inhibition and binding of triethyltin. Biochem. J. 127, 5159CrossRefGoogle Scholar
Rosenthal, A. S., Moses, H. L., Beaver, D. L. & Schuffman, S. S. (1966). Lead ion and phosphatase histochemistry. I. Nonenzymatic hydrolysis of nucleoside phosphates by lead ion. J. Histochem. Cytochem. 14, 698701.CrossRefGoogle ScholarPubMed
Sanai, G. H., Hasegawa, T. & Yoshieawa, H. (1972). Pretreatment of rats with lead in experimental acute lead poisoning. J. Occup. Med. 14, 301305.Google ScholarPubMed
Sassa, S. (1978). Toxic effects of lead, with particular reference to porphyrin and heme metabolism. In Handbook of Experimental Pharmacology. 44 Haem and Haeinoproteins. (ed. Aldridge, W. N. and Matteis, F. de). Springer-Verlag.Google Scholar
Saurhoff, M. W. & Michaelson, I. A. (1973). Hyperactivity and brain catecholamines in lead-exposed developing rats. Science, N. Y. 182, 10221024.CrossRefGoogle Scholar
Schroeder, H. A. & Tipton, I. H. (1968). The human body burden of lead. Archs. envir. Hlth. 17, 965978.CrossRefGoogle ScholarPubMed
Schwartz, S., Berb, M. H., Bossenmaier, I. & Dinsmore, H. (1960). Determination of porphyrins in biological materials. Methods of biochemical Analysis, pp. 253255.CrossRefGoogle Scholar
Scoppa, P., Roumengous, M. & Penning, W. (1977) Hepatic drug metabolizing activity in lead-poisoned rats. Experientia 29, 970972.CrossRefGoogle Scholar
Shapiro, I. M., Mitchell, G., Davidson, I. & Katz, S. H. (1975). The lead content of teeth. Evidence establishing new minimal levels of exposure in a living preindustrialized human population. Archs. environ. Hlth. 30, 483486CrossRefGoogle Scholar
Siegel, G. S. & Fogt, S. M. (1977). Inhibition by lead ion of electrophorus electriplax (Na+ + K +)–adenosine triphosphatase and K+p–nitrophenyl phosphatase. J. biol. Chem. 252, 52015209.CrossRefGoogle Scholar
Silbergeld, E. K. & Goldberg, A. M. (1973). Lead-induced behavioural disorder. Life Sci. 13, 12731283.CrossRefGoogle Scholar
Sirover, M. A. & Loeb, L. A. (1976). Infidelity of DNA synthesis in vitro: screening for potential metal mutagens or carcinogens. Science, N. Y. 194, 14341436.CrossRefGoogle ScholarPubMed
Skilleter, D. N. (1975). The decrease of mitrochondrial substrate uptake by trialkyltin and trialkyl-lead compounds in chloride media and its relevance to inhibition of oxidative phosphoryiation. Biochem. J. 146, 465471.CrossRefGoogle Scholar
Snyder, L. J. (1967). Determination of trace amounts of organic lead in air composite sample method. Analy. Chem. 39, 591.CrossRefGoogle ScholarPubMed
Valciukas, J. A., Lilis, R., Fischbein, A., Selikoff, I. J., Eisinger, J. & Blumberg, W. E. (1978). Central nervous system dysfunction due to lead exposure. Science, N.Y. 201, 465467.CrossRefGoogle ScholarPubMed
Vallee, B. L. & Ulmer, D. D. (1972). Biochemical effects of mercury, cadmium, and lead. A. Rev. Biochem. 41, 91128.CrossRefGoogle ScholarPubMed
Van, Den Bergh A. A. H. & Grotepass, W. (1933). Porphyrinamie ohne Porphyrinurie. Kiln. schr. 12, 586.Google Scholar
Wada, O., Yamo, Y., Ono, T. & Toyokawa, K. (1973). The diagnosis of different degrees of lead absorption; in special references to choice and evaluation of various parameters indicative of an increased lead absorption. Ind. Health. (Jap) 11, 5567.CrossRefGoogle Scholar
Waldron, H. A. & Stöfen, D. (1974). Sub-Clinical Lead Poisoning. N.Y.Academic Press.Google Scholar
Walton, J. R. (1973). Granules containing lead in isolated mitochondria. Nature, Lond. 243, 100101.CrossRefGoogle ScholarPubMed
Watson, R. J., Decicer, E. & Lichtman, H. C. (1958). Hematological studies of children with lead poisoning. Pediatrics 21, 4046CrossRefGoogle ScholarPubMed
Winge, D. R. & Rajagopalan, K. V. (1972). Purification and some properties of the Cd-binding protein from rat liver. Archs. Biochem. Biophys. 153, 755762.CrossRefGoogle ScholarPubMed
Wood, J. M., Fanchiang, Y-T., & Ridley, W. P. (1978). The biochemistry of toxic elements. Q. Rev. Biophys. 11, 467480.CrossRefGoogle ScholarPubMed
Yoshikawa, H. (1968). Tolerance to lethal doses of metals in mice pretreated with their low doses. Ind. Health. (Jap.) 6, 8889.CrossRefGoogle Scholar