Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-02T21:51:58.835Z Has data issue: false hasContentIssue false

Anomalous diffraction in crystallographic phase evaluation

Published online by Cambridge University Press:  11 April 2014

Wayne A. Hendrickson*
Affiliation:
Department of Biochemistry and Molecular Biophysics, and Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
*
*Author for correspondence: W. A. Hendrickson, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. Tel.: 1 212 305 3456; Email: [email protected]

Abstract

X-ray diffraction patterns from crystals of biological macromolecules contain sufficient information to define atomic structures, but atomic positions are inextricable without having electron-density images. Diffraction measurements provide amplitudes, but the computation of electron density also requires phases for the diffracted waves. The resonance phenomenon known as anomalous scattering offers a powerful solution to this phase problem. Exploiting scattering resonances from diverse elements, the methods of MAD (multiwavelength anomalous diffraction) and SAD (single-wavelength anomalous diffraction) now predominate for de novo determinations of atomic-level biological structures. This review describes the physical underpinnings of anomalous diffraction methods, the evolution of these methods to their current maturity, the elements, procedures and instrumentation used for effective implementation, and the realm of applications.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

10. References

Abrahams, J. P. & Leslie, A. G. W. (1996). Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallographica D 52, 3042.Google Scholar
Akey, D. L., Brown, W. C., Dutta, S., Konwerski, J., Jose, J., Jurkiw, T. J., DelProposto, J., Ogata, C. M., Skiniotis, G., Kuhn, R. J. & Smith, J. L. (2014). Flavivirus NS1 crystal structures reveal a surface for membrane association and regions of interaction with the immune system. Science 343, 881885.CrossRefGoogle Scholar
Als-Nielsen, J. & McMorrow, D. (2011). Elements of Modern X-ray Physics, 2nd edn, Chichester: Wiley.Google Scholar
Amemiya, Y., Matsushita, T., Nakagawa, A., Satow, Y., Miyahara, M. & Chikawa, J.-I. (1988) Design and performance of an imaging plate system for X-ray diffraction study. Nuclear Instruments and Methods A 266, 645653.CrossRefGoogle Scholar
Ataide, S. F., Schmitz, N., Shen, K., Ke, A., Shan, S. O., Doudna, J. A. & Ban, N. (2011). The crystal structure of the signal recognition particle in complex with its receptor. Science 331, 881886.CrossRefGoogle ScholarPubMed
Bae, J. H., Alefelder, S., Kaiser, J. T., Friedrich, R., Moroder, L., Huber, R. & Budisa, N. (2001). Incorporation of β-selenolo[3,2-b]pyrrolyl-alanine into proteins for phase determination in protein X-ray crystallography. Journal of Molecular Biology 309, 925936.Google Scholar
Barends, T. R., Foucar, L., Botha, S., Doak, R. B., Shoeman, R. L., Nass, K., Koglin, J. E., Williams, G. J., Boutet, S., Messerschmidt, M. & Schlichting, I. (2014). De novo protein crystal structure determination from X-ray free-electron laser data. Nature 505, 244247.Google Scholar
Barends, T. R., Foucar, L., Shoeman, R. L., Bari, S., Epp, S. W., Hartmann, R., Hauser, G., Huth, M., Kieser, C., Lomb, L., Motomura, K., Nagaya, K., Schmidt, C., Strecker, R., Anielski, D., Boll, R., Erk, B., Fukuzawa, H., Hartmann, E., Hatsui, T., Holl, P., Inubushi, Y., Ishikawa, T., Kassemeyer, S., Kaiser, C., Koeck, F., Kunishima, N., Kurka, M., Rolles, D., Rudek, B., Rudenko, A., Sato, T., Schroeter, C. D., Soltau, H., Strueder, L., Tanaka, T., Togashi, T., Tono, K., Ullrich, J., Yase, S., Wada, S. I., Yao, M., Yabashi, M., Ueda, K. & Schlichting, I. (2013). Anomalous signal from S atoms in protein crystallographic data from an X-ray free-electron laser. Acta Crystallographica D 69, 838842.CrossRefGoogle Scholar
Bass, R. B., Strop, P., Barclay, M. & Rees, D. C. (2002). Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298, 15821587.Google Scholar
Bes, M. T., Parisini, E., Inda, L. A., Saraiva, L. M., Peleato, M. L. & Sheldrick, G. M. (1999). Crystal structure determination at 1.4 Å resolution of ferredoxin from the green alga Chlorella fusca . Structure 7, 12011211.CrossRefGoogle ScholarPubMed
Biertümpfel, C., Zhao, Y., Kondo, Y., Ramón-Maiques, S., Gregory, M., Lee, J. Y., Masutani, C., Lehmann, A. R., Hanaoka, F. & Yang, W. (2010). Structure and mechanism of human DNA polymerase η . Nature 465, 10441048.CrossRefGoogle ScholarPubMed
Bijvoet, J. M. (1949). Phase determination in direct fourier-synthesis of crystal structures. Proceedings of the National Academy of Sciences Amsterdam B 52, 313314.Google Scholar
Bijvoet, J. M. (1954). Structure of optically active compounds in the solid state. Nature 173, 888891.Google Scholar
Bijvoet, J. M., Bokhoven, C., & Schoone, J. C. (1948). On the crystal structure of strychnine sulfate and selenate. II. [010] projection and structure formula. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings 51, 990990.Google Scholar
Bijvoet, J. M., Bokhoven, C. & Schoone, J. C. (1949). On the crystal structure of strychnine sulfate and selenate. III. [001] projection. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings 52, 120121.Google Scholar
Bijvoet, J. M., Peerdeman, A. F. & van Bommel, A. J. (1951). Determination of the absolute configuration of optically active compounds by means of X-rays. Nature 168, 271272.CrossRefGoogle Scholar
Biou, V., Shu, F. & Ramakrishnan, V. (1995). X-ray crystallography shows that translational initiation factor IF3 consists of two compact α/β domains linked by an α-helix. EMBO Journal 14, 40564064.CrossRefGoogle ScholarPubMed
Blow, D. M. (1958). The structure of haemoglobin. VII. Determination of phase angles in the non-centrosymmetric [100] zone. Proceedings of the Royal Society A 247, 302336.Google Scholar
Blow, D. M. (2003). How Bijvoet made the difference: the growing power of anomalous scattering. Methods in Enzymology 374, 322.Google Scholar
Blow, D. M. & Crick, F. H. C. (1959). The treatment of errors in the isomorphous replacement method. Acta Crystallographica 12, 794802.Google Scholar
Blow, D. M. & Rossmann, M. G. (1961). The single isomorphous replacement method. Acta Crystallographica 14, 11951202.Google Scholar
Blundell, T. L. & Johnson, L. N. (1976). Protein Crystallography. London: Academic Press.Google Scholar
Bokhoven, C., Schoone, J. C. & Bijvoet, J. M. (1951). The Fourier synthesis of the crystal structure of strychnine sulphate pentahydrate. Acta Crystallographica 4, 275280.Google Scholar
Boles, J. O., Henderson, J., Hatch, D. & Silks, L. A. (2002). Synthesis and incorporation of [6,7]-selenatryptophan into dihydrofolate reductase. Biochemical and Biophysical Research Communication 298, 257261.Google Scholar
Bonanno, J. B., Almo, S. C., Bresnick, A., Chance, M. R., Fiser, A., Swaminathan, S., Jiang, J., Studier, F. W., Shapiro, L., Lima, C. D., Gaasterland, T. M., Sali, A., Bain, K., Feil, I., Gao, X., Lorimer, D., Ramos, A., Sauder, J. M., Wasserman, S. R., Emtage, S., D'Amico, K. L. & Burley, S. K. (2005). New York-Structural GenomiX Research Consortium (NYSGXRC): a large scale center for the protein structure initiative. Journal of Structural and Functional Genomics 6, 225232.Google Scholar
Bragg, W. H. & Bragg, W. L. (1913). The structure of the diamond. Proceedings of the Royal Society London A 89, 277291.Google Scholar
Bragg, W. L. (1913a). The diffraction of short electromagnetic waves by a crystal. Proceedings: Cambridge Philosophical Society 17, 4357.Google Scholar
Bragg, W. L. (1913b). The structure of some crystals as indicated by their diffraction of x-rays. Proceedings of the Royal Society London A 89, 248277.Google Scholar
Bragg, W. L. (1914). The analysis of crystals by the x-ray spectrometer. Proceedings of the Royal Society London A 89, 468489.Google Scholar
Bragg, W. L. (1929). The determination of parameters in crystal structures by means of Fourier series. Proceedings of the Royal Society London A 123, 537559.Google Scholar
Brasch, J., Harrison, O. J., Ahlsen, G., Liu, G. & Shapiro, L. (2011). Crystal structure of the ligand binding domain of netrin G2. Journal of Molecular Biology 414, 723734.Google Scholar
Brodersen, D. E., de La Fortelle, E., Vonrhein, C., Bricogne, G., Nyborg, J. & Kjeldgaard, M. (2000). Applications of single-wavelength anomalous dispersion at high and atomic resolution. Acta Crystallographica D 56, 431441.Google Scholar
Burling, F. T., Weis, W. I., Flaherty, K. M. & Brunger, A. T. (1996). Direct observation of protein solvation and discrete disorder with experimental crystallographic phases. Science 271, 7277.Google Scholar
Cate, J. H., Gooding, A. R., Podell, E., Zhou, K., Golden, B. L., Kundrot, C. E., Cech, T. R. & Doudna, J. A. (1996). Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 16781685.CrossRefGoogle ScholarPubMed
Cate, J. H., Yusupov, M. M., Yusupova, G. Z., Earnest, T. N. & Noller, H. F. (1999). X-ray crystal structures of 70S ribosome functional complexes. Science 285, 20952104.Google Scholar
Chandra, V., Huang, P., Hamuro, Y., Raghuram, S., Wang, Y., Burris, T. P. & Rastinejad, F. (2008). Structure of the intact PPAR-gamma-RXR- nuclear receptor complex on DNA. Nature 456, 350356.CrossRefGoogle ScholarPubMed
Chapman, H. N., Fromme, P., Barty, A., White, T. A., Kirian, R. A., Aquila, A., Hunter, M. S., Schulz, J., DePonte, D. P., Weierstall, U., Doak, R. B., Maia, F. R., Martin, A. V., Schlichting, I., Lomb, L., Coppola, N., Shoeman, R. L., Epp, S. W., Hartmann, R., Rolles, D., Rudenko, A., Foucar, L., Kimmel, N., Weidenspointner, G., Holl, P., Liang, M., Barthelmess, M., Caleman, C., Boutet, S., Bogan, M. J., Krzywinski, J., Bostedt, C., Bajt, S., Gumprecht, L., Rudek, B., Erk, B., Schmidt, C., Hömke, A., Reich, C., Pietschner, D., Strüder, L., Hauser, G., Gorke, H., Ullrich, J., Herrmann, S., Schaller, G., Schopper, F., Soltau, H., Kühnel, K. U., Messerschmidt, M., Bozek, J. D., Hau-Riege, S. P., Frank, M., Hampton, C. Y., Sierra, R. G., Starodub, D., Williams, G. J., Hajdu, J., Timneanu, N., Seibert, M. M., Andreasson, J., Rocker, A., Jönsson, O., Svenda, M., Stern, S., Nass, K., Andritschke, R., Schröter, C. D., Krasniqi, F., Bott, M., Schmidt, K. E., Wang, X., Grotjohann, I., Holton, J. M., Barends, T. R., Neutze, R., Marchesini, S., Fromme, R., Schorb, S., Rupp, D., Adolph, M., Gorkhover, T., Andersson, I., Hirsemann, H., Potdevin, G., Graafsma, H., Nilsson, B. & Spence, J. C. (2011). Femtosecond X-ray protein nanocrystallography. Nature 470, 7377.CrossRefGoogle ScholarPubMed
Chen, L., Glover, J. N., Hogan, P. G., Rao, A. & Harrison, S. C. (1998). Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature 392, 4248.Google Scholar
Chen, L., Rose, J. P., Breslow, E., Yang, D., Chang, W. R., Furey, W. F. Jr., Sax, M. & Wang, B.-C. (1991). Crystal structure of a bovine neurophysin II dipeptide complex at 2.8 Å determined from the single-wavelength anomalous scattering signal of an incorporated iodine atom. Proceedings of the National Academy of Sciences of the United States of America 88, 42404244.CrossRefGoogle ScholarPubMed
Chen, Y. H., Hu, L., Punta, M., Bruni, R., Hillerich, B., Kloss, B., Rost, B., Love, J., Siegelbaum, S. A. & Hendrickson, W. A. (2010). Homologue structure of the SLAC1 anion channel for closing stomata in leaves. Nature 467, 10741080.Google Scholar
Chen, Z., Yang, H. & Pavletich, N. P. (2008). Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 453, 489494.Google Scholar
Cho, H. S. & Leahy, D. J. (2002). Structure of the extracellular region of HER3 reveals an interdomain tether. Science 297, 13301333.Google Scholar
Conner, B. N., Takano, T., Tanaka, S., Itakura, K. & Dickerson, R. E. (1982). The molecular structure of d(ICpCpGpG), a fragment of right-handed double helical A-DNA. Nature 295, 294299.Google Scholar
Coster, D., Knol, K. S. & Prins, J. A. (1930). Unterschiede in der Intensität der Röntgenstrahlenreflexion an den beiden 111-Flächen der Zinkblende. Zeitschrift für Physik 63, 345369.Google Scholar
Cowtan, K. (1994). DM, an Automated Procedure for Phase Improvement by Density Modification. Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography no 31, pp. 3448. Warrington, UK: SERC Daresbury Laboratory.Google Scholar
Cowtan, K. (2006). The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallographica D 62, 10021011.Google Scholar
Cowtan, K. (2010). Recent developments in classical density modification. Acta Crystallographica D 66, 470478.Google Scholar
Cowtan, K. D. & Main, P. (1993). Improvement of macromolecular electron-density maps by the simultaneous application of real and reciprocal space constraints. Acta Crystallographica D 49, 148157.CrossRefGoogle ScholarPubMed
Cowtan, K .D. & Zhang, K. Y. J. (1999). Density modification for macromolecular phase improvement. Progress in Biophysics and Molecular Biology 72, 245270.CrossRefGoogle ScholarPubMed
Cramer, P., Bushnell, D. A. & Kornberg, R. D. (2001). Structural basis of transcription: RNA polymerase II at 2.8 Ångstrom resolution. Science 292, 18631876.CrossRefGoogle ScholarPubMed
Cramer, S. P. & Hodgson, K. O. (1979). X-ray absorption spectroscopy: a new structural method and its applications to bioinorganic chemistry. Progress in Inorganic Chemistry 25, 139.Google Scholar
Cromer, D. T. & Liberman, D. (1970). Relativistic calculation of anomalous scattering factors for X-rays. Journal of Chemical Physics 53, 18911898.Google Scholar
Dahms, S. O., Kuester, M., Streb, C., Roth, C., Sträter, N. & Than, M. E. (2013). Localization and orientation of heavy-atom cluster compounds in protein crystals using molecular replacement. Acta Crystallographica D 69, 284297.Google Scholar
Dauter, Z. & Adamiak, D. A. (2001). Anomalous signal of phosphorus used for phasing DNA oligomer: importance of data redundancy. Acta Crystallographica D 57, 990995.Google Scholar
Dauter, Z. & Dauter, M. (1999). Anomalous signal of solvent bromides used for phasing of lysozyme. Journal of Molecular Biology 289, 93101.Google Scholar
Dauter, Z. & Dauter, M. (2001). Entering a new phase: using solvent halide ions in protein structure determination. Structure 9, R21R26.Google Scholar
Dauter, Z., Dauter, M. & Dodson, E. (2002). Jolly SAD. Acta Crystallographica D 58, 494506.Google Scholar
Dauter, Z., Dauter, M., de La Fortelle, E., Bricogne, G. & Sheldrick, G. M. (1999). Can anomalous signal of sulfur become a tool for solving protein crystal structures? Journal of Molecular Biology 289, 8392.Google Scholar
Deacon, A. M. & Ealick, S. E. (1999). Selenium-based MAD phasing: setting the sites on larger structures. Structure 15, R161166.Google Scholar
DeLaBarre, B. & Brünger, A. T. (2003). Complete structure of p97/valosin-containing protein reveals communication between nucleotide domains. Nature Structural Biology 10, 856863.Google Scholar
de la Fortelle, E. & Bricogne, G. (1997). Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods in Enzymology 276, 472494.Google Scholar
Doublié, S. (2007). Production of selenomethionyl proteins in prokaryotic and eukaryotic expression systems. Methods in Molecular Biology 363, 91108.Google Scholar
Dyda, F., Hickman, A. B., Jenkins, T. M., Engelman, A., Craigie, R. & Davies, D. R. (1994). Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266, 19811986.Google Scholar
Evans, G. & Bricogne, G. (2003). Triiodide derivatization in protein crystallography. Acta Crystallographica D 59, 19231929.CrossRefGoogle ScholarPubMed
Evans, G. & Pettifer, R. (2001). CHOOCH: a program for deriving anomalous-scattering factors from X-ray fluorescence spectra. Journal of Applied Crystallography 34, 8286.CrossRefGoogle Scholar
Evans, P. R. (2011). An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallographica D 67, 282292.Google Scholar
Ewald, P. P. & Hermann, C. (1927). Gilt der Friedelsche Satz über die Symmetrie der Röntgensinterferenzen? Zeitschrift für Kristallographie 65, 251260.CrossRefGoogle Scholar
Fan, H.-F. & Gu, Y.-X. (1985). Combining direct methods with isomorphous replacement or anomalous scattering data. III. The incorporation of partial structure information. Acta Crystallographica A 41, 280284.Google Scholar
Fanchon, E. & Hendrickson, W. A. (1990). Effect of anisotropy in anomalous scattering on the MAD phasing method. Acta Crystallographica A 46, 809820.CrossRefGoogle ScholarPubMed
Feng, L., Campbell, E. B., Hsiung, Y. & MacKinnon, R. (2010). Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle. Science 330, 635641.CrossRefGoogle Scholar
Foadi, J., Aller, P., Alguel, Y., Cameron, A., Axford, D., Owen, R. L., Armour, W., Waterman, D. G., Iwata, S. & Evans, G. (2013). Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography. Acta Crystallographica D 69, 16171632.Google Scholar
Fourme, R. & Hendrickson, W. A. (1990). Analysis of macromolecular structures by the method of multiwavelength anomalous diffraction. In Synchrotron Radiation and Biophysics (ed. Hasnain, S. S.), pp. 156175. Chichester: Ellis Horwood Limited.Google Scholar
Friedrich, W., Knipping, P. & Laue, M. (1912). Interferenz-Erscheinungen bei Röntgenstrahlen. Sitzungsberichte Der Akademie Der Wissenschaften 303322.Google Scholar
Furey, W. & Swaminathan, S. (1997). PHASES-95: a program package for processing and analyzing diffraction data from macromolecules. Methods in Enzymology 276, 590620.Google Scholar
Geiger, J. H., Hahn, S., Lee, S. & Sigler, P. B. (1996). Crystal structure of the yeast TFIIA/TBP/DNA complex. Science 272, 830836.Google Scholar
Giordano, R., Leal, R. M., Bourenkov, G. P., McSweeney, S. & Popov, A. N. (2012). The application of hierarchical cluster analysis to the selection of isomorphous crystals. Acta Crystallographica D 68, 649658.Google Scholar
Girard, E., Stelter, M., Vicat, J. & Kahn, R. (2003). A new class of lanthanide complexes to obtain high-phasing-power heavy-atom derivatives for macromolecular crystallography. Acta Crystallographica D 59, 19141922.Google Scholar
Graves, B. J., Hatada, M. H., Hendrickson, W. A., Miller, J. K., Madison, V. S. & Satow, Y. (1990). Structure of interleukin-1α at 2.7 Å resolution. Biochemistry 29, 26792684.Google Scholar
Green, D. W., Ingram, V. M. & Perutz, M. F. (1954). The structure of haemoglobin IV. Sign determination by the isomorphous replacement method. Proceedings of the Royal Society London A 225, 287307.Google Scholar
Guss, J. M., Merritt, E. A., Phizackerley, R. P., Hedman, B., Murata, M., Hodgson, K. O. & Freeman, H. C. (1988). Phase determination by multiple-wavelength x-ray diffraction: crystal structure of a basic “blue” copper protein from cucumbers. Science 241, 806811.Google Scholar
Harada, S., Yasui, M., Murakawa, K., Kasai, N. & Satow, Y. (1986). Crystal structure analysis of cytochrome c′ by the multiwavelength anomalous diffraction method using synchrotron radiation. Journal of Applied Crystallography 19, 448452.Google Scholar
Harris, S. F. & Botchan, M. R. (1999). Crystal structure of the human papillomavirus type 18 E2 activation domain. Science 284, 673677.Google Scholar
Harvey, I., Hao, Q., Duke, E. M., Ingledew, J. & Hasnain, S. S. (1998). Structure determination of a 16.8 kDa copper protein at 2.1 Å resolution using anomalous scattering data with direct methods. Acta Crystallographica D 54, 629635.Google Scholar
Hauptman, H. A. (1997). Shake-and-bake: an algorithm for automatic solution ab initio of crystal structures. Methods in Enzymology 277, 313.Google Scholar
Hauptman, H. & Karle, J. (1953). Solution of the Phase Problem I. The Centrosymmetric Crystal. ACA Monograph No. 3. Polycrystal Book Service.Google Scholar
Hendrickson, W. A. (1971). Some aids for breaking the phase ambiguity in the single isomorphous replacement methods. Acta Crystallographica B 27, 14741475.Google Scholar
Hendrickson, W. A. (1976). Radiation damage in protein crystallography. Journal of Molecular Biology 106, 889893.Google Scholar
Hendrickson, W. A. (1979). Phase information from anomalous-scattering measurements. Acta Crystallographica A 35, 245247.Google Scholar
Hendrickson, W. A. (1984). Measurement and use of anomalous x-ray scattering. Acta Crystallographica A 40, C3.Google Scholar
Hendrickson, W. A. (1985). Analysis of protein structure from diffraction measurements at multiple wavelengths. Transactions of the American Crystallographic Association 21, 1121.Google Scholar
Hendrickson, W. A. (1991). Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 5158.Google Scholar
Hendrickson, W. A. (1999). Maturation of MAD phasing for the determination of macromolecular structures. Journal of Synchrotron Radiation 6, 845851.Google Scholar
Hendrickson, W. A. (2000). Synchrotron crystallography. Trends in Biochemical Sciences 12, 637643.Google Scholar
Hendrickson, W. A. (2013). Evolution of diffraction methods for solving crystal structures. Acta Crystallographica A 69, 5159.Google Scholar
Hendrickson, W. A., Co, M. S., Smith, J. L., Hodgson, K. O. & Klippenstein, G. L. (1982). X-ray absorption spectroscopy of the dimeric iron site in azidomethemerythrin from Phascolopsis gouldii . Proceedings of the National Academy of Sciences of the United States of America 79, 62556259.Google Scholar
Hendrickson, W. A., Horton, J. R. & LeMaster, D. M. (1990). Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO Journal 9, 16651672.Google Scholar
Hendrickson, W. A., Klippenstein, G. L. & Ward, K. B. (1975). Tertiary structure of myohemerythrin at low resolution. Proceedings of the National Academy of Sciences of the United States of America 72, 21602164.Google Scholar
Hendrickson, W. A. & Ogata, C. M. (1997). Phase Determination from Multiwavelength Anomalous Diffraction Measurements. Methods in Enzymology 276, 494523.Google Scholar
Hendrickson, W. A., Pähler, A., Smith, J. L., Satow, Y., Merritt, E. A. & Phizackerley, R. P. (1989). Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation. Proceedings of the National Academy of Sciences of the United States of America 86, 21902194.Google Scholar
Hendrickson, W. A. & Sheriff, S. (1987). General density function corresponding to X-ray diffraction with anomalous scattering included. Acta Crystallographica A 43, 121125.Google Scholar
Hendrickson, W. A., Smith, J. L., Phizackerley, R. P. & Merritt, E. A. (1988). Crystallographic structure analysis of lamprey hemoglobin from anomalous dispersion of synchrotron radiation. Proteins 4, 7788.Google Scholar
Hendrickson, W. A. & Teeter, M. M. (1981). Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulfur. Nature 290, 107113.Google Scholar
Hendrickson, W. A. & Wüthrich, K. (eds.) (1991). Macromolecular Structures 1991. London: Current Biology.Google Scholar
Hendrickson, W. A. & Wüthrich, K. (eds.) (2000). Macromolecular Structures 2000. London: Current Biology.Google Scholar
Herriott, J. R., Sieker, L. C., Jensen, L. H. & Lovenberg, W. (1970). Structure of rubredoxin: an X-ray study to 2.5 Å resolution. Journal of Molecular Biology 50, 391406.Google Scholar
Herzenberg, A. & Lau, H. S. M. (1967). Anomalous scattering and the phase problem. Acta Crystallographica 22, 2428.Google Scholar
Hönl, H. (1933). Zur Dispersionstheorie der Röntgenstrahlen. Zeitschrift für Physik 84, 116.Google Scholar
Hope, H. & de la Camp, U. (1972). Anomalous scattering by oxygen: measurements on (+)-tartaric acid. Acta Crystallographica A 28, 201207.Google Scholar
Hoppe, W. & Jakubowski, V. (1971). The determination of phases of erythrocruorin using the two-wavelength method with iron as anomalous scatterer. In Anomalous Scattering (eds. Ramaseshan, S. & Abrahams, S.), pp. 437461. Copenhagen: Munksgård.Google Scholar
Hubbard, S. R., Wei, L., Ellis, L. & Hendrickson, W. A. (1994). Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372, 746754.CrossRefGoogle ScholarPubMed
Istvan, E. S., Palnitkar, M., Buchanan, S. K. & Deisenhofer, J. (2000). Crystal structure of the catalytic portion of human HMG-CoA reductase: insights into regulation of activity and catalysis. EMBO Journal 19, 819830.CrossRefGoogle ScholarPubMed
Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. (2007). Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318, 430433.Google Scholar
James, R. W. (1948). The Optical Principles of the Diffraction of X-rays. London: Bell.Google Scholar
Jeruzalmi, D., O'Donnell, M. & Kuriyan, J. (2001). Crystal structure of the processivity clamp loader gamma (gamma) complex of E. coli DNA polymerase III. Cell 106, 429441.Google Scholar
Jin, M. S., Oldham, M. L., Zhang, Q. & Chen, J. (2012). Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans . Nature 490, 566569.Google Scholar
Kabsch, W. (2010). XDS. Acta Crystallographica D 66, 125132.Google Scholar
Kahn, R., Fourme, R., Bosshard, R., Chiadmi, M., Risler, J. L., Dideberg, O. & Wery, J. P. (1985). Crystal structure study of Opsanus tau Parvalbumin by multiwavelength anomalous diffraction. FEBS Letters 179, 133137.Google Scholar
Kallman, H. & Mark, H. (1927). Über die Dispersion und Streuung von Röntgenstrahlen. Annalen der Physik 82, 585604.Google Scholar
Karle, J. (1967). Anomalous scatterers in x-ray diffraction and the use of several wavelengths. Applied Optics 6, 21322135.Google Scholar
Karle, J. (1980). Some developments in anomalous dispersion for the structure investigation of macromolecular systems in biology. International Journal of Quantum Chemistry: Symposium 7, 357367.Google Scholar
Karle, J. & Hauptman, H. (1950). The phases and magnitudes of the structure factors. Acta Crystallographica 3, 181187.Google Scholar
Karle, J. & Hauptman, H. (1956). A theory of phase determination for the four types of non-centrosymmetric space groups 1P222, 2P22, 3P 12, 3P 22. Acta Crystallographica 9, 635651.Google Scholar
Kazantsev, A. V., Krivenko, A. A. & Pace, N. R. (2009). Mapping metal-binding sites in the catalytic domain of bacterial RNase P RNA. RNA 15, 266276.Google Scholar
Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., Wyckoff, H. & Phillips, D. C. (1958). A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181, 662666.Google Scholar
Kim, Y., Babnigg, G., Jedrzejczak, R., Eschenfeldt, W. H., Li, H., Maltseva, N., Hatzos-Skintges, C., Gu, M., Makowska-Grzyska, M., Wu, R., An, H., Chhor, G. & Joachimiak, A. (2011). High-throughput protein purification and quality assessment for crystallization. Methods 55, 1228.Google Scholar
Kincaid, B. M., Eisenberger, P., Hodgson, K. O. & Doniach, S. (1975). X-ray absorption spectroscopy using synchrotron radiation for structural investigation of organometallic molecules of biological interest. Proceedings of the National Academy of Sciences of the United States of America 72, 23402342.Google Scholar
Kitagawa, D., Vakonakis, I., Olieric, N., Hilbert, M., Keller, D., Olieric, V., Bortfeld, M., Erat, M. C., Flückiger, I., Gönczy, P. & Steinmetz, M. O. (2011). Structural basis of the 9-fold symmetry of centrioles. Cell 144, 364375.Google Scholar
Kitago, Y., Watanabe, N. & Tanaka, I. (2005). Structure determination of a novel protein by sulfur SAD using chromium radiation in combination with a new crystal-mounting method. Acta Crystallographica D 61, 10131021.Google Scholar
Knäblein, J., Neuefeind, T., Schneider, F., Bergner, A., Messerschmidt, A., Löwe, J., Steipe, B. & Huber, R. (1997). Ta6Br12 2+, a tool for phase determination of large biological assemblies by X-ray crystallography. Journal of Molecular Biology 270, 17.Google Scholar
Kolatkar, P. R., Ernst, S. R., Hackert, M. L., Ogata, C. M., Hendrickson, W. A., Merritt, E. A. & Phizackerley, R. P. (1992). The structure determination and refinement of homotetrameric hemoglobin from Urechis caupo at 2.5 Å resolution. Acta Crystallographica B 48, 191199.Google Scholar
Korzun, Z. R. (1987). The tertiary structure of azurin from Pseudomonas denitrificans as determined by Cu resonant diffraction using synchrotron radiation. Journal of Molecular Biology 196, 413419.CrossRefGoogle Scholar
Kramers, H. A. & Heisenberg, W. (1925). Über die Streuung von Strahlung durch Atome. Zeitschrift für Physik 31, 681708.Google Scholar
de Kronig, R. L. (1926). On the theory of dispersion of x-rays. Journal of the Optical Society of America 12, 547557.Google Scholar
de Kronig, R. L. & Kramers, H. A. (1928). Zur Theorie der Absorption und Dispersion in den Röntgenspektren. Zeitschrift für Physik 48, 174179.Google Scholar
Langer, G., Cohen, S. X., Lamzin, V. S. & Perrakis, A. (2008). Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nature Protocols 3, 11711179.Google Scholar
Lattman, E. E., Nockolds, C. E., Kretsinger, R. H. & Love, W. E. (1971). Structure of yellow fin tuna metmyoglobin at 6 Å resolution. Journal of Molecular Biology 60, 271277.Google Scholar
Leahy, D. J., Erickson, H. P., Aukhil, I., Joshi, P. & Hendrickson, W. A. (1994). Crystallization of a fragment of human fibronectin: introduction of methionine by site-directed mutagenesis to allow phasing via selenomethionine. Proteins 19, 4854.Google Scholar
Leahy, D. J., Hendrickson, W. A., Aukhil, I. & Erickson, H. P. (1992). Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science 258, 987991.Google Scholar
Lee, C. & Goldberg, J. (2010). Structure of coatomer cage proteins and the relationship among COPI, COPII, and clathrin vesicle coats. Cell 142, 123132.Google Scholar
Leonard, T. A., Różycki, B., Saidi, L. F., Hummer, G. & Hurley, J. H. (2011). Crystal structure and allosteric activation of protein kinase C βII. Cell 144, 5566.Google Scholar
Lidestri, J. P. & Hendrickson, W. A. (2009). Optimization of X-ray energy resolution from a horizontally focused single-crystal monochromator. Nuclear Instruments and Methods A 599, 289300.Google Scholar
Liu, Q., Dahmane, T., Zhang, Z., Assur, Z., Brasch, J., Shapiro, L., Mancia, F. & Hendrickson, W. A. (2012). Structures from anomalous diffraction data of native biological macromolecules. Science 336, 10331037.Google Scholar
Liu, Q., Liu, Q. & Hendrickson, W. A. (2013). Robust structural analysis of native biological macromolecules from multi-crystal anomalous diffraction data. Acta Crystallographica D 69, 13141332.Google Scholar
Liu, Q., Zhang, Z. & Hendrickson, W. A. (2011). Multi-crystal anomalous diffraction for low resolution macromolecular phasing. Acta Crystallographica D 67, 4559.Google Scholar
Liu, Y., Ogata, C. M. & Hendrickson, W. A. (2001). Multiwavelength anomalous diffraction analysis at the M absorption edges of uranium. Proceedings of the National Academy of Sciences of the United States of America 98, 1064810653.Google Scholar
Liu, Z.-J., Vysotski, E. S., Chen, C.-J., Rose, J. P., Lee, J. & Wang, B.-C. (2000). Structure of the Ca2+-regulated photoprotein obelin at 1.7 A resolution determined directly from its sulfur substructure. Protein Science 9, 20852093.Google Scholar
Lye, R. C., Phillips, J. C., Kaplan, D., Doniach, S. & Hodgson, K. O. (1980). White lines in L-edge X-ray absorption spectra and their implications for anomalous diffraction studies of biological materials. Proceedings of the National Academy of Sciences of the United States of America 77, 58845888.Google Scholar
Mancusso, R., Gregorio, G. G., Liu, Q. & Wang, D.-N. (2012). Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter. Nature 491, 622626.Google Scholar
Mark, H. & Szilard, L. (1925). Ein einfacher Versuch zu Auffindung eines selektiven Effektes bei der estreuung von Röntgenstrahlen. Zeitschrift für Physik 33, 688691.Google Scholar
Martin, J. L., Bardwell, J. C. & Kuriyan, J. (1993). Crystal structure of the DsbA protein required for disulphide bond formation in vivo . Nature 365, 464468.Google Scholar
Martinez-Hackert, E. & Hendrickson, W. A. (2009). Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone. Cell 138, 923934.Google Scholar
Matthews, B. & Czerwinski, E. W. (1975). Local scaling: a method to reduce systematic errors in isomorphous replacement and anomalous scattering measurements. Acta Crystallographica A 31, 480487.Google Scholar
Mitchell, C. M. (1957). Phase determination by the two-wavelength method of Okaya and Pepinsky. Acta Crystallographica 10, 475476.Google Scholar
Moore, J. O. & Hendrickson, W. A. (2012). An asymmetry-to-symmetry switch in signal transmission by the histidine kinase receptor for TMAO. Structure 20, 729741.Google Scholar
Nagem, R. A., Ambrosio, A. L., Rojas, A. L., Navarro, M. V., Golubev, A. M., Garratt, R. C. & Polikarpov, I. (2005). Getting the most out of X-ray home sources. Acta Crystallographica D 61, 10221030.Google Scholar
Nagem, R. A., Dauter, Z. & Polikarpov, I. (2001). Protein crystal structure solution by fast incorporation of negatively and positively charged anomalous scatterers. Acta Crystallographica D 57, 9961002.Google Scholar
Nakagawa, A., Higuchi, Y., Yasuoka, N., Katsube, Y. & Yagi, T. (1990). S-class cytochromes c have a variety of folding patterns: structure of cytochrome c-553 from Desulfovibrio vulgaris determined by the multi-wavelength anomalous dispersion method. Journal of Biochemistry 108, 701703.Google Scholar
Nishikawa, S. & Matukawa, K. (1928). Hemihedry of Zincblende and X-Ray Reflexion. Proceedings of the Imperial Academy of Japan 4, 9697.Google Scholar
Nyblom, M., Poulsen, H., Gourdon, P., Reinhard, L., Andersson, M., Lindahl, E., Fedosova, N. & Nissen, P. (2013). Crystal structure of Na+, K(+)-ATPase in the Na(+)-bound state. Science 342, 123127.Google Scholar
Ogata, C. M. & Hendrickson, W. A. (1995). Protein structures from MAD experiments at the howard hughes medical institute beam line X4A at NSLS. Synchrotron Radiation News 8, 1318.Google Scholar
Okaya, Y. & Pepinsky, R. (1956). New formulation and solution of the phase problem in x-ray analysis of noncentric crystals containing anomalous scatterers. Physical Review 103, 16451647.Google Scholar
Okaya, Y., Saito, Y. & Pepinsky, R. (1955). New method in X-ray crystal structure determination involving the use of anomalous dispersion. Physical Review 98, 18571858.Google Scholar
Ormö, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y. & Remington, S. J. (1996). Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 13921395.Google Scholar
Otwinowski, Z. (1991). In Isomorphous Replacement and Anomalous Scattering, (eds. Wolf, W. Evans, P. R. & Leslie, A. G. W.), pp. 8086. Warrington: SERC, Daresbury Laboratory.Google Scholar
Otwinowski, Z. & Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology 276, 307326.Google Scholar
Pähler, A., Smith, J. L. & Hendrickson, W. A. (1990). A probability representation for phase information from multiwavelength anomalous dispersion. Acta Crystallographica A 46, 537540.Google Scholar
Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Le Trong, I., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M. & Miyano, M. (2000). Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739745.Google Scholar
Panjikar, S., Parthasarathy, V., Lamzin, V. S., Weiss, M. S. & Tucker, P. A. (2009). On the combination of molecular replacement and single-wavelength anomalous diffraction phasing for automated structure determination. Acta Crystallograllographica D 65, 10891097.Google Scholar
Patterson, A. L. (1934). A fourier series method for the determination of the components of interatomic distances in crystals. Physical Review 46, 372376.Google Scholar
Patterson, A. L. (1935). A direct method for the determination of the components of interatomic distances in crystals. Zeitschrift für Kristallographie 90, 517542.Google Scholar
Payandeh, J., Scheuer, T., Zheng, N. & Catterall, W. A. (2011). The crystal structure of a voltage-gated sodium channel. Nature 475, 353358.Google Scholar
Perraskis, A., Morris, R. & Lamzin, V. S. (1999). Automated protein model building combined with iterative structure refinement. Nature Structural Biology 6, 458463.Google Scholar
Perutz, M. F., Rossmann, M. G., Cullis, A. F., Muirhead, H., Will, G. & North, A. C. (1960). Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-Å. resolution, obtained by X-ray analysis. Nature 185, 416422.Google Scholar
Phillips, J. C. & Hodgson, K. O. (1980). The use of anomalous scattering effects to phase diffraction patterns from macromolecules. Acta Crystallographica A 36, 856864.Google Scholar
Phillips, J. C., Templeton, D. H., Templeton, L. K. & Hodgson, K. O. (1978). LIII-Edge anomalous X-ray scattering by cesium measured with synchrotron radiation. Science 201, 257259.Google Scholar
Pomeranz Krummel, D. A., Oubridge, C., Leung, A. K., Li, J. & Nagai, K. (2009). Crystal structure of human spliceosomal U1 snRNP at 5.5 Å resolution. Nature 458, 475480.Google Scholar
Prins, J. A. (1928). Über die Dispersion und Absorption von Röntgenstrahlen. Zeitschrift für Physik 48, 479498.Google Scholar
Purdy, M. D., Ge, P., Chen, J., Selvin, P. R. & Wiener, M. C. (2002). Thiol-reactive lanthanide chelates for phasing protein X-ray diffraction data. Acta Crystallographica D 58, 11111117.Google Scholar
Qi, R., Sarbeng, E. B., Liu, Q., Le, K. Q., Xu, X., Xu, H., Yang, J., Wong, J. L., Vorvis, C., Hendrickson, W. A., Zhou, L. & Liu, Q. (2013). Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP. Nature Structural and Molecular Biology 20, 900907.Google Scholar
Ramachandran, G. N. & Raman, S. (1956). A new method for the structure analysis of non-centrosymmetric crystals. Current Science (India) 25, 348351.Google Scholar
Ramakrishnan, V. & Biou, V. (1997). Treatment of multiwavelength anomalous diffraction data as a special case of multiple isomorphous replacement. Methods in Enzymology 276, 538557.Google Scholar
Ramakrishnan, V., Finch, J. T., Graziano, V., Lee, P. L. & Sweet, R. M. (1993). Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature 362, 219223.Google Scholar
Raman, C. S., Li, H., Martásek, P., Král, V., Masters, B. S. & Poulos, T. L. (1998). Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Cell 95, 939950.Google Scholar
Raman, S. (1959). Theory of the anomalous dispersion method of determining the structure and absolute configuration of non-centrosymmetric crystals. Proceedings of the Indian Academy of Sciences A 50, 95107.Google Scholar
Ramaseshan, S. (1993). Four decades in anomalous scattering – some reminiscences. Current Science 65, 644651.Google Scholar
Ramaseshan, S. & Venkatesan, K. (1957). The use of anomalous scattering without phase change in crystal structure analysis. Current Science 26, 352353.Google Scholar
Ramaseshan, S., Venkatesan, K. & Mani, N. V. (1957). The use of anomalous scattering for the determination of crystal structures – KMnO4 . Proceedings of the Indian Academy of Sciences A 46, 95111.Google Scholar
Read, R. J. & McCoy, A. J. (2011). Using SAD data in phaser. Acta Crystallographica D 67, 338344.Google Scholar
Reiter, N. J., Osterman, A., Torres-Larios, A., Swinger, K. K., Pan, T. & Mondragón, A. (2010). Structure of a bacterial ribonuclease P holoenzyme in complex with tRNA. Nature 468, 784789.Google Scholar
Rice, L. M., Earnest, T. N. & Brunger, A. T. (2000). Single-wavelength anomalous diffraction phasing revisited. Acta Crystallographica D 56, 14131420.Google Scholar
Robbins, A. H., McRee, D. E., Williamson, M., Collett, S. A., Xuong, N. H., Furey, W. F., Wang, B. C. & Stout, C. D. (1991). Refined crystal structure of Cd, Zn metallothionein at 2.0 Å resolution. Journal of Molecular Biology 221, 12691293.Google Scholar
Robertson, J. M. (1936). An x-ray study of the phthalocyanines. Part II. Quantitative structure determination of the metal-free compound. Journal of the Chemical Society 11951209.Google Scholar
Robertson, J. M. & Woodward, I. (1940). An x-ray study of the phthalocyanines. Part IV Direct quantitative analysis of the platinum compound. Journal of the Chemical Society 3648.Google Scholar
Robinson, R. C., Turbedsky, K., Kaiser, D. A., Marchand, J. B., Higgs, H. N., Choe, S. & Pollard, T. D. (2001). Crystal structure of Arp2/3 complex. Science 294, 16791684.Google Scholar
Rodgers, D. W. (1994). Cryocrystallography. Structure 15, 11351140.Google Scholar
Rosenbaum, G., Holmes, K. C. & Witz, J. (1971). Synchrotron radiation as a source for X-ray diffraction. Nature 230, 434437.Google Scholar
Rossmann, M. G. (1961). The position of anomalous scatterers in protein crystals. Acta Crystallographica 14, 383388.Google Scholar
Rossmann, M. G. (1972). The Molecular Replacement Method. New York: Gordon & Breach.Google Scholar
Rossmann, M. G. & Blow, D. M. (1962). The detection of sub-units within the crystallographic asymmetric unit. Acta Crystallographica 15, 2431.Google Scholar
Rudenko, G., Henry, L., Henderson, K., Ichtchenko, K., Brown, M. S., Goldstein, J. L. & Deisenhofer, J. (2002). Structure of the LDL receptor extracellular domain at endosomal pH. Science 298, 23532358.Google Scholar
Rudenko, G., Henry, L., Vonrhein, C., Bricogne, G. & Deisenhofer, J. (2003). ‘MAD'ly phasing the extracellular domain of the LDL receptor: a medium-sized protein, large tungsten clusters and multiple non-isomorphous crystals. Acta Crystallographica 59, 19781986.Google Scholar
Ryu, S.-E., Kwong, P. D., Truneh, A., Porter, T. G., Arthos, J., Rosenberg, M., Dai, X., Xuong, Ng.-H., Axel, R., Sweet, R. W. & Hendrickson, W. A. (1990). Crystal structure of an HIV-binding recombinant fragment of human CD4. Nature 348, 419426.Google Scholar
Sawaya, M. R., Wojtowicz, W. M., Andre, I., Qian, B., Wu, W., Baker, D., Eisenberg, D. & Zipursky, S. L. (2008). A double S shape provides the structural basis for the extraordinary binding specificity of Dscam isoforms. Cell 134, 10071018.Google Scholar
Schuermann, J. P. & Tanner, J. J. (2003). MRSAD: using anomalous dispersion from S atoms collected at Cu K alpha wavelength in molecular-replacement structure determination. Acta Crystallographica D 59, 17311736.Google Scholar
Schiltz, M. & Bricogne, G. (2008). Exploiting the anisotropy of anomalous scattering boosts the phasing power of SAD and MAD experiments. Acta Crystallographica D 64, 711729.CrossRefGoogle Scholar
Schiltz, M., Fourme, R. & Prangé, T. (2003). Use of noble gases xenon and krypton as heavy atoms in protein structure determination. Methods in Enzymology 374, 83119.CrossRefGoogle ScholarPubMed
Schneider, T. R. & Sheldrick, G. M. (2002). Substructure solution with SHELXD. Acta Crystallographica D 58, 17721779.Google Scholar
Schmidt, A., Teeter, M., Weckert, E. & Lamzin, V. S. (2011). Crystal structure of small protein crambin at 0.48 Å resolution. Acta Crystallographica F 67, 424428.Google Scholar
Shapiro, L., Fannon, A. M., Kwong, P. D., Thompson, A., Lehmann, M. S., Grübel, G., Legrand, J. F., Als-Nielsen, J., Colman, D. R. & Hendrickson, W. A. (1995). Structural basis of cell–cell adhesion by cadherins. Nature 374, 327337.Google Scholar
Shapiro, L. & Lima, C. D. (1998). The Argonne Structural Genomics Workshop: Lamaze class for the birth of a new science. Structure 15, 265267.Google Scholar
Sheldrick, G. M. (1998). SHELX applications to macromolecules. In Direct Methods for Solving Macromolecular Structures (ed. Fortier, S.), pp. 401411. Dordrecht: S.Kluwer Academic Publishers.Google Scholar
Sheng, J. & Huang, Z. (2010). Selenium derivatization of nucleic acids for x-ray crystal structure and function studies. Chemistry and Biodiversity 7, 753785.Google Scholar
Singh, A. K. & Ramaseshan, S. (1968). The use of neutron scattering in crystal structure analysis. I. Non-centrosymmetric structures. Acta Crystallographica B 24, 3539.Google Scholar
Smith, G. D., Nagar, B., Rini, J. M., Hauptman, H. A. & Blessing, R. H. (1998). The use of SnB to determine an anomalous scattering substructure. Acta Crystallographica D 54, 799804.Google Scholar
Smith, J. L. & Hendrickson, W. A. (2001). Multiwavelength anomalous diffraction. In International Tables for Crystallography, vol. , F (ed. Rossmann, M. G. and Arnold, E.), pp. 299303. Chester: IUCr.Google Scholar
Smith, J. L., Hendrickson, W. A. & Addison, A. W. (1983). Structure of trimeric haemerythrin. Nature 303, 8688.Google Scholar
Sheriff, S., Hendrickson, W. A. & Smith, J. L. (1987). Structure of myohemerythrin in the azidomet state at 1.7/1.3 Å Resolution. Journal of Molecular Biology 197, 273296.Google Scholar
Son, S. K., Chapman, H. N. & Santra, R. (2011). Multiwavelength anomalous diffraction at high x-ray intensity. Physics Review Letter 107, 218102.Google Scholar
Staudenmann, J.-L., Hendrickson, W. A. & Abramowitz, R. (1989). The synchrotron resource of the Howard Hughes Medical Institute. Review of Scientific Instruments 60, 19391942.Google Scholar
Strub, M. P., Hoh, F., Sanchez, J. F., Strub, J. M., Böck, A., Aumelas, A. & Dumas, C. (2003). Selenomethionine and selenocysteine double labeling strategy for crystallographic phasing. Structure 11, 13591367.Google Scholar
Stuhrmann, S., Bartels, K. S., Braunwarth, W., Doose, R., Dauvergne, F., Gabriel, A., Knöchel, A., Marmotti, M., Stuhrmann, H. B., Trame, C. & Lehmann, M. S. (1997). Anomalous dispersion with edges in the soft X-ray region: first results of diffraction from single crystals of trypsin near the K-absorption edge of sulfur. Journal of Synchrotron Radiatation 4, 298310.Google Scholar
Sutton, R. B., Fasshauer, D., Jahn, R. & Brunger, A. T. (1998). Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347353.Google Scholar
Templeton, D. H. & Templeton, L. K. (1982). X-ray dichroism and polarized anomalous scattering of the uranyl ion. Acta Crystallographica A 38, 6267.Google Scholar
Templeton, L. K. & Templeton, D. H. (1988). Biaxial tensors for anomalous scattering of X-rays in selenolanthionine. Acta Crystallographica A 44, 478481.Google Scholar
Templeton, D. H., Templeton, L. K., Phillips, J. C. & Hodgson, K. O. (1980). Anomalous scattering of X-rays by cesium and cobalt measured with synchrotron radiation. Acta Crystallographica A 36, 436442.Google Scholar
Templeton, D. H., Templeton, L. K., Phizackerley, R. P. & Hodgson, K. O. (1982). L3-edge anomalous scattering by gadolinium and samarium measured at high resolution with synchrotron radiation. Acta Crystallographica A 38, 7478.Google Scholar
Terwilliger, T. C. (1994). MAD phasing: Bayesian estimates of F A . Acta Crystallographica D 50, 1116.Google Scholar
Terwilliger, T. C. (2000). Maximum-likelihood density modification. Acta Crystallographica D 56, 965972.Google Scholar
Terwilliger, T. C. (2003a). Automated main-chain model building by template matching and iterative fragment extension. Acta Crystallographica D 59, 3844.Google Scholar
Terwilliger, T. C. (2003b). Automated side-chain model building and sequence assignment by template matching. Acta Crystallographica D 4549.Google Scholar
Terwilliger, T. C. & Berendzen, J. (1999). Automated MAD and MIR structure solution. Acta Crystallographica D 55, 849861.Google Scholar
Thomson, J. J. (1906). Conduction of Electricity through Gases. Cambridge: Cambridge University Press.Google Scholar
Thygesen, J., Weinstein, S., Franceschi, F. & Yonath, A. (1996). The suitability of multi-metal clusters for phasing in crystallography of large macromolecular assemblies. Structure 4, 513518.Google Scholar
Tollin, P. (1969). Determination of the orientation and position of the myoglobin molecule in the crystal of seal myoglobin. Journal of Molecular Biology 45, 481490.Google Scholar
Turner, M. A., Yuan, C. S., Borchardt, R. T., Hershfield, M. S., Smith, G. D. & Howell, P. L. (1998). Structure determination of selenomethionyl S-adenosylhomocysteine hydrolase using data at a single wavelength. Nature Structural Biology 5, 369376.Google Scholar
van den Bedem, H., Wolf, G., Xu, Q. & Deacon, A. M. (2011). Distributed structure determination at the JCSG. Acta Crystallographica D 67, 368375.Google Scholar
Walsh, M. A., Evans, G., Sanishvili, R., Dementieva, I. & Joachimiak, A. (1999). MAD data collection – current trends. Acta Crystallographica D 55, 17261732.Google Scholar
Wang, B.-C. (1985). Resolution of phase ambiguity in macromolecular crystallography. Methods in Enzymology 115, 90112.Google Scholar
Ward, K. B., Hendrickson, W. A. & Klippenstein, G. L. (1975). Quaternary and tertiary structure of hemerythrin. Nature 257, 818821.Google Scholar
Warkentin, M. & Thorne, R. E. (2010). Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements. Acta Crystallographica D 66, 10921100.Google Scholar
Watson, J. D. (1972). Cold Spring Harbor Symposia on Quantitative Biology, vol. XXXVI. Structure and Function of Proteins at the Three-Dimensional Level. Cold Spring Harbor: Cold Spring Harbor Laboratory.Google Scholar
Weis, W. I., Kahn, R., Fourme, R., Drickamer, K. & Hendrickson, W. A. (1991). Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing. Science 254, 16081615.Google Scholar
Weiss, M. S., Sicker, T., Djinovic-Carugo, K. & Hilgenfeld, R. (2001). On the routine use of soft X-rays in macromolecular crystallography. Acta Crystallographica D 57, 689695.Google Scholar
White, T. A., Barty, A., Stellato, F., Holton, J. M., Kirian, R. A., Zatsepin, N. A. & Chapman, H. N. (2013). Crystallographic data processing for free-electron laser sources. Acta Crystallographica D 69, 12311240.Google Scholar
Wimberly, B. T., Brodersen, D. E., Clemons, W. M. Jr., Morgan-Warren, R. J., Carter, A. P., Vonrhein, C., Hartsch, T. & Ramakrishnan, V. (2000). Structure of the 30S ribosomal subunit. Nature 407, 327339.Google Scholar
Wilson, I. A., Skehel, J. J. & Wiley, D. C. (1981). Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289, 366373.Google Scholar
Wu, H., Kwong, P. D. & Hendrickson, W. A. (1997). Dimeric association and segmental variability in the structure of human CD4. Nature 387, 527530.Google Scholar
Wu, H., Lustbader, J. W., Liu, Y., Canfield, R. E. & Hendrickson, W. A. (1994). Structure of human chorionic gonadotropin at 2.6 Å resolution from MAD analysis of the selenomethionyl protein. Structure 2, 545558.Google Scholar
Wyckoff, R. W. G. (1930). The X-ray scattering powers of nickel and oxygen in nickel oxide. Physical Review 35, 583587.Google Scholar
Xiao, R., Anderson, S., Aramini, J., Belote, R., Buchwald, W. A., Ciccosanti, C., Conover, K., Everett, J. K., Hamilton, K., Huang, Y. J., Janjua, H., Jiang, M., Kornhaber, G. J., Lee, D. Y., Locke, J. Y., Ma, L. C., Maglaqui, M., Mao, L., Mitra, S., Patel, D., Rossi, P., Sahdev, S., Sharma, S., Shastry, R., Swapna, G. V., Tong, S. N., Wang, D., Wang, H., Zhao, L., Montelione, G. T. & Acton, T. B. (2010). The high-throughput protein sample production platform of the Northeast Structural Genomics Consortium. Journal of Structural Biology 172, 2133.Google Scholar
Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. (2005). Crystal structure of a bacterial homologue of Na+/Cl – dependent neurotransmitter transporters. Nature 437, 215223.Google Scholar
Yang, C. & Pflugrath, J. W. (2001). Applications of anomalous scattering from S atoms for improved phasing of protein diffraction data collected at Cu Kα wavelength. Acta Crystallographica D 57, 14801490.Google Scholar
Yang, C., Pflugrath, J. W., Courville, D. A., Stence, C. N. & Ferrara, J. D. (2003). Away from the edge: SAD phasing from the sulfur anomalous signal measured in-house with chromium radiation. Acta Crystallographica D 59, 19431957.Google Scholar
Yang, W., Hendrickson, W. A., Crouch, R. J. & Satow, Y. (1990). Structure of ribonuclease H phased at 2 Å resolution by MAD analysis of the selenomethionyl protein. Science 249, 13981405.Google Scholar
Zhang, K. Y. J. & Main, P. (1990). Histogram matching as a new density modification technique for phase refinement and extension of protein molecules. Acta Crystallographica A 46, 4146.Google Scholar
Zhou, Y. & MacKinnon, R. (2003). The occupancy of ions in the K+ selectivity filter: charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. Journal of Molecular Biology 333, 965975.Google Scholar
Zhu, X., Zhao, X., Burkholder, W. F., Gragerov, A., Ogata, C. M., Gottesman, M. E. & Hendrickson, W. A. (1996). Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272, 16061614.Google Scholar
Supplementary material: PDF

Hendrickson supplementary material

Supplementary tables

Download Hendrickson supplementary material(PDF)
PDF 226.5 KB