Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T19:45:30.089Z Has data issue: false hasContentIssue false

The Supermassive Black Hole at the Heart of Centaurus A: Revealed by the Kinematics of Gas and Stars

Published online by Cambridge University Press:  02 January 2013

Nadine Neumayer
Affiliation:
European Southern Observatory, Karl-Schwarzschild-Str 2, 85748 Garching bei München,Germany. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

At less than 4 Mpc distance the radio galaxy NGC 5128 (Centaurus A) is the prime example to study the supermassive black hole and its influence on the environment in great detail. To model and understand the feeding and feedback mechanisms one needs an accurate determination of the mass of the supermassive black hole. The aim of this review is to give an overview of the recent studies that have been dedicated to measure the black hole mass in Centaurus A from both gas and stellar kinematics. It shows how the advancement in observing techniques and instrumentation drive the field of black hole mass measurements and concludes that adaptive optics assisted integral field spectroscopy is the key to identify the effects of the AGN on the surrounding ionised gas. Using data from SINFONI at the ESO Very Large Telescope, the best-fit black hole mass is MBH = 4.5(+1.7, −1.0) × 107 M (from H2 kinematics) and MBH = (5.5 ± 3.0) × 107 M (from stellar kinematics). This is one of the cleanest gas-versus-star comparisons of a MBH determination, and brings Centaurus A into agreement with the MBH−σ relation.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2010

References

Bonnet, H. et al. , 2004, Msngr, 117, 17Google Scholar
Cappellari, M., Verolme, E. K., van der Marel, R. P., Kleijn, G.A.V., Illingworth, G. D., Franx, M., Carollo, C. M. & de Zeeuw, P. T., 2002, ApJ, 578, 787CrossRefGoogle Scholar
Cappellari, M., Neumayer, N., Reunanen, J., van der Werf, P. P., de Zeeuw, P. T. & Rix, H.-W., 2009, MNRAS, 394, 660Google Scholar
Cretton, N. & Emsellem, E., 2004, MNRAS, 347, L31Google Scholar
Eisenhauer, F. et al. , 2003, SPIE, 4841, 1548Google Scholar
Emsellem, E., Monnet, G. & Bacon, R., 1994, A&A, 285, 723Google Scholar
Ferrarese, L. & Merritt, D., 2000, ApJ, 539, L9CrossRefGoogle Scholar
Ferrarese, L. & Ford, H., 2005, SSRv, 116, 523Google Scholar
Gebhardt, K. et al. , 2000, ApJ, 539, L13Google Scholar
Graham, A. W., 2008, ApJ, 680, 143Google Scholar
Gültekin, K. et al. , 2009, ApJ, 698, 198Google Scholar
Häring, N. & Rix, H., 2004, ApJ, 604, L89Google Scholar
Häring-Neumayer, N., Cappellari, M., Rix, H.-W., Hartung, M., Prieto, M. A., Meisenheimer, K. & Lenzen, R., 2006, ApJ, 643, 226Google Scholar
Hardcastle, M. J., Worrall, D. M., Kraft, R. P., Forman, W. R., Jones, C. & Murray, S. S., 2003, ApJ, 593, 169CrossRefGoogle Scholar
Harris, G., Rejkuba, M. & Harris, W., 2010, PASA, 27, 457Google Scholar
Hu, J., 2008, MNRAS, 386, 2242Google Scholar
Jarrett, T. H., Chester, T., Cutri, R., Schneider, S. E. & Huchra, J. P., 2003, AJ, 125, 525Google Scholar
Karachentsev, I. D. et al. , 2007, AJ, 133, 504CrossRefGoogle Scholar
Krajnović, D., Cappellari, M., de Zeeuw, P. T. & Copin, Y., 2006, MNRAS, 366, 787Google Scholar
Krajnović, D., Sharp, R. & Thatte, N., 2007, MNRAS, 374, 385Google Scholar
Lenzen, R., Hofmann, R., Bizenberger, P. & Tusche, A., 1998, SPIE, 3354, 606Google Scholar
Macchetto, F., Marconi, A., Axon, D. J., Capetti, A., Sparks, W. & Crane, P., 1997, ApJ, 489, 579CrossRefGoogle Scholar
Marconi, A., Schreier, E. J., Koekemoer, A., Capetti, A., Axon, D., Macchetto, D. & Caon, N., 2000, ApJ, 528, 276CrossRefGoogle Scholar
Marconi, A., Capetti, A., Axon, D. J., Koekemoer, A., Macchetto, D. & Schreier, E. J., 2001, ApJ, 549, 915CrossRefGoogle Scholar
Marconi, A., Pastorini, G., Pacini, F., Axon, D. J., Capetti, A., Macchetto, D., Koekemoer, A. M. & Schreier, E. J., 2006, A&A, 448, 921Google Scholar
Moorwood, A. et al. , 1999, Msngr, 95, 1Google Scholar
Neumayer, N., Cappellari, M., Reunanen, J., Rix, H.-W., van der Werf, P. P., de Zeeuw, P. T. & Davies, R. I., 2007, ApJ, 671, 1329CrossRefGoogle Scholar
Parry, I. et al. , 2004, SPIE, 5492, 1135Google Scholar
Rejkuba, M., 2004, A&A, 413, 903Google Scholar
Rousset, G. et al. , 2003, SPIE, 4839, 140Google Scholar
Schreier, E. J. et al. , 1998, ApJ, 499, L143Google Scholar
Shapiro, K. L., Cappellari, M., de Zeeuw, T., McDermid, R. M., Gebhardt, K., van den Bosch, R. C. E. & Statler, T. S., 2006, MNRAS, 370, 559Google Scholar
Silge, J. D. & Gebhardt, K., 2003, AJ, 125, 2809Google Scholar
Silge, J. D., Gebhardt, K., Bergmann, M. & Richstone, D., 2005, AJ, 130, 406Google Scholar
Siopis, C. et al. , 2009, ApJ, 693, 946CrossRefGoogle Scholar
Tingay, S. J. et al. , 1998, AJ, 115, 960Google Scholar
Tremaine, S. et al. , 2002, ApJ, 574, 740CrossRefGoogle Scholar
Valluri, M., Merritt, D. & Emsellem, E., 2004, ApJ, 602, 66CrossRefGoogle Scholar