Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T04:45:44.590Z Has data issue: false hasContentIssue false

Subtraction of Bright Point Sources from Synthesis Images of the Epoch of Reionization

Published online by Cambridge University Press:  02 January 2013

B. Pindor*
Affiliation:
University of Melbourne, School of Physics, Parkville 3010, Australia
J. S. B. Wyithe
Affiliation:
University of Melbourne, School of Physics, Parkville 3010, Australia
D. A. Mitchell
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138-1516, USA
S. M. Ord
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138-1516, USA
R. B. Wayth
Affiliation:
ICRAR/Curtin Institute of Radio Astronomy, GPO Box U1987, Perth, WA 6845, Australia
L. J. Greenhill
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138-1516, USA
*
DCorresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bright point sources associated with extragalactic active galactic nuclei and radio galaxies are an important foreground for low-frequency radio experiments aimed at detecting the redshifted 21-cm emission from neutral hydrogen during the epoch of reionization. The frequency dependence of the synthesized beam implies that the sidelobes of these sources will move across the field of view as a function of observing frequency, hence frustrating line-of-sight foreground subtraction techniques. We describe a method for subtracting these point sources from dirty maps produced by an instrument such as the MWA. This technique combines matched filters with an iterative centroiding scheme to locate and characterize point sources in the presence of a diffuse background. Simulations show that this technique can improve the dynamic range of epoch-of-reionization maps by 2—3 orders of magnitude.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2011

References

Ali, S. S., Bharadwaj, S. & Chengalur, J. N., 2008, MNRAS, 385, 2166CrossRefGoogle Scholar
Becker, R. H. et al. , 2001, AJ, 122, 2850Google Scholar
Bernardi, G. et al. , 2009, A&A, 500, 965Google Scholar
Bernardi, G. et al. , 2010, arXiv1002.4177Google Scholar
Bowman, J. D., Morales, M. F. & Hewitt, J. N., 2009, ApJ, 695, 183CrossRefGoogle Scholar
Briggs, D. S., 1995, in Bulletin of the American Astronomical Society, Vol. 27, Bulletin of the American Astronomical Society, 1444Google Scholar
Briggs, D. S. & Cornwell, T. J., 1992, in Astronomical Society of the Pacific Conference Series, Vol. 25, Astronomical Data Analysis Software and Systems 1, Eds. Worrall, D. M., Biemesderfer, C. & Barnes, J., 170Google Scholar
Ciardi, B. & Madau, P., 2003, ApJ, 596, 1Google Scholar
Cohen, A. S., Röttgering, H. J. A., Jarvis, M. J., Kassim, N. E. & Lazio, T. J. W., 2004, ApJS, 150, 417Google Scholar
Cornwell, T., Braun, R. & Briggs, D. S., 1999, in Astronomical Society of the Pacific Conference Series, Vol. 180, Synthesis Imaging in Radio Astronomy II, Eds. Taylor, G. B., Carilli, C. L. & Perley, R. A., 151Google Scholar
Cotton, W. D. & Uson, J. M., 2008, A&A, 490, 455Google Scholar
Datta, A., Bhatnagar, S. & Carilli, C. L., 2009, ApJ, 703, 1851Google Scholar
de Oliveira-Costa, A., Tegmark, M., Gaensler, B. M., Jonas, J., Landecker, T. L. & Reich, P., 2008, MNRAS, 388, 247CrossRefGoogle Scholar
Di Matteo, T., Perna, R., Abel, T. & Rees, M. J., 2002, ApJ, 564, 576CrossRefGoogle Scholar
Edgar, R. G., Clark, M. A., Dale, K., Mitchell, D. A., Ord, S. M., Wayth, R. B., Pfister, H., & Greenhill, L. J., 2010, ArXiv1003.5575Google Scholar
Field, G. B., 1959, ApJ, 129, 536CrossRefGoogle Scholar
Furlanetto, S. R., Oh, S. P. & Briggs, F. H., 2006, Phys. Rep., 433, 181CrossRefGoogle Scholar
Geil, P. M., Wyithe, J. S. B., Petrovic, N. & Oh, S. P., 2008, MNRAS, 390, 1496Google Scholar
Gleser, L., Nusser, A. & Benson, A. J., 2008, MNRAS, 391, 383CrossRefGoogle Scholar
Haehnelt, M. G. & Tegmark, M., 1996, MNRAS, 279, 545Google Scholar
Hales, S. E. G., Baldwin, J. E. & Warner, P. J., 1988, MNRAS, 234, 919Google Scholar
Harker, G. et al. , 2009, MNRAS, 397, 1138Google Scholar
Herranz, D., López-Caniego, M., Sanz, J. L. & Gonzĺez-Nuevo, J., 2009, MNRAS, 394, 510Google Scholar
Högbom, J. A., 1974, A&AS, 15, 417Google Scholar
Intema, H. T., van der Tol, S., Cotton, W. D., Cohen, A. S., van Bemmel, I. M. & Röttgering, H. J. A., 2009, A&A, 501, 1185Google Scholar
Jelić, V. et al. , 2008, MNRAS, 389, 1319Google Scholar
Komatsu, E. et al. , 2009, ApJS, 180, 330Google Scholar
Liu, A., Tegmark, M., Bowman, J., Hewitt, J. & Zaldarriaga, M., 2009a, MNRAS, 398, 401CrossRefGoogle Scholar
Liu, A., Tegmark, M. & Zaldarriaga, M., 2009b, MNRAS, 394, 1575Google Scholar
Madau, P., Meiksin, A. & Rees, M. J., 1997, ApJ, 475, 429Google Scholar
Mitchell, D. A., Greenhill, L. J., Wayth, R. B., Sault, R. J., Lonsdale, C. J., Cappallo, R. J., Morales, M. F. & Ord, S. M., 2008, IEEE Journal of Selected Topics in Signal Processing, vol. 2, issue 5, pp. 707717, 2, 707CrossRefGoogle Scholar
Morales, M. F., 2005, ApJ, 619, 678CrossRefGoogle Scholar
Noordam, J. E., 2004, in Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, Vol. 5489, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Ed. Oschmann, J. M. Jr., 817Google Scholar
Pen, U., Chang, T., Peterson, J. B., Roy, J., Gupta, Y. & Bandura, K., 2008, in American Institute of Physics Conference Series, Vol. 1035, The Evolution of Galaxies Through the Neutral Hydrogen Window, Eds. Minchin, R. & Momjian, E., 75Google Scholar
Pier, J. R., Munn, J. A., Hindsley, R. B., Hennessy, G. S., Kent, S. M., Lupton, R. H. & Ivezć, Ž., 2003, AJ, 125, 1559CrossRefGoogle Scholar
Pritchard, J. R., Loeb, A. & Wyithe, J. S. B., 2009, ArXiv 0908.3891Google Scholar
Rogers, A. E. E. & Bowman, J. D., 2008, AJ, 136, 641CrossRefGoogle Scholar
Santos, M. G., Cooray, A. & Knox, L., 2005, ApJ, 625, 575Google Scholar
Schwab, F. R., 1984, AJ, 89, 1076Google Scholar
Schwarz, U. J., 1978, A&A, 65, 345Google Scholar
Shaver, P. A., Windhorst, R. A., Madau, P. & de Bruyn, A. G., 1999, A&A, 345, 380Google Scholar
Stetson, P. B., 1987, PASP, 99, 191Google Scholar
Subrahmanyan, R., 2002, in IAU Symposium, Vol. 199, The Universe at Low Radio Frequencies, Eds. Pramesh Rao, A., Swarup, G. & Gopal-Krishna, , 58Google Scholar
Tegmark, M. & de Oliveira-Costa, A., 1998, ApJL, 500, L83Google Scholar
Thompson, A. R., Moran, J. M. & Swenson, G. W. Jr., 2001, Interferometry and Synthesis in Radio Astronomy, 2nd EditionGoogle Scholar
van der Tol, S., Jeffs, B. D. & van der Veen, A.-J., 2007, IEEE Transactions on Signal Processing, 55, 4497Google Scholar
Voronkov, M. A. & Wieringa, M. H., 2004, Experimental Astronomy, 18, 13Google Scholar
Wang, X., Tegmark, M., Santos, M. G. & Knox, L., 2006, ApJ, 650, 529CrossRefGoogle Scholar
Wouthuysen, S. A., 1952, AJ, 57, 31Google Scholar
Wright, A. E. & Otrupcek, R., 1996, VizieR Online Data Catalog, 8015, 0Google Scholar
York, D. G. et al. , 2000, AJ, 120, 1579CrossRefGoogle Scholar