Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T22:54:16.704Z Has data issue: false hasContentIssue false

Stellar Evolution, Mass Loss and Nucleosynthesis on the Asymptotic Giant Branch

Published online by Cambridge University Press:  25 April 2016

P. R. Wood*
Affiliation:
Mount Stromlo and Siding Spring Observatories, Australian National University

Extract

In this review, I will be concentrating on problems related to the evolution of stars on the asymptotic giant branch (AGB). AGB stars are defined as stars which have completed core helium burning and have subsequently developed degenerate carbon/oxygen cores surrounded by hydrogen and helium burning shells; such stars have main sequence masses M≤9 M (Paczynski 1971; Becker and Iben 1980). In the HR diagram most AGB stars sit on the red giant branch. An exception to this rule occurs in Population II systems, where the AGB stars evolve asymptotically to the red giant branch from the blue side as the luminosity increases after completion of core helium burning on the horizontal branch.

Type
Invited Papers
Copyright
Copyright © Astronomical Society of Australia 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alloin, D., Collin-Souffrin, S., Joly, M. and Vigroux, L. Astron. Astrophys., 78, 200 (1979).Google Scholar
Becker, S. A. and Iben, I. Astrophys. J., 237, 111 (1980).Google Scholar
Deutsch, A. J., in ‘ Stellar Atmospheres ’, ed. Greenstein, J. L. (Chicago: University of Chicago Press), p. 543 (1960).Google Scholar
Emunds, M. G. and Pagel, B. E. J. Mon. Not. Roy. Astron. Soc., 185, 77p (1978).Google Scholar
Gingold, R. A. Astrophys. J., 193, 177 (1974).CrossRefGoogle Scholar
Gingold, R. A. Astrophys. J., 204, 116 (1976).CrossRefGoogle Scholar
Iben, I. Astrophys. J., 196, 525 (1975).Google Scholar
Iben, I. and Truran, J. W. Astrophys. J., 220, 980 (1978).Google Scholar
Kwok, S., in I. A. U. Colloquium 59, ‘ The Effects of Mass Loss on Stellar Evolution ’ (Reidel, 1980).Google Scholar
Kwok, S., Purton, C. R. and Fitzgerald, P. M. Astrophys. J., 219, L125 (1978).Google Scholar
Paczynski, B. Acta Astr., 21, 271 (1971).Google Scholar
Reimers, D. in 19th Liege International Astrophysical Colloquium, p. 369 (1975).Google Scholar
Renzini, A. and Voli, M. Astron. Astrophys., 94, 175 (1981).Google Scholar
Schwarzchild, M. and Härm, R. Astrophys. J., 150, 961 (1967).Google Scholar
Sugimoto, D. and Nomoto, K. Pub. Astron. Soc., Japan, 27, 197 (1975).Google Scholar
Tuchman, Y., Sack, N. and Barkat, Z. Astrophys. J., 234, 217 (1979).Google Scholar
Willson, L. A., in I. A. U. Colloquium No. 59, ‘ The effects of mass loss on Stellar Evolution ’ (Reidel, 1980).Google Scholar
Wood, P. R. Astrophys. J., 190, 609 (1974).Google Scholar
Wood, P. R., in ‘ Physical Processes in Red Giants ’, eds. Iben, I. and Renzini, A. (Reidel, 1980).Google Scholar
Wood, P. R. and Cahn, J. H. Astrophys. J., 211, 499 (1977).CrossRefGoogle Scholar
Wood, P. R. and Zarro, D. M. Astrophys. J. (in press, 1981).Google Scholar
Wood, P. R., Bessell, M. S. and Fox, M. W., Proc. Astron. Soc. Austr., 4, … (1981).Google Scholar