Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T20:58:14.221Z Has data issue: false hasContentIssue false

Sources of Enrichment

Published online by Cambridge University Press:  25 April 2016

M. A. Dopita*
Affiliation:
Mount Stromlo and Siding Spring Observatories, Private Bag, Weston, ACT 2611

Abstract

The relative importance of the stellar sources contributing to the production matrix of the heavy elements up to iron is reviewed. Three main element groups may be distinguished: (a) oxygen and the alpha-process elements; (b) the iron-peak group; (c) helium, carbon and nitrogen. Each of these is produced in stars of a different mass range and in different ways, and it is shown that an examination of metallicity-metallicity relationships can be used to constrain models of the history of star formation, stellar evolution, and the initial mass function in galaxies.

We can conclude that in the case of our local solar neighbourhood the initial Fe/O ratio was set by Type II supernovae, but that Type I½ supernovae were never important. Iron is produced by the Type I deflagration supernovae on a time-scale comparable to the infall time-scale of the gas. Carbon is produced by dredge-up in low-mass stars, but nitrogen is shown to be produced both in the stellar winds of massive stars, and in higher mass stars which give rise to the Type I planetary nebulae.

Type
Invited
Copyright
Copyright © Astronomical Society of Australia 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, D. C., 1978, Astrophys. J., 225, 893.CrossRefGoogle Scholar
Abbott, D. C., 1982, in Wolf-Rayet Stars: Observations, Physics, Evolution, de Loore, C. and Willis, A. J. (eds), Reidel: Dordrecht, p. 185.CrossRefGoogle Scholar
Aller, L. H., Keyes, C. D., Maran, S. P., Gull, T. R., Michalitsianos, A. G. and Stecher, T. P., 1987, Astrophys. J., 320, 159.CrossRefGoogle Scholar
Amett, D. W., 1980, Astrophys. J., 219, 1008.Google Scholar
Audouze, J. and Tinsley, B. M., 1977, Annu. Rev. Astron. Astrophys., 14, 43.CrossRefGoogle Scholar
Burki, G., 1977, Astron. Astrophys., 57, 135.Google Scholar
Chiosi, C., 1980, Astrophys. J., 83, 206.Google Scholar
Chiosi, C. and Matteucci, F. M., 1982, Astron. Astrophys., 105, 140.Google Scholar
Dopita, M. A., 1990, in Proc. 2nd Wyoming Conference The Interstellar Medium of Galaxies, Thronson, H. A. and Shull, J. M. (eds), Kluwer: Dordrecht, p. 437.CrossRefGoogle Scholar
Dopita, M.A., Dawe, J. A., Achilleos, N.. Brissenden, R. J. V., Flynn, C., Meatheringham, S. J., Rawlings, S., Tuohy, I. J., McNaught, R. D., Coates, D. W., Hancy, S., Thompson, K. and Shobbrook, R. D., 1988, Astron. J., 95, 1717.CrossRefGoogle Scholar
Dopita, M. A. and Meatheringham, S. J., 1991a, b, Astrophys. J., in press.Google Scholar
Edmunds, M. G., 1987, private communication.Google Scholar
Ensman, L., 1989, Astrophys. J., in press.Google Scholar
Fowler, W. A., 1985, Nucleosynthesis: Challenges and New Developments, Amett, W. D. and Truran, J. W. (eds), Univ. of Chicago Press: Chicago, p. 9.Google Scholar
Fowler, G. M., Caughlan, G. R. and Zimmerman, B. A., 1975, Annu. Rev. Astron. Astrophys., 13, 69.CrossRefGoogle Scholar
Gilmore, G. and Wyse, R. F. G., 1986, Nature, 322, 806.CrossRefGoogle Scholar
Gusten, R. and Mezger, P. G., 1982, Vistas in Astronomy, 26, 159.CrossRefGoogle Scholar
Guibert, J., Lequeux, J. and Viallefond, F., 1978, Astron. Astrophys., 68, 1.Google Scholar
Hamajima, K. and Tosa, M., 1975, Publ. Astron. Soc. Japan, 27, 561.Google Scholar
Humphreys, R. M., 1982, The Most Massive Stars, D’Odorico, S., Baade, D. and Kjär, K. (eds), ESO: Garching, p. 5.Google Scholar
Humphreys, R. M., 1984, Observational Tests of Stellar Evolution Theory, Maeder, A. and Renani, A. (eds), Reidel: Dordrecht, p. 279.CrossRefGoogle Scholar
Humphreys, R. M. and McElory, D. B., 1984, Astrophys. J., 284, 565.CrossRefGoogle Scholar
Ioen, I., 1975, Astrophys. J., 196, 525.Google Scholar
Iben, I., 1981, Physical Processes in Red Giants, Iben, I. and Renzini, A. (eds), Reidel: Dordrecht, p. 3.CrossRefGoogle Scholar
Iben, I., 1987, Late Stages of Stellar Evolution, Kwokand, S., Pottasch, S. R. (eds), Reidel: Dordrecht, p. 175.CrossRefGoogle Scholar
Iben, I. and Renzini, A., 1983, Annu. Rev. Astron. Astrophys., 21, 271.CrossRefGoogle Scholar
Iben, I. and Truran, J. W., 1978, Astrophys. J., 220, 980.CrossRefGoogle Scholar
Iben, I. and Tutukov, A. V., 1985, Astrophys. J. Suppl. Ser., 58, 661.CrossRefGoogle Scholar
Kaler, J.B., 1985, Annu. Rev. Astron. Astrophys., 23, 89.CrossRefGoogle Scholar
Kennicutt, R., 1989, Astrophys. J., in press.Google Scholar
Kennicutt, R., 1990, in IAU Symp. 148 The Magellanic Clouds, in press.CrossRefGoogle Scholar
Kudritski, R. P., Pauldrach, A. and Puls, J., 1987, Astron. Astrophys., 173, 293.Google Scholar
Lacey, C. G. and Fall, S. M., 1983, Mon. Not. R. Astr. Soc., 204, 791.CrossRefGoogle Scholar
Lacey, C. G. and Fall, S. M., 1985, Astrophys. J., 290, 154.CrossRefGoogle Scholar
Langer, N.. 1989, Astron. Astrophys., in press.Google Scholar
Larson, R.B., 1986, Mon. Not. R. Astr. Soc., 218, 409.CrossRefGoogle Scholar
Lynden-Bell, D., 1975, Vistas in Astronomy, 19, 299.CrossRefGoogle Scholar
Maeder, A., 1987, Astron. Astrophys., 173, 247.Google Scholar
Maeder, A. and Meynet, G., 1987, Astron. Astrophys., 182, 243.Google Scholar
Matteucci, F. and Greggio, L., 1986, Astron. Astrophys., 154, 279.Google Scholar
Matteucci, F. and Tomambé, A., 1985, Astron. Astrophys., 142, 13.Google Scholar
Mayor, M. and Vigroux, L., 1981, Astron. Astrophys., 98, 1.Google Scholar
Meatheringham, S. and Dopita, M. A., 1990a, b, Astrophys. J. Suppl. Ser., in press.Google Scholar
Nomoto, K., 1982a, Astrophys. J., 253, 798.CrossRefGoogle Scholar
Nomoto, K., 1982b, Astrophys. J., 257, 780.CrossRefGoogle Scholar
Nomoto, K., Thielemann, F-K. and Yokoi, K., 1984, Astrophys. J., 286, 644.CrossRefGoogle Scholar
Pagel, B. E. J. and Patchett, B. E., 1975, Mon. Not. R. Astr. Soc., 172, 13.CrossRefGoogle Scholar
Rana, N.C. and Wilkinson, D. A., 1986, Mon. Not. R. Astr. Soc., 218, 497.CrossRefGoogle Scholar
Renzini, A. and Voli, M., 1981, Astron. Astrophys., 94, 175.Google Scholar
Russell, S. J. and Dopita, M. A., 1990, Astrophys. J. Suppl. Ser., 74, 93.CrossRefGoogle Scholar
Russell, S. J. and Dopita, M. A., 1991, Astrophys. J. Suppl. Ser., in press.Google Scholar
Sanduleak, N., 1969, Astron. J., 74, 47.CrossRefGoogle Scholar
Scalo, J. M., 1986, Fund. Cosmic Phys., 11, 1.Google Scholar
Schmidt, M., 1959, Astrophys. J., 129, 243.CrossRefGoogle Scholar
Thielemann, F-K. and Amett, W. D., 1985, Nucleosynthesis: Challenges and New Developments, Amett, W. D. and Truran, J. W. (eds), Univ. of Chicago Press: Chicago, p. 151.Google Scholar
Tomambé, A., 1984, Mon. Not. R. Astr. Soc., 206, 867.Google Scholar
Vader, J. P. and de Jong, T., 1981, Astron. Astrophys., 100, 124.Google Scholar
Wheeler, J. C., Sneden, C. and Truran, J. W., 1989, Annu. Rev. Astron. Astrophys., 27, 279.CrossRefGoogle Scholar
Wood, P. R., 1981, Physical Processes in Red Giants, Iben, I. and Renzini, A. (eds), Reidel: Dordrecht, p. 135.CrossRefGoogle Scholar
Woosley, S. E. and Haxton, W. C., l988, Nature, 334, 45.CrossRefGoogle Scholar
Woosley, S. E., Hartmann, D. H., Hoffman, R. D. and Haxton, W.C., 1990, Astrophys. J., in press.Google Scholar
Woosley, S. E. and Weaver, T. A., 1982, Essays in Nuclear Astrophysics, Barnes, C. A., Clayton, D. D. and Schramm, D. R. (eds), CUP: Cambridge, p. 377.Google Scholar
Woosley, S. E. and Weaver, T. A., 1986, in IAU Symp. No. 89, Mihalas, D. and Winkler, K.H. (eds).CrossRefGoogle Scholar
Wyse, R. F. G. and Silk, J., 1989, Proc. 2nd. IRAS Conference on Star Formation in Galaxies, Scoville, N. (ed).Google Scholar