Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T17:24:56.536Z Has data issue: false hasContentIssue false

The Shroud around the ‘Compact, Symmetric’ Radio Jets in NGC 1052

Published online by Cambridge University Press:  05 March 2013

R. C. Vermeulen
Affiliation:
Netherlands Foundation for Research in Astronomy, PO Box 2, NL–7990 AA Dwingeloo, The Netherlands. [email protected]
E. Ros
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany. [email protected], [email protected]
K. I. Kellermann
Affiliation:
National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA. [email protected]
M. H. Cohen
Affiliation:
California Institute of Technology, Pasadena, CA 91125, USA. [email protected]
J. A. Zensus
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany. [email protected], [email protected] National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA. [email protected]
H. J. van Langevelde
Affiliation:
Joint Institute for VLBI in Europe, PO Box 2, NL–7990 AA Dwingeloo, The Netherlands. [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This is a paper on young jet material in a frustratingly complex environment.

NGC 1052 has a compact, flat or GHz peaked spectrum radio nucleus consisting of bi-symmetric jets, oriented close to the plane of the sky. Many features on both sides move away at υapp ˜0.26 c (H0 = 65 km s−1 Mpc−1). VLBI at seven frequencies shows a wide range of spectral shapes and brightness temperatures; there is clearly free–free absorption, probably together with synchrotron self-absorption, on both sides of the core. The absorbing structure is likely to be geometrically thick and oriented roughly orthogonal to the jets, but it is patchy.

HI VLBI shows atomic gas in front of the approaching as well as the receding jet. There appear to be three velocity systems, at least two of which are local to the AGN environment. The ‘high velocity system’, 125–200 km s−1 redward of systemic, seems restricted to a shell 1–2 pc away from the core. Closer to the centre, this gas might be largely ionised; it could cause the free–free absorption.

WSRT spectroscopy shows 1667 and 1665 MHz OH absorption over a wide velocity range. OH and HI profile similarity suggests co-location of molecular and atomic ‘high velocity’ gas; the connection to H2O masing gas is unclear. Further, at ‘high velocity’ we detected the OH 1612 MHz satellite line in absorption and the 1720 MHz line in emission, with complementary strengths.

Type
GPS/CSS Workshop
Copyright
Copyright © Astronomical Society of Australia 2003

References

Claussen, M. J., Diamond, P. J., Braatz, J. A., Wilson, A. S., & Henkel, C. 1998, ApJ, 500, L129 CrossRefGoogle Scholar
de Vries, W. H., Barthel, P. D., & O'Dea, C. P. 1997, A&A, 321, 105 Google Scholar
Guainazzi, M., & Antonelli, L. A. 1999, MNRAS, 304, L15 Google Scholar
Guainazzi, M., Oosterbroek, T., Antonelli, L. A., & Matt, G. 2000, A&A, 364, L80 Google Scholar
Gabel, J. R., Bruhweiler, D. M., Crenshaw, D. M., Kraemer, S. B., & Miskey, C. L. 2000, ApJ, 532, 883 Google Scholar
Heeschen, D. S., & Puschell, J. J. 1983, ApJ, 267, L11 Google Scholar
Kadler, M., Ros, E., Kerp, J., Lobanov, A. P., Falcke, H., & Zensus, J. A. 2002, in Proc. 6th European VLBI Network Symposium, eds E. Ros et al. (Bonn, Germany: MPIfR), 167 Google Scholar
Kadler, M., Ros, E., Zensus, J. A., Lobanov, A. P., & Falcke, H. 2003, in SRT: The Impact of Large Antennas on Radio Astronomy and Space Science, SRT Conference Proceedings (Cagliari, Italy), in pressGoogle Scholar
Kameno, S., Sawada-Satoh, S., Inoue, M., Shen, Z.-Q., & Wajima, K. 2001, PASJ, 53, 169 Google Scholar
Kellermann, K. I., Vermeulen, R. C., Cohen, M. H., & Zensus, J. A. 1999, BAAS, 31, 856 Google Scholar
Maloney, P. R., Hollenbach, D. J., & Tielens, A. G. G. M. 1996, ApJ, 466, 561 Google Scholar
Omar, A., Anantharamiah, K. R., Rupen, M., & Rigby, J. 2002, A&A, 381, L29 Google Scholar
Sargent, W. L. W., Schechter, P. L., Boksenberg, A., & Shortridge, K. 1977, ApJ, 212, 326 Google Scholar
van Langevelde, H. J., van Dishoeck, E. F., Sevenster, M., & Israel, F. P. 1995, ApJ, 448, L123 Google Scholar
Vermeulen, R. C., Ros, E., Kellermann, K. I., Cohen, M. H., Zensus, J. A., & van Langevelde, H. J. 2003, A&A, in pressGoogle Scholar
Weaver, K. A., Wilson, A. S., Henkel, C., & Braatz, J. A. 1999, ApJ, 520, 130 Google Scholar
Wrobel, J. 1984, ApJ, 284, 531 CrossRefGoogle Scholar