Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T11:45:47.650Z Has data issue: false hasContentIssue false

The Search for Supernova-Produced Radionuclides in Terrestrial Deep-Sea Archives

Published online by Cambridge University Press:  02 January 2013

J. Feige*
Affiliation:
University of Vienna, Faculty of Physics — Isotope Research, VERA Laboratory, Währinger Straße 17, 1090 Vienna, Austria
A. Wallner
Affiliation:
University of Vienna, Faculty of Physics — Isotope Research, VERA Laboratory, Währinger Straße 17, 1090 Vienna, Austria Department of Nuclear Physics, The Australian National University, Canberra, ACT 0200, Australia ANSTO, Locked Bag 2001, Kirrawee, DC, NSW 2232, Australia
S. R. Winkler
Affiliation:
University of Vienna, Faculty of Physics — Isotope Research, VERA Laboratory, Währinger Straße 17, 1090 Vienna, Austria
S. Merchel
Affiliation:
HZDR, Bautzner Landstraße 400, 01328 Dresden, Germany
L. K. Fifield
Affiliation:
Department of Nuclear Physics, The Australian National University, Canberra, ACT 0200, Australia
G. Korschinek
Affiliation:
Physics Department, TU Munich, James-Franck-Str., 85748 Garching, Germany
G. Rugel
Affiliation:
HZDR, Bautzner Landstraße 400, 01328 Dresden, Germany
D. Breitschwerdt
Affiliation:
Department of Astronomy and Astrophysics, TU Berlin, Germany, Hardenbergstrasse 36, 10623 Berlin, Germany
*
GCorresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An enhanced concentration of 60Fe was found in a deep ocean crust in 2004 in a layer corresponding to an age of ∼2 Myr. The confirmation of this signal in terrestrial archives as supernova-induced and the detection of other supernova-produced radionuclides is of great interest. We have identified two suitable marine sediment cores from the South Australian Basin and estimated the intensity of a possible signal of the supernova-produced radionuclides 26Al, 53Mn, 60Fe, and the pure r-process element 244Pu in these cores. The finding of these radionuclides in a sediment core might allow us to improve the time resolution of the signal and thus to link the signal to a supernova event in the solar vicinity ∼2 Myr ago. Furthermore, it gives us an insight into nucleosynthesis scenarios in massive stars, condensation into dust grains and transport mechanisms from the supernova shell into the solar system.

Type
Research Front: Astronomy with Radioactivities
Copyright
Copyright © Astronomical Society of Australia 2012

References

Aggarwal, S. K., 2006, RCA, 94, 397Google Scholar
Allison, E. & Ledbetter, M. T., 1982, MarGe, 46, 131Google Scholar
Athanassiadou, T. & Fields, B. D., 2011, NewA, 16, 229CrossRefGoogle Scholar
Auer, R. M., 2008, PhD Thesis, University of Vienna The Search for Supernova-Produced Radionuclides 113Google Scholar
Auer, R. M., Wagenbach, D., Wild, E. M., Wallner, A., Priller, A., Miller, H., Schlosser, C. & Kutschera, W., 2009, E&PSL, 287, 453Google Scholar
Avillez, M. A. & Breitschwerdt, D., 2012, A&A, 539, L1Google Scholar
Berghöfer, T. W. & Breitschwerdt, D., 2002, A&A, 390, 299Google Scholar
Bishop, S. & Egli, R., 2011, Icar, 212, 960CrossRefGoogle Scholar
Bourlès, D., Raisbeck, G. M. & Yiou, F., 1989, GCA, 53, 443Google Scholar
Chmeleff, J., et al. , 2010, NIMPB, 268, 192Google Scholar
Clarke, C. & Carswell, R., 2007, Principles of Astrophysical Fluid Dynamics (Cambridge: Cambridge University Press)CrossRefGoogle Scholar
Cook, D. L., et al. , 2009, Lunar and Planetary Institute Science Conference Abstracts, 40, 1129Google Scholar
Diehl, R., et al. , 2010, A&A, 522, A51Google Scholar
Ellis, J., Fields, B. D. & Schramm, D. N., 1996, ApJ, 470, 1227CrossRefGoogle Scholar
Fields, B. D., Hochmuth, K. A. & Ellis, J., 2005, ApJ, 621, 902CrossRefGoogle Scholar
Fitoussi, C. & Raisbeck, G. M., 2007, NIMPB, 259, 351Google Scholar
Fitoussi, C., et al. , 2008, PhRvL, 101, 12Google Scholar
Fuchs, B., Breitschwerdt, D., de Avillez, M. A., Dettbarn, C. & Flynn, C., 2006, MNRAS, 373, 993Google Scholar
Hofmann, H. J., et al. , 1987, NIMPB, 29, 32Google Scholar
Holden, N. E. & Hoffman, D. C., 2000, PApCh, 72, 8Google Scholar
Honda, M. & Imamura, M., 1971, PhRvC, 4, 1182Google Scholar
Imamura, M., Inoue, T., Nishiizumi, K. & Tanaka, S., 1979, ICRC, 2, 304Google Scholar
Knie, K., Korschinek, G., Faestermann, T., Wallner, C., Scholten, J. & Hillebrandt, W., 1999, PhRvL, 83, 1Google Scholar
Knie, K., Korschinek, G., Faestermann, T., Dorfi, E. A., Rugel, G. & Wallner, A., 2004, PhRvL, 93, 17Google Scholar
Korschinek, G., Faestermann, T., Knie, K. & Schmidt, C., 1996, Radiocarbon, 38, 68Google Scholar
Korschinek, G., et al. , 2010, NIMPB, 268, 187Google Scholar
Lachner, J., et al. , 2012, PhRvC, 85, 1Google Scholar
Limongi, M. & Chieffi, A., 2006, ApJ, 647, 483CrossRefGoogle Scholar
Lingenfelter, R. E., Higdon, J. C., Kratz, K.-L. & Pfeiffer, B., 2003, ApJ, 591, 228CrossRefGoogle Scholar
Masarik, J. & Beer, J., 2009, JGR, 114, D11103CrossRefGoogle Scholar
Merchel, S. & Herpers, U., 1999, RCA, 84, 215Google Scholar
Middleton, R., Klein, J., Raisbeck, G. & Yiou, F., 1983, NIMPR, 218, 430Google Scholar
Neuhäuser, R., Tetzlaff, N., Eisenbeiss, T. & Hohle, M. M., 2011, preprint (ArXiv e-prints, 1111.0453)Google Scholar
Nishiizumi, K., Imamura, M., Caffee, M.W., Southon, J. R., Finkel, R. C. & McAninch, J., 2007, NIMPB, 258, 403Google Scholar
Norris, T. L., Swart, P. K., Wright, I. P., Grady, M. M. & Pillinger, C. T., 1983, JGRS, 88, B331Google Scholar
Ouellette, N., Desch, S. J. & Hester, J. J., 2010, ApJ, 711, 597CrossRefGoogle Scholar
Paul, M., et al. , 2001, ApJ, 558, L133CrossRefGoogle Scholar
Paul, M., et al. , 2003, NuPhA, 719, C29Google Scholar
Paul, M., et al. , 2007, JRNC, 272, 243Google Scholar
Rauscher, T., Heger, A., Hoffman, R. D. & Woosley, S. E., 2002, ApJ, 576, 323CrossRefGoogle Scholar
Rugel, G., et al. , 2009, PhRvL, 103, 7Google Scholar
Samworth, E. A. & Olness, J. W., 1972, PhRvC, 5, 138Google Scholar
Thomas, J. H., Rau, R. L., Skelton, R. T. & Kavanagh, R. W., 1984, PhRvC, 30, 385Google Scholar
Wallner, C., et al. , 2000, NIMPB, 172, 333Google Scholar
Wallner, C., Faestermann, T., Gerstmann, U., Knie, K., Korschinek, G., Lierse, C. & Rugel, G., 2004, NewAR, 48, 145CrossRefGoogle Scholar
Woosley, S. E. & Weaver, T. A., 1995, ApJS, 101, 181CrossRefGoogle Scholar