Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T17:58:31.841Z Has data issue: false hasContentIssue false

Radio Emission from Ultrashort-Period Double Degenerate Binaries

Published online by Cambridge University Press:  05 March 2013

A. J. Willes*
Affiliation:
School of Physics, University of Sydney, NSW 2006, Australia
K. Wu
Affiliation:
MSSL, University College London, Holmbury St Mary, Surrey, RH5 6NT, UK
Z. Kuncic
Affiliation:
School of Physics, University of Sydney, NSW 2006, Australia
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Timing measurements of periodic X-ray pulses from two ultrashort-period double degenerate binaries, RX J1914+24 and RX J0806+15, show that the rates of change of their orbital periods are consistent with gravitational radiation losses. This contradicts the predictions of models which invoke mass transfer between the two white dwarfs. The X-ray emission is, therefore, unlikely to be powered by accretion processes. The unipolar inductor model explains the source of X-ray emission as electrical dissipation at the base of a flux tube, which connects the magnetic white dwarf to its companion. This model is most consistent with the observed X-ray pulse properties. A similar current system exists in the Jupiter–Io system, where a mildly relativistic electron current produces an auroral footprint at the base of the Io flux tube and highly polarized beamed radio emission by means of the electron cyclotron maser mechanism. Detection of radio emission from RX J1914+24 and RX J0806+15 would thus provide further support for the unipolar inductor model. We present theoretical predictions, based on a loss-cone-driven electron cyclotron maser model, of radio fluxes from systems with parameters similar to RX J1914+24 and RX J0806+15.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2004

References

Chanmugam, G., & Dulk, G. A. 1983, in Cataclysmic variables and related objects; Proceedings of the Seventy-second Colloquium, Haifa, Israel, August 9–13, 1982 (Dordrecht: Reidel), p. 223 Google Scholar
Cropper, M., Harrop-Allin, M. K., Mason, K., Mittaz, J. P., Potter, S. B., & Ramsay, G. 1998, MNRAS, 293, L57 Google Scholar
Clarke, J. T., et al. 1996, Sci, 274, 404 Google Scholar
Clarke, J. T., et al. 2002, Natur, 415, 997 Google Scholar
Connerney, J. E. P., Baron, R., Satoh, T., & Owen, T. 1993, Sci, 262, 1035 Google Scholar
de Jager, O. C. 1994, ApJS, 90, 775 Google Scholar
Dulk, G. A. 1985, ARA&A, 23, 169 Google Scholar
Frank, J., King, A., & Raine, D. 2002, Accretion Power in Astro-physics (Cambridge: Cambridge University Press)Google Scholar
Goldreich, P., & Lynden-Bell, D. 1969, ApJ, 156, 59 Google Scholar
Haerendel, G. 1994, ApJS, 90, 765 Google Scholar
Hamada, T., & Salpeter, E. 1961, ApJ, 134, 683 CrossRefGoogle Scholar
Hakala, P., et al. 2003, MNRAS, 343, L10 Google Scholar
Israel, G. L., et al. 2002, A&A, 386, L13 Google Scholar
Li, J., Ferrario, L., & Wickramasinghe, D. T. 1998, ApJ, 503, L151 Google Scholar
Meintjes, P. J., & de Jager, O. C. 2000, MNRAS, 311, 611 CrossRefGoogle Scholar
Melrose, D. B., & Dulk, G. A. 1982, ApJ, 259, 844 Google Scholar
Piddington, J. H., & Drake, J. F. 1968, Nature, 217, 935 CrossRefGoogle Scholar
Ramsay, G., Cropper, M., Wu, K., Mason, K., & Hakala, P. 2001, MNRAS, 311, 75 Google Scholar
Ramsay, G., Hakala, P., & Cropper, M. 2002, MNRAS, 332, L7 Google Scholar
Ramsay, G., Wu, K., Cropper, M., Schmidt, G., Sekiguchi, K., Iwamuro, F., & Maihara, T. 2002, MNRAS, 333, 575 Google Scholar
Strohmayer, T. E. 2002, ApJ, 581, 577 Google Scholar
Willes, A. J., & Wu, K. 2004, MNRAS, 348, 285 Google Scholar
Wu, K., Cropper, M., Ramsay, G., & Sekiguchi, K. 2002, MNRAS, 331, 221 Google Scholar