Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T16:49:35.774Z Has data issue: false hasContentIssue false

Radiation Fields in Blazars — a Possible Extension of the Small Scale Symbiosis (Disk/Jet) into a Large Scale (Dust/Dust) Symbiosis

Published online by Cambridge University Press:  05 March 2013

Alina-C. Donea*
Affiliation:
Department of Physics and Mathematical Physics, University of Adelaide, SA 5001, Australia
Raymond J. Protheroe
Affiliation:
Department of Physics and Mathematical Physics, University of Adelaide, SA 5001, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In blazar models both protons and electrons may be efficiently accelerated in jets and produce γ-rays. Here we discuss the interactions of these γ-rays with different radiation fields. The external radiation fields within a few parsecs from the black hole involved in such interactions could be the direct radiation from the accretion disk coupled with the jet, the infrared radiation from a dusty torus, and the emission line radiation from the broad line region surrounding the accretion disk. The optical thickness for absorption of γ-ray photons in the external radiation fields is analysed for blazars and quasars.

Based on the unification theory of active galactic nuclei we briefly review the evidence for the existence of small scale dust tori in blazars/FR I. We propose that the existing jet–accretion disk symbiosis extrapolates to a large scale symbiosis between other important dusty constituents of the blazar/FR I family.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2002

References

Alexander, D. M., et al. 1999, MNRAS, 310, 78 CrossRefGoogle Scholar
Antonucci, R. 2001, astro-ph/0103048Google Scholar
Barth, A. J., Filippenko, A. V., & Moran, E. C. 1999, ApJ, 525, 673 Google Scholar
Blazejowski, M., Sikora, M., Moderski, R., & Madejski, G. M. 2000, ApJ, 545, 107 Google Scholar
Chiaberge, M., Capetti, A., & Celloti, A. 1999, A&A, 349, 77 Google Scholar
Corbett, E. A., Robinson, A., Axon, D. J., & Hough, J. H. 2000, MNRAS, 311, 485 Google Scholar
Danese, L., Silva, L., Granato, G. L., & Franceschini, A. 1998, ApJ, 509, 103 Google Scholar
de Koff, S., et al. 2000, ApJS, 129, 33 Google Scholar
Donea, A.-C., & Biermann, P. L. 1996, A&A, 316, 43 Google Scholar
Falcke, H., Gopal-Krishna, , & Biermann, P. L. 1995, A&A, 298, 395 Google Scholar
Kaspi, S., & Netzer, H. 1999, ApJ, 524, 71 Google Scholar
Morganti, R., Ulrich, M.-H., & Tadhunter, C. N. 1992, MNRAS, 254, 546 Google Scholar
Hartman, R. C., et al. 2001, ApJ, 553, 683 Google Scholar
Pier, E. A., & Krolik, J. H. 1992, ApJ, 401, 99 Google Scholar
Protheroe, R. J., & Biermann, P. L. 1997, Astropart. Phys., 6, 293 Google Scholar
Sambruna, R. M., Chartas, G., Eracleous, M., Mushotzky, R. F., & Nousek, A. J. 2000, ApJ, 532, L91 Google Scholar
Stecker, F. W., & de Jager, O. C. 1998, A&A, 334, L85 Google Scholar
Urry, C. M., & Padovani, P. 1995, PASP, 107, 803 CrossRefGoogle Scholar
Valtaoja, E. 2001, PASA, 19, in pressGoogle Scholar