Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T07:47:14.368Z Has data issue: false hasContentIssue false

Prospects for Coordinated Observations with XTE

Published online by Cambridge University Press:  25 April 2016

A. B. Giles
Affiliation:
Code 666, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA. [email protected] Universities Space Research Association
K. Jahoda
Affiliation:
Code 666, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA. [email protected]
J. H. Swank
Affiliation:
Code 666, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA. [email protected]
W. Zhang
Affiliation:
Code 666, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA. [email protected] Universities Space Research Association

Abstract

The X-ray Timing Explorer (XTE) is a NASA satellite designed to perform high-time-resolution studies of known X-ray sources. The two main experiments are a large-area proportional counter array (PCA) from the Goddard Space Flight Center (GSFC) and a high-energy X-ray timing experiment (HEXTE) from the University of California at San Diego (UCSD). The PCA data is processed by an electronic data system (EDS) built by the Massachusetts Institute of Technology (MIT) that performs many parallel processing analysis functions for on-board evaluation and data compression. MIT also provide an all-sky monitor (ASM) experiment so that XTE can be slewed rapidly to new transient sources. The spacecraft provides a mean science telemetry rate for the PCA of ~20 kilobits per second (kbps), with bursts to 256 kbps for durations of 30 minutes. Photons are tagged to 1 μs and absolute timing should be better than 100 μs. XTE is due for launch in late August 1995 and the first NASA Research Announcement (NRA) is due out in January 1995. This paper summarises XTE’s performance and then discusses the interactive and flexible operations of the satellite and some of the science it can do. These features should make XTE a productive spacecraft for coordinated observation programs.

Type
Instruments, Techniques and Basic Measurements
Copyright
Copyright © Astronomical Society of Australia 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bradt, H. V., Swank, J. H., & Rothschild, R. E., 1990, Adv. Space Res., 10, 297 Google Scholar
Bradt, H. V., Swank, J. H., & Rothschild, R. E., 1991, Adv. Space Res., 11, 243 Google Scholar
Bradt, H. V., Rothschild, R. E., & Swank, J. H., 1993, A&AS, 97, 355 Google Scholar
Giles, A.B. 1981, MNRAS, 195, 721 Google Scholar
Matteson, J. L., 1978, Proc. AIAA, No. 78-35Google Scholar
Meekins, J. F., Wood, K. S., Hedler, R. L., Byram, E. T., Yentis, D. J., Chubb, T. A., & Friedman, H., 1984, ApJ, 278, 288 Google Scholar
Orlandini, M., & Boldt, E. A., 1993, ApJ, 419, 776 Google Scholar
Peiling, M. R., et al. 1991, in EUVE, X-Ray and Gamma Ray Instrumentation for Astronomy II, Proc. SPIE, 1549, 134 Google Scholar
Rothschild, R. E., Boldt, E. A., Holt, S. S., & Serlemitsos, P. J., 1977, ApJ, 213, 818 Google Scholar
Rothschild, R. E., et al. 1979, Space Sci. Instr., 4, 269 Google Scholar
Swank, J. H., et al. 1994, Lives of Neutron Stars, NATO ASI Ser. (Dordrecht: Kluwer), 525 Google Scholar
Tennant, A. F., 1987, MNRAS, 226, 971 Google Scholar
Turner, M. J. L., Smith, A., & Zimmerman, H. U., 1981, Space Sci. Rev., 30, 513 Google Scholar
Turner, M. J. L., et al. 1989, PASJ, 41, 345 Google Scholar
Wood, K. S., et al. 1984, ApJS, 56, 507 Google Scholar
Zhang, W., Giles, A.B., Jahoda, K., Soong, Y., Swank, J. H., & Morgan, E. H., 1993, in EUVE, X-Ray and Gamma Ray Instrumentation for Astronomy IV, Proc. SPIE, 2006, 324 Google Scholar
Zhang, W., Jahoda, K., Swank, J. H., Morgan, E. H., & Giles, A.B. 1994, ApJ, in pressGoogle Scholar