Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T19:37:02.544Z Has data issue: false hasContentIssue false

Propagation-induced Circular Polarisation in Synchrotron Sources

Published online by Cambridge University Press:  05 March 2013

Malcolm Kennett
Affiliation:
Research Centre for Theoretical Astrophysics, School of Physics, University of Sydney, NSW 2006, Australia; [email protected]
Don Melrose
Affiliation:
Research Centre for Theoretical Astrophysics, School of Physics, University of Sydney, NSW 2006, Australia; [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The small degree of circular polarisation observed in some synchrotron sources has a frequency dependence that is not consistent with simple predictions based on the intrinsic circular polarisation of synchrotron emission. The suggestion is explored that the circular polarisation arises as a propagation effect within the source. The physical basis of this alternative mechanism is the fact that the natural wave modes of a synchrotron emitting gas are linearly polarised, allowing partial conversion of linear into circular polarisation as in a quarter-wave plate. A relativistic rotation measure (RRM) is defined to characterise the magnitude of this effect.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 1998

References

Berge, G. L., and Seielstad, G. A. 1972, ApJ, 77, 810 Google Scholar
Biraud, F. 1969, A&A, 1, 156 Google Scholar
Conway, R. G., Gilbert, J. A., Raimond, E., and Weiler, K. W., 1971, MNRAS, 152, 1 Google Scholar
Hodge, P. E. 1982, ApJ, 263, 595 Google Scholar
Jones, T. W., and O'Dell, S. L. 1977a, ApJ, 214, 522 CrossRefGoogle Scholar
Jones, T. W., and O'Dell, S. L. 1977b, ApJ, 215, 236 Google Scholar
Legg, M. P. C., and Westfold, K. C. 1968, ApJ, 154, 499 CrossRefGoogle Scholar
Melrose, D. B. 1972, PASA, 2, 140 Google Scholar
Melrose, D. B. 1980, Plasma Astrophysics, Vol. 1 (New York: Gordon & Breach), p. 217 Google Scholar
Melrose, D. B. 1997a, Phys. Rev. E, 56, 3527 CrossRefGoogle Scholar
Melrose, D. B. 1997 b, J. Plasma Phys., 58, 735 Google Scholar
Melrose, D. B., and McPhedran, R. C. 1991, Electromagnetic Processes in Dispersive Media (Cambridge University Press), p. 188 Google Scholar
Pacholczyk, A. G. 1973, MNRAS, 163, 29 CrossRefGoogle Scholar
Pacholczyk, A. G., and Swihart, T. L. 1970, ApJ, 161, 415 Google Scholar
Roberts, J. A., Roger, R. S., Ribes, J.-C., Cooke, D. J., Murray, J. D., Cooper, B. F. C., and Biraud, F. 1975, Aust. J. Phys., 28, 325 Google Scholar
Sazonov, V. N. 1969, Sov. Phys. JETP, 29, 578 Google Scholar
Seaquist, E. R. 1973, A&A, 22, 299 Google Scholar
Weiler, K. W. 1975, Nature, 253, 24 CrossRefGoogle Scholar
Weiler, K. W., and de Pater, I. 1980, A&A, 91, 41 Google Scholar
Wilson, A. S., and Weiler, K. W. 1997, ApJ, 475, 661 Google Scholar